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1 Introduction. Krylov spaces

To solve a linear system Ax = b there are techniques other than the different versions of Gaus-
sian elimination. These are iterative techniques, where from an initial approximation x(0) to the
solution x, a sequence (x(n))∞n=1 of approximations is generated, hopefully each better than the
previous one. The computation of the approximations x(n) is typically aborted when the resid-
ual r(n) = b − Ax(n) becomes sufficiently small. Iterative methods are a better choice that direct
methods (those based on gaussian elimination) when the following two circumstances concur.

1. The matrix dimension n is so large that gaussian elimination becomes close to eternal, due to
tis cost being O(n3/3) flops (general case) or O(np) flops where 1 < p < 3 (which is typically
the case of sparse matrices or band matrices with growing bandwidth).

2. The cost of a matrix-vector product Ax is O(np) flops with 1 ≤ p < 2, as it is the case of
Toeplitz o circulant matrices, band and sparse matrices, etc.

Nowadays, the growth in computer power and memory has turned many linear problems solvable
by direct methods. However, there are still a lot of instances where iterative methods are a better
(or, even, the only) choice. This is typically the case of discretization of partial differential equations
(PDEs) set in three-dimensional domains.

Although there are quite a variety of iterative methods for linear systems, in these lecture
notes we will be concerned only with those known as Krylov methods, and in particular with the
generalized minimum residual method (GMRES). Mention will be made also of the most successful
and well-known Krylov method, the conjugate gradient method.

Given a matrix A of dimension m×m and a vector b ∈ Rm the k-order Krylov space generated
by A and b is

Kk(A, b) = lin{b, Ab, . . . , Ak−1b}.
For simplicity, we will drop the explicit dependence of A and b and will write Kk instead of Kk(A, b).
Since there cannot be more than m linearly independent vectors in Rm, we have

Km = Km+1 = . . . = Rm.
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Besides, Cayley-Hamilton (every matrix is a root of its characteristic polynomial) tells us how to
express Amb as a linear combination of b, Ab, . . . , Am−1b.

If for some k < m it happens that
Akb ∈ Kk, (1)

this implies that for certain scalars α0, . . . , αk ∈ R, we have

α0b+ α1Ab+ . . .+ αkA
kb = 0.

It is always possible to choose k y α0, . . . , αk such that α0 6= 0 (why?), so that

b = − 1

α0

(
α1Ab+ · · ·+ αkA

kb).

Since A is a common factor of all the terms on the right-hand side above, we can write

b = A(β0b+ · · ·+ βk−1A
k−1b︸ ︷︷ ︸

∈Kk

).

In other words, if (1) holds, we can express b = Ax with x ∈ Kk.
This is the basic idea underlying all Krylov iterative methods to solve

Ax = b. (2)

In practice, hardly ever (1) holds for
k � m.

However, in may practical instances the following is true (although we cannot explain why yet)

Akb+ εr ∈ Kk, con, ‖r‖ = 1, 0 < ε� 1, k � m, (3)

which allow us to express
b = Ax(k) + εr′, x(k) ∈ Kk,

so that, hopefully,
x(k) ≈ x.

If k � m, y m � 1, computing b, Ab, . . . Ak−1b is much less computationally costly than solving
Ax = b by Gaussian elimination (or any of its variants), as well as finding the scalars to express x(k)

as a linear combination of b, Ab, . . . Ak−1b (they are found by solving an appropriate k × k linear
system), so that if (3) holds, Krylov methods are advantageous when compared to direct methods.

There are two basic ways to chose the approximation x(k) ∈ Kk to the solucion x if

b− Az 6= 0, for all z ∈ Kk,

which we now comment on.

1. The Galerkin aproach where it is demanded that

b− Ax(k) ⊥ Kk.

The resulting method is known as the full orthogonalization method (FOM), and, for sym-
metric positive definite matrix, the conjugate gradient method,due to Hestenes and Stiefel in
1952 (see e.g., [5]).
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2. The least squares approach, where the approximation x(k) satisfies∥∥b− Ax(k)∥∥ = min
z∈Kk

‖b− Az‖ .

The corresponding methods are known as minimum residual (MINRES) method, due to Paige
Michael Saunders in 1975 in the case of symmetric matrices and, for general matrices, the
generalized minimum residual method (GMRES) due to Saad and Schultz in 1986 [6].

