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1 Small problems

1.1 A two-bar truss arc

Consider the truss arch shown in Fig. 1, where a load of pN is appied on the upper node. The bars
a natural length of l0 and their lower nodes are fixed at a distance of 2l meters. The bars behave
like an elastic spring with spring constant equal to kN/m. The (x, y) coordinates (in metres) of
the top node can be found as the solution of the following system

kl0

(x+ l

r1
+
x− l
r2

)
− 2kx = 0,

kl0

( y
r1

+
y

r2

)
− 2ky − p = 0,

(1)

p

−l l

Figure 1: A two-bar truss arc.
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Figure 2: The effect of the symmetry (3) on the dimensionless system.

where
r1 =

√
l2 + 2lx+ x2 + y2, y r2 =

√
l2 − 2lx+ x2 + y2,

Dividing both equations by kl and introducing the dimensionless variables

u1 = x/l, u2 = y/l, λ = p/(kl), y µ = l0/l

(notice that µ > 1) system of equations (1) can be rewritten as

f(u, λ) = 0,

where, for every µ > 0,

f(u, λ) = g(u, λ, µ) =

 µ
(u1 + 1

d1
+
u1 − 1

d2

)
− 2u1

µ
(u2

d1
+
u2

d2

)
− 2u2 − λ

 , (2)

and

d1 =
√

1 + 2u1 + u2
1 + u2

2, y d2 =
√

1− 2u1 + u2
1 + u2

2.

The arc does not necessarily have to be in a symmetric configuration. In fact, the function f is
equivariant under the symmetry S given by

Su =

[
−u1

u2

]
. (3)

An example of the effect of this symmetry can be seen in Fig. 2.
The configuration of the possible equilibria varies with the natural length µ. Fig. 3 shows the

equilbria for positive λ when µ =
√

2 (bars forming a 45 degree angle with the ground). Stable
equilbria are marked in blue and unstable in red. We see that there are a symmetric brach which
undergoes a saddle-node bifurcation, stable equilbria being those of a higher top point than unstable
ones. There are two non symmetric branches which are unstable. Each of them is transformed from
the other by the simmetry S. Their extreme points are (±µ, 0) and (1, 0).

For larger bars, though, the disposition of the branches is more elaborate. In Fig. 4, the
equilibria for positive λ when µ = 1/ cos(7π/16) are shown. Again stable equilibria are marked in
blue. The equilibria marked in green correspond to thos wher the Jacobian of f with respect to u

2



0

0.5

1

1.5 −2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

u
1

λ

u
2

Figure 3: Truss arc equilibria for µ =
√

2. Blue: stable equilbria. Red: unstable equilibria.
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Figure 4: Truss arc equilibria for µ = 1/ cos(7π/16). Blue: stable equilbria. Red: unstable
equilibria. Greeen: unstable equilibria with two positive eigenvalues in fu.
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with two positive eigenvalues, whereas those marked in red have just one positive eigenvalue. Fig. 4
We notice that there is a much smaller length of stable equilibria, and that the non symmetric
branches intersect the symmetric one in simmetry breaking bifurcations. Can you figure out the
cofiguration for values of µ between

√
2 and 1/ cos(7π/16)?

In what follows we will denote by e1, . . . , em the coordinate vectors in Rm. With this notation
we notice that quantities d1 y d2 can be rewritten as

d1 = ‖u+ e1‖ , d2 = ‖u− e1‖ ,

Similarly, f in (2) can be rewritten as

f(u, λ) = g(u, λ, µ) = µ
( 1

d1

(u+ e1) +
1

d2

(u− e1)
)
− 2u− λe2. (4)

Furthermore, sine the differentiala of d1 and d2 with respect to u is

∂ud1 = [∂u1d1, ∂u2d1] =
1

d1

(u+ e1)T , ∂ud2 = [∂u1d2, ∂u2d2] =
1

d2

(u− e1)T ,

we can write the differential of f with respect to u as

fu =

[
∂u1f1 ∂u2f1

∂u1f1 ∂u2f1

]
= µ

(( 1

d1

+
1

d2

)
I − 1

d3
1

(u+ e1)(u+ e1)T − 1

d3
2

(u− e1)(u− e1)T
)
− 2I,

where I denotes the identity matrix. Notice also that (u± e1)(u± e1)T is the matrix

(u± e1)(u± e1)T =

[
u1 ± 1
u2

]
[u1 ± 1, u2] =

[
(u1 ± 1)2 (u1 ± 1)u2

u2(u1 ± 1) u2
2

]
.

