
Sliding Control Modes.

4. Variable Structure Systems and SCM.

Multiple input non-linear systems.
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RTNS 2007. Granada February, 5-9. Sliding Control Modes – p. 1/11



Definition (I)

Let us consider a multiple input dynamical system given by

ẋ = f(x) +
mX

k=1

ukgk(x)

where x ∈ U , an open set of R
n, f and gk are smooth vector fields on U with gk(x) 6= 0 everywhere,

and uk : U −→ R are the control inputs. Let S be a m-dimension sub-manifold in U defined by smooth
functions sk : U −→ R, namely

S = {x ∈ U | sk(x) = 0 k = 1, . . . , m}

As for the input, let us assume uk is defined by

uk =

8<: u+

k
(x) if Hk(s1(x), . . . , sm(x), x) > 0

u−
k

(x) if Hk(s1(x), . . . , sm(x), x) < 0

where both u+

k
and u−

k
are smooth functions on x, and Hk, in turn, is a function of (s1, . . . , sm, x).
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Definition (II)

Finally, let φ(x, t) be the trajectory of this dynamical system with initial conditions x(0) = x0.

Definition: S is said to be a sliding surface if there exists θ, an open set in U containing S, in such a
way that ∀x ∈ θ \ S, one of the following conditions holds.

1. there exists a finite time ts > 0 such that

s(φ(x, t)) 6= 0 0 ≤ t < ts and s(φ(x, t)) = 0 t ≥ ts

2. there exist ts and t̂s, 0 < ts < t̂s < ∞ such that

s(φ(x, t)) 6= 0 0 ≤ t < ts and s(φ(x, t)) = 0 ts ≤ t < t̂s

and φ(x, t̂s) ∈ ∂(S ∩ U)

Remark Compare ideal sliding with real sliding mode.
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Questions:

Questions:

1. Existence. Which conditions on f , gk, uk, σ and S, if any, guarantee that S is a sliding surface?

2. Ideal sliding dynamics. The dynamics is not defined on S; however, if S is a sliding surface for
this dynamics, which vector field governs the system on S?
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The Equivalent Control. (I)

Let us define the equivalent control as the control law, ueq : U → R, which makes S an invariant
manifold, that is to say, ukeq

is such that the vector field f +

Pm
k=1

ukeq
gk is tangent to S. For a

trajectory sliding on S, this results in
dsk(φ(x, t))

dt
= 0

but,

d

dt

0BBB� s1

...

sm

1CCCA =

0BBB� ∂s1

∂x1

· · · ∂s1

∂xn

...
. . .

...
∂sm

∂x1

· · · ∂sm

∂xn

1CCCA266640BBB� f1

...

fn
1CCCA+
0BBB� g11 · · · gm1

...
. . .

...

g1n · · · gmn

1CCCA0BBB� u1

...

um

1CCCA37775

and

ueq = −
�

∂s

∂x
G

�−1 � ∂s

∂x
f

�

provided that

�

∂s

∂x
G

�
is invertible.

RTNS 2007. Granada February, 5-9. Sliding Control Modes – p. 5/11



The equivalent control (II)

As it is proved in a paper by Filipov on differential equations with discontinuous right hand side,
the ideal sliding dynamics, i.e. the dynamics on S, is governed by the vector field

f(x) +
mX

k=1

ukeq
(x)gk(x)

Sliding dynamics results in an projection operator.

Robustness. Matching condition. S

TpS

f G
f + gkukeq

p
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Control Law and Sliding Motion. Lyapunov (I)

Proposition For the domain S on the intersection of discontinuity surfaces s1 = 0, . . . , sm = 0 to be a
stable sliding domain, it is sufficient that for all x belonging to this domain, there exists, in a certain
region Ω of the space (s1, . . . , sm) containing the origin, a function v(s, x, t) continuously differentiable
with respect to all of its arguments such that:

1. v(s, x, t) is definite positive with respect to s, i.e. if s 6= 0, v(s, x, t) 6= 0, ∀x, t; v(0, x, t) = 0, ∀x, t.
On the sphere ‖s‖ = R, let

inf
{‖s‖=R}

v(s, x, t) = hR, sup
{‖s‖=R}

v(s, x, t) = HR, R 6= 0,

where hR and HR are some positive quantities depending only on R and

lim
R→0

HR = 0,

lim
R→∞

hR = ∞

2. the total derivative of v(s, x, t) is negative everywhere except on the discontinuity surfaces where
this function is not defined.
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Control Law and Sliding Motion. Lyapunov (II)

Example of an unstable dynamics with a piece-wise Lyapunov function.

ds1

st
= −2sign(s1) − sign(s2)

ds2

dt
= −2sign(s1) + sign(s2)

Lyapunov function candidate ν(s1, s2) = 4|s1| + |s2|.