In practice, however, we have that although b, Ab, . . . Ak−1b are linearly independent, they are
almost parallell (why? Do you happen to remember the power method to compute the dominant
eigenvalue of a matrix? What was the underlying idea of the power method?). For this reason, in
practice, on needs to compute a different basis of Kk(A, b). Typically, this is the one given by the
Arnoldi process that we now explain.

2 Arnoldi Decomposition

Consider the following process: given a matrix A of dimension m × m, and a vector v1 ∈ Rm

with ‖v1‖ = 1, construct the sequence of vectors (vk)
n
k=1 as follows.

Para k = 1, . . . n− 1

1) uk = Avk,

2) wk = uk − ((vT1 uk)v1 + · · ·+ (vTk uk)vk),

3) vk+1 =
wk
‖wk‖

.

The vectors vj aśı are known as Arnoldi vectors of A generated from v1. Notice that for this process
to be possible, we must have Avk 6= 0, for j = 1, . . . , n. We now comment on several facts.

1. Notice that if we knew u1, . . . , un−1 beforehand, the previous process is Gram-Schmidt or-
thogonalization applied to vectors .v1, u1, . . . , un−1.

2. As a consequence, we have that vectors wk are orthogonal vectors, and so is the case of
vectors vk.

3. In fact, denoting by Vk = lin(v1, . . . , vk) the space spanned by the first k Arnoldi vectors,
steps 1)-3) can be expressed as

vk+1 =
(I − PVk)Avk
‖(I − PVk)Avk)‖

. (4)

4. We will now show that

lin(v1, . . . , vk) = lin(v1, Av1, . . . , A
k−1v1), (5)

that is, {v1, . . . , vk} are an orthonormal base of the Krylov space Kk(A, v1). This is so since
by denoting βk = ‖(I − PVk)Avk)‖ from (4) it follows that

Avk = βkvk+1 + PVkAvk ∈ lin(v1, . . . , vk+1),
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and this holds for k = 1, 2, . . . , k′, where k′ is the first integer for which (I − PVk′ )Avk′ = 0.
Thus,

Av1 ∈ lin(v1, v2),

A2v1 = AAv1 ∈ lin(Av1, Av2) ⊂ lin(v1, v2, v3),

...

Ak−1v1 = AAk−2v1 ∈ lin(Av1, . . . , Avk−1) ⊂ lin(v1, . . . , vk),

from where (5) easily follows.

To make most of the Arnoldi process, it is better to write it as follows.

Para k = 1, . . . n− 1

1) uk = Avk,

2.1) h1k = vT1 uk, . . . , hkk = vTk uk,

2.2) wk = uk − (h1kv1 + · · ·+ hkkvk),

3.1) hk+1,k = ‖wk‖,

3.2) vk+1 =
wk

hk+1,k

.

Notice that, since uk = Avk, we have

wk = Avk − (h1kv1 + · · ·+ hkkvk)
wk = hk+1,kvk+1,

so that expressing Avk in terms of the vjs we have

Avk = h1kv1 + · · ·+ hkkvk + hk+1,kvk+1. (6)

Denoting by
Vk = [v1, . . . , vk],

the matrix whos columns are the first k Arnoldi vectors, we have

Avk = h1kv1 + · · ·+ hkkvk + hk+1,kvk+1 = Vk

h1k...
hkk

+ hk+1,kvk+1.

But taking into account that
AVk = [Av1, . . . , Avk],

we can write
AVk = VkHk + hk+1,k[0, . . . , 0, vk+1], (7)

where

Hk =


h11 . . . h1,k−1 h1k
h21 . . . h2,k−1 h2k

. . .
...

...
hk,k−1 hk,k

 .
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relation (7) being known as the k-order Arnoldi decomposition of A
Denoting by ek = [0, . . . , 0, 1]T thel k-th coordinate vector in Rk, the m× k matrix whose first

k − 1 columns are null and the k-th one is vk+1 can be written as

[0, . . . , 0, vk+1] = vk+1e
T
k .

Thus, the Arnoldi decomposition can be written as

AVk = VkHk + hk+1,kvk+1e
T
k , (8)

Since all the columns of Vk have been obtained by the Gram-Schmid process, they are orthogonal
and have unit norm, so that it follows

V T
k Vk = I,

(notice that in general this do not imply that the inverse of Vk is V T
k , which is only true when Vk

is a square matrix), con so that multiplying by V T
k in eq:Arnoldi:decomp2, (recall also that the

columns of Vk are orthogonal to vk+1, so that V T
k vk+1 = 0) we have

V T
k AVk = Hk. (9)

Furthermore, by introducing the (k + 1)× k matrix

H̃k =


h11 . . . h1,k−1 h1k
h21 . . . h2,k−1 h2k

. . .
...