Thus two Matab or Octave function seturning f and fu could be as follows.

function f=funp(u,params)

% FUNP returns the force acting on the top node

% in the truss arc, for xy coordinates u,

% dimensionles load lambda=params(1)

% and natural bar-length mu=params(2);

lambda=params(1); mu=params(2);

% Coordinate vectors in e1 and e2

e1=[1; 0]; e2=[0; 1];

y1=u+e1; y2=u-e1; d1=norm(y1); d2=norm(y2);

r=( y1/d1 + y2/d2);

f=-lambda*e2 -2*u + mu*r;
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Figure 5: Buckling of two bars joined by a torsional spring

function J=jfunp(u,params)

% JFUNP returns the Jacobian matrix wrt u of function funp,

lambda=params(1); mu=params(2);

% Coordinate vectors in e1 and e2

e1=[1; 0]; e2=[0; 1];

y1=u+e1; y2=u-e1; d1=norm(y1); d2=norm(y2);

r=( y1/d1 + y2/d2);

%f=-lambda*e2 -2*u + mu*r;

I=eye(2); % Matlab and Octave’s command eye

% return the identity matrix

J=(-2 + mu*(1/d1 + 1/d2))*I - mu*((y1*y1’)/(d1^3)...

+ (y2*y2’)/(d2^3));

1.2 A gradual aproach to Euler buckling

Consider two rigid bars joined by a torsional spring of constant M , pinned in one end and subject
to a horizontal force on the other as indicated in Fig. 5 The potential energy, in dimensionless
quantities after dividing by the rotational spring constant and the sum of the length of the two bars
is

V (θ) =
1

2
(π − θ)2)− p(1− 2 cos((π − θ)/2)),

where θ is the angle between the two bars and p is the dimensionless force (See e. g., [5, § I.1].
This system can be considered with more bars as indicated in Fig. 6[h] For a system with N

bars of dimensionless length 1/N the potential energy is given by

V (θ1, . . . , θN) =
N∑
j=2

1

2
(θj − θj−1)2 − p

(
1− 1

N

N∑
j−1

cos(θj)

)
, (5)

where θj is the angle between the j-th bar and the horizontal line, as shown in Fig. 6. Notice that
these angles must satisfy the constraint

1

N

N∑
j=1

sin(θj) = 0. (6)
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Figure 6: Three-bar buckling
[b]

The equilibria are the solution of the system of equations

∂θjV − λ
1

N
cos(θj) = 0, j = 1, . . . , N

where λ is the Lagrange multiplier of restriction (6), that is

−θj−1 + 2θj − θj+1 − p
1

N
sin(θj)− λ

1

N
cos(θj) = 0, j = 1, . . . , N, (7)

where, for convenience in writing the equations, we have introduced two additional variables

θ0 = 0, θN+1 = 0. (8)

Notice that there are N + 1 unknowns, the N angles θ1, . . . , θN and the Lagrange multiplier λ
which are the solution or the system of N + 1 equations given by the restriction (6) and the N
equations (9).

If we increase the spring constant with N , so that istead of (7) we have

−N(θj−1 − 2θj + θj+1)− p 1

N
sin(θj)− λ

1

N
cos(θj) = 0, j = 1, . . . , N, (9)

then, when N → ∞, this systems models the equilibrium of a long and slender bar inextensible
bar subject to a compressive load, a problem that was resolved by Euler [1, § 1.13.1]. In this case,
Euler shown that the trivial solution was only stable for p < π2, and that indeed, bifurcation from
the trivial solution occurred at p = n2π2, n = 1, 2, . . . . In the case of the system (9) together with
the (6), the trivial solution

θ1 = . . . , θN = 0, λ = 0,

also exists for all values of lambda, and bifurcations from the trivial solution occur when

pk = 2N2(1− cos(π
k

N
)), k = 1, . . . , N − 1.

Observe that
p1 = π2 +O(N−2).

