Valladolid, 26 January 2015 - 30 January 2015

PRESENTATION

Valladolid



This is the 12th winter school in Dynamical Systems of the DANCE (Dinámica, Atractores y Nolinealidad: Caos y Estabilidad) Spanish network.


SPONSORS

 

 
Ministerio de Eduación y Ciencia
 

COMMITTEES

COORDINATORS

Lluís Alsedà (Universitat Autònoma de Barcelona)
Santiago Ibáñez (Universidad de Oviedo)
Tere Martínez-Seara (Universitat Politècnica de Catalunya)
Enrique Ponce (Universidad de Sevilla)

 

SCIENTIFIC COMMITTEE

Russell Johnson (Università degli studi Firenze)
Àngel Jorba (Universitat de Barcelona)
Vadim Kaloshin (University of Maryland)
Antonio Pumariño (Universidad de Oviedo)
Ana M. Sanz (Universidad de Valladolid)

 

ORGANIZING COMMITTEE

Ana I Alonso de Mena (Universidad de Valladolid)
Jorge Álvarez López (Universidad de Valladolid)
Ócar Arratia García (Universidad de Valladolid)
Ángel Durán Martín (Universidad de Valladolid)
Sylvia Novo Martín (Universidad de Valladolid)
Carmen Núñez Jiménez (Universidad de Valladolid)
Rafael Obaya García (Universidad de Valladolid)
Jesús Rojo García (Universidad de Valladolid)
M. Eugenia Sansaturio Lapeña (Universidad de Valladolid)
Ana María Sanz Gil (Universidad de Valladolid)

 Schedule

 

How to get to Room 2.1 (second floor, EII) EII map

EII

Download

Scientific Sessions

 Numerical techniques for large dimensional dynamical systems - Bosco García Archilla (Universidad de Sevilla)

Abstract. Numerical techniques for dynamical systems are well developed today, at least for the computation of the most basic elements, and are implemented in packages of widespread use AUTO. However, some of these techniques are not viable when the systems have large dimension, like those typically arising from the discretization of partial differential equations. We will review the basic techniques for the computation and stability analysis of branches of equilibria and periodic orbits, focusing on the changes needed to deal with large-dimensional systems.

Remark. For this course, it is advisable to carry a personal laptop with the software MATLAB or OCTAVE already installed, in order to be able to practice on the case studies to be proposed.

 Introduction to Dynamical Systems through basic examples - Maria José Pacifico (Universidade Federal do Rio de Janeiro)

Abstract. Dynamical systems is a very active field in pure and applied mathematics, that involves tools and techniques from many other areas such as analyses, geometry and number theory.

A dynamical system can be obtained by iterating a function or letting evolve in time the solution of a differential equation. Even if the rule of evolution is simple, the long term behavior of the system is often chaotic, meaning that the system depends on initial data. The most significative example of such system is the one given by the Lorenz equations: it has three equations of two degree polynomial on three variables.

The course will provide an introduction to Dynamical Systems, exploring the dynamics of some of the basic examples of this theory.

Driven by those examples we will introduce some of the phenomena and main concepts which one is interested in the study of this subject.

The course will cover:

Circle rotations; expanding maps of the circle and the shift map, the quadradict family, Smale horseshoe, Markov partitions and the CAT map and toral automorphisms, Limit inverse and the solenoide, Geometric Lorenz Flows.

Along the presentation of the examples, we will develop the basic notions as dynamical systems, orbits, fixed points, source, saddle, sink hyperbolic fixed points. After, we introduce a basic topological dynamics as transitivity, mixing, topological conjugacy and deduce which of the examples given above satisfy such notions.

References:

  • Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, C. Robinson.
  • Geometric Theory of Dynamical Systems, W. De Melo and J. Palis.
  • Three Dimensional Flows, V. Araujo and M. J. Pacifico.
 Nonautonomous Dynamical Systems - Stefan Siegmund (Technische Universität Dresden)

Abstract. This course will start by reviewing key concepts of time-varying (i.e. nonautonomous) differential equations, including unique solvability, linearization along solutions, linear theory and stability theory, so that those with little knowledge in the area can appreciate the nonautonomous point of view, in contrast to well-know autonomous theory which is taught in most basic courses on differential equations. After describing those basic notions and some of the mathematical tools (primarily transformations and Taylor series expansion). I will discuss the central notion of exponential dichotomy which is the nonautonomous version of hyperbolicity. We will relate it to linear algebra (eigenvalues and eigenspaces) in the autonomous case. I will then introduce dichotomy spectrum and prove a spectral theorem. All this is part of linear theory and we will then apply the spectral theorem to block-diagonalize linear systems. Once these results of linear theory are discussed we are prepared to develop the nonlinear theory and prove the invariant manifold theorem. By then we have collected the main tools of the geometric theory of nonautonomous differential equations. We now go one step further and study nonautonomous differential equations which are motivated by modern applications e.g. in meteorology, oceanography and fluid dynamics which allow the time only to be in a bounded interval (called finite-time dynamics). None of the above developed techniques apply in this case and we have to start over asking the same questions (linear theory, hyperbolicity, etc.) as before but developing new mathematical tools. We will present recent work, prove a spectral theorem for finite-time dynamics and the course will end with open research questions.

1. Existence and uniqueness
2. Boundary behavior of maximal solutions
3. Linear differential equations
4. Dichotomy spectrum
5. Block diagonalization
6. Invariant manifolds
7. Finite-time dynamics

The course describes classical and important work on nonautonomous dynamical systems, motivates with applications why those results sometimes do not apply and builds on the classical theory to develop modern research results and formulate open problems.