...
hk,k−1 hk,k

hk+1,k

 .

the Arnoldi decomposition (8)) can be written as

AVk = Vk+1H̃k, (10)

Remark 1 Computation of Eigenvalues. The Arnoldi decomposition is used in a technique
known as Implicitly restarted Arnoldi methods [2] to compute a few selected eigenvalues of a large
matrix. The idea is to select form the eigenvalues of matrix Hk a few, say k′ < k such that are
wanted for a particular reason (largest real part, smallest real part, etc), and readapt and reduce
the Arnoldi decomposition so that the shorter matrix Hk′ has only those k′ wanted eigenvalues.
Once this is done, the Arnolid decomposition is enlarged to order k and the process is repeated
until convergence (or a maximum number of iterations is reched). There is a very succesful software
implementin this method, known as ARPACK [3], of which Matlab and Octave commands eigs
are a user-friendly interface.

3 The GMRES method

All Krylov method to solve the linear system Ax = b take

v1 =
b

‖b‖
.
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as starting vector in the Arnoldi process. Notice then that the system Ax = b can be written as

Ax = ‖b‖ v1.

As mentioned above the approximation x(k) ∈ Vk is found as the solution of a least squares
problem, ∥∥b− Ax(k)∥∥ = min

z∈Vk
‖b− Az‖ .

To compute he approximation x(k) in practice, the above least squares problem is expressed in terms
of the Arnoldi vectors as we now explain.

Let us first recall that the Arnoldi vectors v1, . . . , vk or columns of matrix Vk form an orthonormal
basis of Vk. Thus,

z ∈ Vk ⇒ z = Vky, for some y ∈ Rk.

The vector y is the vector of coordinates of z in the Arnoldi basis. Consequently

z ∈ Vk ⇒ b− Az = ‖b‖ v1 − AVky
= ‖b‖ v1 − Vk+1H̃ky (due to (10))

= Vk+1(‖b‖ e1 − H̃ky),

where
e1 = [1, 0, . . . , 0]T ∈ Rk+1.

Thus, in terms of the coordinates in the Arnoldi basis, the quantity ‖b− Az‖ to be minimized in
the least squares problem can be expressed as follows:

z ∈ Vk ⇒ ‖b− Az‖2 =
∥∥∥Vk+1(‖b‖ e1 − H̃ky)

∥∥∥2
= (‖b‖ e1 − H̃ky)T V T

k+1Vk+1︸ ︷︷ ︸
=I

(‖b‖ e1 − H̃ky)

= (‖b‖ e1 − H̃ky)T (‖b‖ e1 − H̃ky)

=
∥∥‖b‖ e1 − H̃ky

∥∥2,
Thus, the approximation x(k) is computed as follows:

1. Find the solution y(k) of the least squares problem

H̃ky = e1. (11)

2. Then set x(k) = ‖b‖Vky(k).

In practice, the value k for which the approximation x(k) is compued is that for which∥∥b− Ax(k)∥∥
‖b‖

≤ ε.
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where ε is a prescribed tolerance.
The least squares problem (11) is solved by means of a QR decomposition of the matrix H̃k, in

a process that we describe next. But first, it will be useful to write matrix H̃k by bloks as follows

H̃k =

[
Hk

hk+1,ke
T
k

]
, where ek = [0, . . . , 0, 1]T ∈ Rk,

Let Q̃k an orthogonal (k + 1)× (k + 1), so that

Q̃T
k Q̃k = I, (12)

and such that

H̃k = Q̃kR̃k, con R̃k =

[
Rk

0T

]
, Rk is a k × k upper triangular matrix.

A few lines below we will show how to compute such matrix Q̃k. If we write this matrix by blocks
as

Q̃k = [Qk, qk+1], Qk matriz (k + 1)× k y qk+1 ∈ Rk+1,

the it is well known1that

the solution of l. s. problem H̃ky
(k) = e1, is the solution of Rky

(k) = QT
k e1, (13)

and the residual e1 − H̃ky
(k) satisfies that∥∥b− Ax(k)∥∥ = ‖b‖

∥∥e1 − H̃ky
(k)
∥∥ = ‖b‖

∣∣qTk+1e1
∣∣ .