Fig. 7 shows the x-coordinate of the last point in the set of bars (where load p is applied) for
the solutions in branch bifurcating at p = p1 for N = 20, for p ≤ 50. As before, stable solutions are
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Figure 7: x-coordinate of endpoint of solutions of branch bifurcating at p1, for N = 20, for p ≤ 50.
Stable solutions in blue, unstable in red.
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Figure 8: Two solution on branch bifurcating at p1. Left figure corresponds to a stable solution,
and right figure to an unstable one.
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represented in blue and unstable in red. Notice that solutions are unstable as soon as xN becames
negative. An example of stable and unstable solutions on this branch can be found in Fig. 8.

Finally, we show two Matlab or Octave functions computing the left-hand side of sistem of
equations (9) and (6).

function [f,fp]=fun_Euler(u,p)

% FUN_EULER returns in f minus the gradient of the potential

% potential energy in bucklihg bars minus the lagrange

% multiplier times the gradit of the restriction.

% INPUT

% u array of length N+1 with the angles

% in U(1:N) and the Lagrange multiplier

% in U(N+1)

% p dimensionless force

N=length(u)-1; lambda=u(N+1);

% lambda is the Lagrange multipliear of the restriction

%

% sum from n=1 up to n=N sin(u_n)/N = 0

%

fd=[u(1)-u(2);-diff(diff(u(1:N))); u(N)-u(N-1)]*N;

sines=sin(u(1:N)); cosines=cos(u(1:N));

fs=(p/N)*sines-(lambda/N)*cosines;

f=[fd-fs; mean(sines)];

function [J,fp]=jfun_Euler(u,p)

% JFUN_EULER computes the Jacobian matrix

% of function fun_Euler.

% INPUT

% u array of length N+1 with the angles

% in U(1:N) and the Lagrange multiplier

% in U(N+1)

% p dimensionless force

%

% OUTPUT

% J (N+1)x(N+1) array with the Jacobian matrix

% of function fun_Euler.

% fp array the same size as u with fhe partial

% derivative of fun_Euler wrt p.

N=length(u)-1; lambda=u(N+1);

% lambda is the Lagrange multipliear of the restriction

%

% sum from n=1 up to n=N sin(u_n)/N = 0

%
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sines=sin(u(1:N)); cosines=cos(u(1:N));

e=ones(N,1); D=spdiags(N*[-e 2*e -e],-1:1,N,N);

D(1,1)=-D(1,2); D(N,N)=-D(N,N-1);

% Jacobian matrix is stored as a sparse matrix

% since it is a tridiagonal matrix.

D=D-(1/N)*spdiags(p*cosines+lambda*sines,0,N,N);

J=[D,cosines/N;(cosines’)/N,0];

fp=[-sines/N; 0];

2 Convection in fluid-saturated porous media

2.1 Problem and equations

Consider a rectangular box filled with fluid-saturated porous material and heated from below and

heat from below

porous material

box with fluid−saturated

Figure 9: Schematic representation of the convection problem.

with insulated horizontal walls. The temperature may vary linearly with height and the fluid remain
at rest if the difference in temperature between the top and bottom walls in small, or convection
can be developed and temperature distribution may have more complicated patterns. If one of the
horizontal dimensions is much larger than the other, there are some two-dimensional configurations
which can be computed by considering a cross-section, as shown in Fig. 2.1, where the setting is as
shown in Fig. 10.

After adimensionalization, the deviation u(t, x, y) from the linear temperature distribution T0(1−
y) and the fluid velocity v(t, x, y) and pressure p(t, x, y), is the solution of the following partial
differential equation (PDE) set in the domain

Ω = [0, 1]× [0, 1],
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Figure 10: Schematic representation of the convection problem on a cross-section.

ut +
√
µv · (∇u− e2) = ∆u,

−∇p− v +
√
µue2 = 0,
∇ · v = 0,
∇u · n = 0, x = 0, 1, y ∈ [0, 1],

u = 0, x ∈ [0, 1], y = 0, 1,
v · n = 0, (y, z) ∈ ∂Ω,

(10)

where n represents the outward normal vector, e2 = [0, 1]T is the vertical unit vector, and µ = Ra,
the Rayleigh number, is a scalar parameter (see e.g., [9], [7], [8] and the references cited therein).

Observe that the eigenfunctions of the Laplacian operator subject to the boundary conditions
imposed on u in (10) are

pj,k(x, y) = cos(πjx) sin(πky), j = 0, 1, . . . , k = 1, 2, . . . . (11)

It is well-known that the eignenfunctions of the Laplacian operator form an orthogonal set in L2(Ω),.
In fact, we have ∫

Ω

pj,k(x, y)pl,m(x, y) dx dy =

{
0, if (j, k) 6= (l,m),

1/4 otherwise.