Literature

  1. H. Amann, Ordinary Differential Equations: Introduction to Nonlinear Analysis, De Gruyter Studies in Mathematics, 1990.
  2. W. Walter, Ordinary Differential Equations, Graduate Texts in Mathematics, Springer, 1998.
  3. S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations 14 (2002), 243-258.
  4. S. Siegmund, Reducibility of nonautonomous linear differential equations, J. London Math. Soc. 65 (2002), 397-410.
  5. T.S. Doan, D. Karrasch, T.Y. Nguyen, S. Siegmund, A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents, J. Differential Equations 252 (2012), 5535-5554.
 Stefan Siegmund
 Bosco García-Archilla
 Joan Torregrosa, Universitat Autònoma de Barcelona (Spain)
 Carmen Núñez, Universidad de Valladolid (Spain)
 Armando W. Gutiérrez, Aalto University (Finland)
 Jose G. Espin, Universidad de Murcia (Spain)
 Ekaterina Felk, Saratov State University (Russia)
 Alexey Kazakov, University of Nizhni Novgorod  (Russia)
 Tingting Zhang, Shandong University (Spain)
 Oscar E. Martinez, Universidad Sergio Arboleda (Colombia)
 Marc  Jorba-Cuscó, Universitat de Barcelona (Spain)
 Marina Gonchenko, Technische Universität Berlin (Germany)
 Ismael Maroto, Universidad de Valladolid (Spain)
 Ana M. Sanz, Universidad de Valladolid (Spain)
 David Rojas, Universitat Autònoma de Barcelona (Spain)
 Alberto Pérez, Universitat Politècnica de Catalunya (Spain)
 Rodrigo Gonçalves, Universitat Politècnica de Catalunya (Spain)
 Ignacio Coca, Universitat Politècnica de Catalunya (Spain)
 Nitin Ramchand, Universitat Politècnica de Catalunya (Spain)
 Edison J. Castillo, Universitat Politècnica de Catalunya (Spain)
 Jesús J. Jiménez, Universidad de Valladolid (Spain)
 Marc Calvo, Universitat Politècnica de Catalunya (Spain)
 Guillem Belda, Universitat Politècnica de Catalunya (Spain)
 Lucía Pérez, Universidad de Valladolid (Spain)
 Jackson Itikawa, Universitat Autònoma de Barcelona (Spain)
 Sylvia Novo, Universidad de Valladolid (Spain)
 Rafael Obaya, Universidad de Valladolid (Spain)
 Juliana  Larrosa, Universidade Estadual de Campinas (Brazil)
 Roberta Fabbri, Università degli Studi di Firenze (Italy)
 Enrique Ponce, Universidad de Sevilla (Spain)
 Lluís Alsedà, Universitat Autònoma de Barcelona (Spain)
 Angel Jorba, Universitat de Barcelona (Spain)
 Jorge Álvarez, Universidad de Valladolid (Spain)
 Alfred Peris, Universitat Politècnica de València (Spain)
 Santiago Ibáñez, Universidad de Oviedo (Spain)
 Jesús Rojo, Universidad de Valladolid (Spain)
 Russell Johnson, Università degli Studi di Firenze (Italy)
 Jeroen Wynen, Hasselt University (Belgium)
 Karel Kenens, Hasselt University (Belgium)
 Joan C. Tatjer, Universitat de Barcelona (Spain)
 Ana I. Alonso, Universidad de Valladolid (Spain)
 Antonio Pérez, Universitat Politècnica de Catalunya (Spain)
 Daniel J. Pagano, Universidade Federal de Santa Catarina (Brazil)
 Alex Haro, Universitat de Barcelona (Spain)
 Tere Martinez-Seara, Universitat Politècnica de Catalunya (Spain)
 Clementa Alonso, Universidad de Alicante (Spain)
 María Eugenia Sansaturio, Universidad de Valladolid (Spain)
 Luca Borchini, Universitat Politècnica de Catalunya (Spain)
 Magdalena Caubergh, Universitat Autònoma de Barcelona (Spain)
 Adrià Simon, Universitat Politècnica de Catalunya (Spain)
 Jorge Galan, Universidad de Sevilla (Spain)
 Oscar Arratia, Universidad de Valladolid (Spain)
 Francisco Balibrea, Instituto de Ciencias Matemáticas (Spain)
 Juan A. Calzada, Universidad de Valladolid (Spain)
 Francisco Torres, Universidad de Sevilla (Spain)
 Wafaa Kanaan, Universidad de La Rioja (Spain)
 Angel Duran, Universidad de Valladolid (Spain)
 Sergio A. Carrillo, Universidad de Valladolid (Spain)
 Félix Martínez, Universitat Politècnica de València (Spain)
 José A. Acosta, Universidad de Sevilla (Spain)
 Zhaoyang Dong, Universitat Autònoma de Barcelona (Spain)
 Francisco Rodenas, Universitat Politècnica València (Spain)
 Murilo Rodolfo Cândido, Universitat Autònoma de Barcelona (Spain)
 Stefan Siegmund, Technische Universität Dresden (Germany)
 Leonardo P. da Cruz, Universitat Autònoma de Barcelona (Spain)
 Bosco García, Universidad de Sevilla (Spain)
 David Romero, Universitat Autònoma de Barcelona (Spain)
 Alfonso Álamo, Universidad de Valladolid (Spain)
 Maria Jose Pacifico, Universidade Federal do Rio de Janeiro (Brazil)
 Ariadna Farrés, Universitat de Barcelona (Spain)
 Marina Esteban, Universidad de Sevilla (Spain)