The matrix
R̃k = Q̃kH̃k,

is computed as
R̃k = Gk . . . G1H̃k,

where Gj, j = 1, . . . , k is th Givens rotations

Gj =



1
. . .

1 [
cj −sj
sj cj

]
1

. . .

1


,

1The l. s. solution is the solution Gauss normal equations H̃T
k H̃ky

(k) = H̃ke1, but notice that due to (12) we

have that H̃T
k H̃k = R̃T

k Q̃
T
k Q̃kR̃k = R̃T

k R̃k, and, furthermore R̃T
k R̃k = [RT

k , 0]

[
Rk

0T

]
= RkR

T
k . On the other hand

HT
k e1 = [Rk, 0]

[
QT

k

qTk+1

]
e1 = RT

k Qke1, so that Gauss normal equations become RkR
T
k y

(k) = RT
k Qke1 from where

statement (13) follows.
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such that if we denote
H

(j)
k = Gj−1 . . . G1H̃k,

then [
cj −sj
sj cj

][
h
(j)
j,j

h
(j)
j+1,j

]
=

[ √
(h

(j)
j,j )

2 + (h
(j)
j+1,j)

2

0

]
.

Observe that the givens rotations Gj are orthogonal matrices, so that G−1j = GT
j , j = 1, . . . , k, and,

hence,
Q̃k = GT

1 . . . Gk.

In practice, the rotations are computed and applied as the Arnoldi process progress, as we now
explain. Observe that H̃k+1 can be written as

H̃k =

[
H̃k−1 hk

0T hk+1,k

]
.

so that applying the previous Givens rotations we have

[
Q̃T
k−1 0
0T 1

] [
H̃k−1 hk

0T hk+1,k

]
=

 R̃k−1 rk
0T r′k,k
0T hk+1,k

 .
Taking then

ck =
r′k,k√

(r′k,k)
2 + h2k+1,k

, sk = − hk+1,k√
(r′k,k)

2 + h2k+1,k

, Gk =

 Ik−1 0 0
0T ck −sk
0T sk ck

 ,
we have

Gk

[
Q̃T
k−1 0
0T 1

] [
H̃k−1 hk

0T hk+1,k

]
=

 R̃k−1 rk
0T rk,k
0T 0

 = R̃k.

where

rkk =
√

(r′k,k)
2 + h2k+1,k.

Thus, a simple algorithm implementing the GMRES method could be as follows

Given A, b and a tolerance TOL > 0, do as follows.

1) Set v1 ← b/ ‖b‖, k = 1, r1 ← 2TOL, and d(0) = e1
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2) For k=1,2,. . . :

2.1) h1k = vT1 uk, . . . , hkk = vTk uk,

2.2) wk = uk − (h1kv1 + · · ·+ hkkvk),

2.3) hk+1,k = ‖wk‖,

2.4) vk+1 =
wk

hk+1,k

.

2.5) Compute 
r1,k

...
rk−1,k
r′k,k

 = Gk−1 . . . G1

 h1,k
...

hk,k

 ,
2.6) Set

rk,k =
√

(r′k,k)
2 + h2k+1,k, ck =

r′k,k
rk,k

, sk = −hk+1,k

rk,k
2.7) Set

d
(k)
1
...

d
(k)
k−1
d̃
(k)
k

0

 =


d
(k−1)
1

...

d
(k−1)
k

0

 ,
2.8) Set [

d
(k)
k

d
(k)
k+1

]
=

[
ck −sk
sk ck

] [
d̃
(k)
k

0

]
.

2.9) if |d(k)k+1| ≤ TOL, then go to 3)

3) Solve the system  r1,1 . . . r1,k
. . .

rk,k


 y

(k)
1
...

y
(k)
k

 =

 d
(k)
1
...

d
(k)
k


and set x(k) = Vky

(k).

With respect to the convergence of the method, as commented in the introduction, if for some
k > 0 we have hk+1,k = 0 then V‖ is an invariant subspace of A (notice that AVj ⊂ Vj+1, j =
1, . . . , k − 1, and hk+1,k = 0 implies that AVk ⊂ Vk) and, being A nonsingular, this allows us to
express v1 (or for that purpose b) as b = Ax(k). In the worst possible case, this happens for k = m.
But for such large value of k the method is far from useful in practice.