Being the functions pj,k an orthogonal set in L2(Ω), we can express

u(x, y, t) =
∞∑

j=0,k=1

ûj,k(t)pj,k(x, y). (12)

Similary, and due to the velocity v begin divergence-free, it can be expressed as

v(x, y, t) =
∞∑

j,k=1

v̂j,k(t)
2√

j2 + k2

[
−kqj,k(x, y)
jpj,k(x, y)

]
, (13)

where
qj,k(x, y) = sin(πjx) cos(πky), j = 1, 2 . . . , k = 0, 1, . . . .

It is straightforward to check that, with the boundary conditions imposed on v, divergence-free
functions are orthogonal in L2(Ω) to gradients, so that projecting the second equation in (10) onto
the divergence-free functions we have that

v = v(u),
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and, indeed,

v̂j,k =
j
√
µ

2
√
j2 + k2

ûj,k, j, k = 1, . . . , (14)

and, thus,

v = v(u) =
√
µ
∞∑

j,k=1

ûj,k(t)
j

j2 + k2

[
−kqj,k(x, y)
jpj,k(x, y)

]
, (15)

Steady-state solutions of (10) are then solutions of

f(u, µ) ≡ −∆u+
√
µv(u) · (∇u− e2) = 0, in Ω (16)

subject to

∇u · n = 0, x = 0, 1, y ∈ [0, 1], (17)

u = 0, x ∈ [0, 1], y = 0, 1, (18)

and time dependent solutions are solutions of

ut + f(u, µ) = 0,

subject also to the boundary conditions (17–18). In terms of the Fourier coefficients ûj,k this
equation can be written as the infinite-dimensional dynamical system

dûj,k
dt

+ π2(j2 + k2)ûj,k +
√
µ ̂(v · (∇u− e2))j,k = 0, j = 0, 1, . . . , k = 1, 2, . . . , (19)

where ̂(v · (∇u− e2))j,k stands for the (j, k)-Fourier coefficient of v · (∇u− e2), given by

̂(v · (∇u− e2))j,k =
(pj,k,v · (∇u− e2))

‖pj,k‖2 , j = 0, 1, . . . , k = 1, 2, . . . , (20)

where, here and in the sequel, (·, ·) denotes the standard inner product in L2(Ω),

(v, w) =

∫
Ω

v(x, y)w(x, y) dx dy

and ‖·‖ its associated norm. Later on we well see how the Fourier coefficients ̂(v · (∇u− e2))j,k are
computed (rather, approximated) in practice.

It is easy to check that the left hand side of (16) is equivariant by the group of symmetries
generated by Sy and Sz

Sxu(x, y) = u(1− x, y), Syu(x, y) = −u(x, 1− y). (21)

In addition, for p = 2, 3, . . . , the subspaces

Yp = span{ppl,k, l = 0, 1, . . . , k = 1, 2, . . . }

11
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Figure 11: Bifurcation diagram of system (16), µ = Ra the Rayleigh number. Bifurcation points:
◦, pitchfork or transcritical; �, saddle-node; �, Hopf bifurcation (Top: Full diagram. Bottom: detail
of bifurcation points 5 and 6).

are invariant by f and have the translational invariance T spu(x, y) = u(x+ 2s
p
, y), for s = 1, . . . , p−1

(see e.g. [9]).
Fig. 11 which is taken from [4], shows a bifurcation diagram of the equation (16), that is a

representation of the branches of its steady-state solutions parameter µ for 0 ≤ µ ≤ 325 . A two-
dimensional version of this diagram can be found for example in [9]. The vertical axis represents
the L2 norm of the solution u and the transversal axis the value of u at the centre of the left wall,
that is u(0, 1/2).

Fig. 12 shows two stable configurations (temperature contour levels on the left and streamlines
on the right) for Ra = 100. They correspond to the first primary branch (top) and to the second
primary branch after bifurcation point labeled with 1 in Fig. 11.