A much cited error bound is (see e.g. [8])∥∥b− Ax(k)∥∥
‖b‖

≤ κ(V ) inf
p∈Pk

max
λ∈σ(A)

|p(λ)| (14)
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where κ(V ) is the condition number of the the matrix V whose columns are the eigenvectors (or
generalized eigenvectors) of A σ(A), as usual, stands for the spectrum of A and Pk is the set of
polynomials p of degree at most k with p(0) = 1.

When A is symmetric so that κ(V ) = 1, this bound suggests us that the method will converge
fast if eigenvalues are clustered around a small number of values away from the origin. When A is
not symmetric, unless we have information about κ(V ) (which rarely happens in practice) the above
bound is very little informative, since, as discussed in [1]. In fact, given a polynomial of degree m,

p(x) = α0 + α1x+ · · ·+ αm−1x
m−1 + xm,

for the system 
0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 0 −α2
...

. . .
...

...
0 0 1 −αm−1




x1
x2
x3
...
xm

 =


1
0
0
...
0


we have

1 =
∥∥b− Ax(1)∥∥ =

∥∥b− Ax(2)∥∥ = . . . =
∥∥b− Ax(m−1)∥∥ ,

and ∥∥b− Ax(m)
∥∥ = 0.

This is irrespective of the eigenvalues of the coefficient matrix, which, as it is well-known, are the
roots of the polynomial p. Thus, for any distribution of eigenvalues of A we can always find an
example of a matrix with those eigenvalues and yet the GMRES method provides useless approxi-
mations except when k = m. Most of examples in practice, though, are not as disheartening as this
one.

It is difficult to find works in the literature that try to analyze the convergence of the GMRES
method without making assumptions on the condition number of V . A remarkable exception to the
general rule is the work by Igor Moret [4], where the author studies linear systems of the form

(I +K)u = f,

for K a compact operator in a Hilbert space. Bounds are obtained in terms of the degree of
compactness of K, as measured by the products of its singular values.

In any case, there are many practical instances where the system Ax = b has to be precondi-
tioned. This is to replace the system by

P−1Ax = P−1f

where the operation x 7→ P−1x is little costly from the computational point of view and the
matrix P−1A is ”better-behaved” than A, in the sense that

P−1A = λI + E

E having small norms and conditions number, or its eigenvectors are well conditioned, etc.
Preconditioning techniques is a very active field of research nowadays. The reader is referred

to [7] for an study where theory and practice are well interlaced. See also Chapter 10 in [5].
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Remark 1 If before solving the linear system Ax = b an approximation x(0) to x is known, then,
the GMRES method computes an approximation x(k) = x(0) + e(k), where e(k) is an approximation
to the solution e of Ae = r, r being the residual b− Ax(0) and such that e(k) ∈ Kk(A, r).

Remark 2 In order to avoid large values of k some authors recommend to restart the method after
kr iterations, that is to compute the approximation x(kr) and use it as an initial guess for for a new
application of the GMRES method. The resulting method is known as restarted GMRES.

4 Exercises

Exercise 1 Vectors who are not null and orthogonal one another are linerly independent (Do you
remember how to prove it?). In Rm how many non null vectors which are orthogonal one another
can possibly exist then? Show that if A has dimension m×m and hk+1,k 6= 0, for k = 1, . . . ,m− 1,
then hk+1,k = 0.

Exercise 2 If in the Arnoldi decomposition of A we have |hk+1,k| ≤ ε � 1, and we approximate
the solution x of Ax = b by x(k) = Vky

(k), where y(k) is the solución of Hky
(k) = e1, find an upper

bound of the error
∥∥x− x(k)∥∥ in terms of ε.

Exercise 3 Taking into account that Hk is un upper Hessemberg matrix (that is, null below its
first subdiagonal), show that it is possible to obtain the QR factorization of Hk in O(k2) flops. How
many flops exactly? What is the cost of solving Hky

(k) = e1?

Exercise 4 Write a Matlab or Octave function which, given a square matrix A, and an num-
ber k, returns the matrices V y H of the k-order Arnoldi decomposition of A. Try your function
with a 4× 4, and k = 4, and check A*V-V*H is 0 or a matrix with entries close to the round-off unit.
Is this true if we try with k = 2 or k = 3? Why?

Exercise 5 Write a Maltab or Octave function that given A, b, a tolerance TOL and an integer
kmax, solves the linear system Ax = b by the GMRES method, and returning the approxima-
tion x(k) ∈ Kk(A, b) such that either

∥∥b− Ax(k)∥∥ / ‖b‖ < TOL or k = max. Try your function with
a 4× 4 system and kmax = 4.
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