It is easy to check that the the Fréchet derivative of f(u, µ) when u is the trivial solution u = 0

12



Figure 12: Temperature contour lines (left) and streamlines (right) for stable configurations on first
primary branch (top) and second primary branch for Ra = 100
.

acting of function

ϕ =
∞∑

j=0,k=1

ϕ̂j,k(t)pj,k.

satisfying

∇ϕ · n = 0, x = 0, 1, y ∈ [0, 1],

ϕ = 0, x ∈ [0, 1], y = 0, 1,

is given by
fu(0, µ)ϕ = −∆ϕ−√µv(ϕ) · e2,

where v = v(ϕ) and p = p(ϕ) are the solution of

−∇p− v +
√
µϕe2 = 0,
∇ · v = 0,
v · n = 0, (y, z) ∈ ∂Ω,

13



In terms of the Fourier coefficients the Fréchet derivative at u = 0 is given by

̂(fu(0, µ)ϕ)j,k = π2(j2 + k2)ϕ̂j,k − µ
j2

j2 + k2
ϕ̂j,k, j = 0, 1, . . . , k = 1, 2, . . . .

Thus, fu(0, µ) has a zero eigenvalue for the following values of µ

µj,k = π2 (j2 + k2)2

j2
, j, k = 1, 2, . . . ,

the corresponding (unit-norm) eigenfunction being

1

2
pj,k,

We now check that this values correspond to branching points (in fact, they correspond to pitchfork
bifurcations) by checking that the derivative fµ(0, µ) of f with respect to µ at u = 0 is

fµ(0, µ) = 0, (22)

so that fµ(0, µ) is in the range of the Fréchet derivative fu(0, µ). For this purpose, we need first to
compute the derivative vµ(0, µ) of the velocity v at u = 0. Taking derivatives with respect to µ in
the second equation in (10) we have

−∇pµ − vµ +
1

2
√
µ
ue2 = 0,

which, arguing as before, implies

vµ =
1

2µ
v.

(We reach this result also by taking derivatives with respect to µ in (15)).
Taking derivatives with respec to µ in the expression of f in (16) we have the derivative fµ(0, µ)

of f with respect to µ is given by is

fµ(u, µ) =
1

2
√
µ

v · (∇u− e2) +
√
µvµ · (∇u− e2) =

1

2
√
µ

v · (∇u− e2)− 1

2
√
µ

v · (∇u− e2)

=
1
√
µ

v · (∇u− e2). (23)

Since for u = 0 we have that v = 0, it follows that (22) holds.
We comment on another important property of this example. It is not difficult to show that ∆u

satisfies the same boundary conditions as u, and, furthermore, it is no difficult to show by induction
that δju also satisfies the same boundary conditions as u. As a consequence, and it is possible to
show (see e. g. [6]) that the Fourier coefficients of the solutions decay exponentially fast, that is,

|ûj,k| ≤ Ce−γ(j+k),

for some C > 0 and γ > 0. An example can be seen in Fig. 13, where we show against the wave
number λ = π

√
j2 + k2 the absolute value |ûj,k| of the non null fourier coefficients of the solutions

depicted in Fig. 12.
This property of exponential decay of Fourier coefficients of solutions make equation (16) par-

ticularly well-suited to be discretized by a spectral method, as we explain in the following section.
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Figure 13: Value of |ûj,k| against wave number λ = π
√
j2 + k2 for solutions depicted in Fig. 12.

Left, primary branch; right, secondary branch.

2.2 Spectral Discretization

To approximate solutions of we consider, for a given positive integer N approximations UN of the
form

UN(t, x, y) =
N∑
j=0

N−1∑
k=1

Uj,k(t)pj,k(x, y),

where the functions pj,k are those defined in (11) Observe that, contrary to the solution u of (16),
the approximation is, for every t a linear combination of a finite number of eigenfunctions pj,k. The
coefficients Uj,k of pproximations UN are required to satisfy

dÛj,k
dt

+ π2(j2 + k2)Ûj,k +
√
µ ̂(VN · (∇UN − e2))j,k = 0, j = 0, 1, . . . , N, k = 1, 2, . . . , N − 1,

(24)
where VN is the velocity given by

VN =
√
µ

N−1∑
j,k=1

Ûj,k(t)
j

j2 + k2

[
−kqj,k(x, y)
jpj,k(x, y)

]
, (25)

and ̂(VN · (∇UN − e2))j,k standas for the Fourier coefficient of VN · (∇UN − e2)

̂(VN · (∇UN − e2))j,k =
(pj,k,VN · (∇U − e2))

‖pj,k‖2 , j = 0, . . . , N, k = 1, . . . , N − 1. (26)

Observe that equations (24) and (26) are (19) and (20), respectively, but with u, ûj,k and v replaced

by UN , Ûj,k and VN , respectively. Thus one may be led to think that ûj,k = Ûj,k, for j = 0, . . . , N
and k = 1, . . . , N − 1, or, in othewords, that UN is the truncation of the Fourier expansion to u.
This is not true in general. The reason is that the Fourier coefficients of the nonlinear terms differ
in general

̂(v · (∇u− e2))j,k 6= ̂(VN · (∇UN − e2))j,k, j = 0, . . . , N, k = 1, . . . , N − 1.
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Notice that whereas the coefficients on the left hand side above depend on an infinite number of
Fourier modes, those on the right hand side depend on just N2 − 1 coefficients, so that, they are
not equal in general.

If we denote by

SN = span(pj,k, j = 0, . . . , N, k = 1, . . . , N − 1),

and by PN the orthogonal projection of L2(Ω) onto SN the equations (24) can be written as

d

dt
UN −∆U −√µPN

(
VN · (∇UN − e2)

)
= 0, (27)

and that, in view of (25), the velocity VN is the solution of

−∇PN −VN +
√
µUNe2 = 0, in Ω,
VN · n = 0, on ∂Ω,

where Pn is some function of the form

PN(x, y) =
N∑

j,k=0

P̂j,k cos(πjx) cos(πky).

The discretization here presented is an example of a Fourier spectral discretization. More details
and further information can be found for example in [2], [10]

2.3 Computation of Fourier coefficients of nonlinear terms

We address in these section how to compute the Fourier coefficients

Ĉj,k = ̂(VN · (∇UN − e2))j,k, j = 0, . . . , N + 1, k = 1, . . . , N − 1.

It will be down in a very easy and simple manner using collocation and discrete sine and cosine
transforms.

In the sequel, given a function

g =
N∑
j=0

N−1∑
k=1

f̂j,kpj,k ∈ SN

we will denote by f̂ the vector of its Fourier coefficients

f̂ =


f̂0,1

f̂1,1
...

f̂N,N−1

f̂N+1,N−1

 .

16



Also, for a postive integer N we consider the grid in Ω given by

GN = {(xl, ym) | 0 ≤ l,m ≤ N},

where

xl =
l

N
, ym =

m

N
, 0 ≤ l,m ≤ N.

Given a (continuous) function w defined on Ωwe denote by w the vector in R(N+1)2 of its
restriction to the grid GN that is

w =


w0,0

w1,0
...

wN,N+1

wN+1,N+1

 ,
were, for simplicity we denote

wl,m = w(xl, ym), 0 ≤ l,m ≤ N.

For our computations we will use the grid restrictions of the eigenfunctions pj,k. We start by
noticing an important difference between the eigenfunctions and their grid restrictions:

pj,k 6= 0 for k 6= 0, but p
j,k
6= 0, for k 6= 0,±N,±2N, . . . . (28)

We comment on two important properties that the grid restrictions of the eigenfunctions pj,k have.

i) Orthogonality In a similar way to the the eigenfunctions pj,k being orthogonal to one another, so
it is the case of its grid restrictions

(p
j,k
, p

r,s
)N = 0, if (j, k) 6= (r, s) mod(N)

where (·, ·)N is the inner product given by

(f, g) =
N∑
l=0

”
N∑
m=0

”fl,mgl,m

where the two commas mean that the first and last term are halved, that is

N∑
l=0

”wj =
1

3
w0 +

N−1∑
j=0

wj +
1

2
wN .

This property is the a consequence of a similar property for the Fourier modes

φj,k = exp(2πi(jx+ ky)), j, k = 0,±1± 2, . . . , (29)

for wich
N−1∑
l,m=0

φj,k(xl, ym)φr,s(xl, ym) = 0, if (j, k) 6= (r, s) mod(N),

being the cosines and sines the real and imaginary parts of the Fourier modes.
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ii) Aliasing Being the restrictions p
j,k
∈ R(N+1)2 orthogonal to one another, and being R(N+1)2 a

space of finite dimension equal to (N + 1)2 they cannot be different. In fact we have

p
j+nN,k

=

{
p
j,k
, n even,

p
N−j,k, n odd,

p
j,k+nN

=

{
p
j,k
, n even,

−p
j,N−k, n odd.

(don’t panic, we will not be bothered by this). This property is the a consequence of a similar
property for the Fourier modes φj,k, for which

φ
j,k

= φ
r,s
, if (j, k) 6= (r, s) mod(N).

As a consequence, if a function g is a linear combination of the first N2 − 1 modes

g =
N∑
j=0

N−1∑
k=1

ĝj,k,

we can find its coefficients by simple inner products

ĝj,k =
(p
j,k
, g)N

‖p
j,k
‖2
N

, (30)

where ‖·‖N denotes the norm associated to the inner product (·, ·)N . Let us mention that an
easy calculation shows that

‖p
j,k
‖2
N =

{
N2/2, j = 0, N,
N2/4, j 6= 0, N,

k = 1, . . . , N − 1.

Formula (30) can be used to compute the Fourier coefficients of a function in the space SN .
Unfortunately, we have that although UN ∈ S, in general, VN(∇UN − e2) 6∈ SN . Hoever,
from the expression of VN in (25), and taking into account that

∇UN = π
N∑
j=0

N∑
j=0

Ûj,k

[
−j sin(πjx) sin(πky)
k cos(πjx) cos(πky)

]
we deduce that VN(∇UN − e2) will be a linear combination of functions of the form

sin(πjx) sin(πlx) cos(πky) sin(πmy), j, l = 0, 1 . . . , N, k,m = 1, . . . , N − 1.

and

cos(πjx) cos(πlx) sin(πky) cos(πmy), j, l = 0, 1 . . . , N, k,m = 1, . . . , N − 1.

But recalling the trigonometric formulas

sin(α) sin(β) =
1

2

(
cos(α− β)− cos(α + β)

)
,

cos(α) cos(β) =
1

2

(
cos(α− β) + cos(α + β)

)
,

sin(α) cos(β) =
1

2

(
sin(α + β) + sin(α− β)

)
,

cos(α) sin(β) =
1

2

(
sin(α + β)− sin(α− β)

)
,
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we conclude that
UN ∈ SN ⇒ VN(∇UN − e2) ∈ S2N

which allow us to obtain the Fourier coefficients of VN · (∇UN − e2) by using formula (30) if
we evaluate the functions pg,k, VN and UN in the grid G2N . Thus a simple procedure (because
it involves standard operations) to obtain the Fourier coefficients of VN · (∇UN − e2) is as
follows.

Step 1 Obtain the Fourier coefficients

−jπÛj,k, and kπÛj,k, j = 0, . . . , N, k = 1, . . . , N − 1

of ∂xUN and ∂yUN , respectively.

Step 2 Obtain the vectors of nodal values ∂xUN
and ∂yU

N
on the grid G2N

Step 3 Obtain the Fourier coefficients

√
µ
−jk
j2 + k2

Ûj,k, and
√
µ

j2

j2 + k2
Ûj,k, j = 0, . . . , N, k = 1, . . . , N − 1

of the two components V
(x)
N and V

(y)
N , respectively, of the velocity VN .

Step 4 Obtain the vectors of nodal values V (x)
N and V (y)

N on the grid G2N .

Step 5 Obtain the vector of nodal values VN · (∇UN − e2) on the grid G2N , by multiplying and
summing componentwise the vectors obtained in steps 2 and 4.

Step 6 Use formula (30) to obtain the 4N2 − 1 Fourier coefficients of VN · (∇UN − e2), and
discard those corresponding to j > N or k ≥ N .

Le us mention that Steps 2 and 4 are standard numerical procedures wich can be carried out
by the inverses of the discrete sine and cosine transforms, as well as step 5, which can be
carried out by discrete sine and cosine transforms.

This transforms and their inverses are usually implemented in many software packages by
means of the fast cosine and sine transform, which are easily computed by means of the fast
Fourier transform (FFT) algorithm. For example in Matlab and Octave, a variant of the
FFT algorithm and its inverse is available in the commands fft and ifft.

The FFT algorithm allows us to obtain the N2− 1 Fourier coefficients in (30) (or the 4N2− 1
coefficients in Step 6) in a number of flops proportional to N2 log(N) (resp. 4N2 log(N))
instead of N4 (resp. 16N4) flops that would require computing the coefficients using inner
products.

At the price of allowing an (usually negligible) error equal of size equal to |ûN,k|2 on the coeffi-
cients ûN,k, k = 1, . . . , N − 1 the value 2N can be replaced by 3N/2 (withe the corresponding
saving in computational cost), in what is known as the 3/2 rule (see e. g. [2].
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