8<:

RTNS 2007. Granada February, 5-9. Sliding Control Modes – p. 8/11



Control Law and Sliding Motion. Lyapunov (II)

Example of an unstable dynamics with a piece-wise Lyapunov function.

ds1

st
= −2sign(s1) − sign(s2)

ds2

dt
= −2sign(s1) + sign(s2)

Lyapunov function candidate ν(s1, s2) = 4|s1| + |s2|.

Differentiating ν on the interior of the quadrants yields to

dν

dt
= 4sign(s1)

ds1

dt
+ sign(s2)

ds2

dt
= . . . =

8<: −13 if sign(s1s2) > 0

−1 if sign(s1s2) < 0
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Control Law and Sliding Motion. Lyapunov (II)

Example of an unstable dynamics with a piece-wise Lyapunov function.

ds1

st
= −2sign(s1) − sign(s2)

ds2

dt
= −2sign(s1) + sign(s2)

Lyapunov function candidate ν(s1, s2) = 4|s1| + |s2|.

Differentiating ν on the interior of the quadrants yields to

dν

dt
= 4sign(s1)

ds1

dt
+ sign(s2)

ds2

dt
= . . . =

8<: −13 if sign(s1s2) > 0

−1 if sign(s1s2) < 0

The dynamics shows sliding mode on s1 = 0. The ideal sliding dynamics is given by

ds2

dt
= −2 (sign(s1))eq + sign(s2)

where (sign(s1))eq fulfils −2 (sign(s1))eq − sign(s2) = 0
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Control Law and Sliding Motion. Lyapunov (II)

Thus (sign(s1))eq = −0.5 and the origin is unstable because of

ds2

dt
= −2 (sign(s1)) + sign(s2) = 2
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Control Law and Sliding Motion. Lyapunov (II)

Thus (sign(s1))eq = −0.5 and the origin is unstable because of

ds2

dt
= −2 (sign(s1)) + sign(s2) = 2
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Control Law and Sliding Motion. Changing variables.

Use sT s as Lyapunov function and try to solve the (s1, . . . , sm) − (u1, . . . , um) decoupling
problem in order to easily design uk-gains as in Single Input systems.

� �

� �

� �
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Control Law and Sliding Motion. Changing variables.

Use sT s as Lyapunov function and try to solve the (s1, . . . , sm) − (u1, . . . , um) decoupling
problem in order to easily design uk-gains as in Single Input systems.

Let us take u = M û, then

ds

dt
=

∂s

∂x
f +

∂s

∂x
Gu =

∂s

∂x
f +

∂s

∂x
GM û

Thus M =

�

∂s

∂x
G

�−1

solves the decoupling problem.

Note that with this change of variables the actual meaning of the control actions uk may be lost.

� �

� �
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problem in order to easily design uk-gains as in Single Input systems.

Let us take u = M û, then

ds

dt
=

∂s

∂x
f +

∂s

∂x
Gu =

∂s

∂x
f +

∂s

∂x
GM û

Thus M =

�

∂s

∂x
G

�−1

solves the decoupling problem.

Note that with this change of variables the actual meaning of the control actions uk may be lost.

Let us take now ŝ = M(x, t)s, then

dŝ

dt
=

dM

dt
s + M

�
∂s

∂x
f +

∂s

∂x
Gu

�

� �
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Use sT s as Lyapunov function and try to solve the (s1, . . . , sm) − (u1, . . . , um) decoupling
problem in order to easily design uk-gains as in Single Input systems.

Let us take u = M û, then

ds

dt
=

∂s

∂x
f +

∂s

∂x
Gu =

∂s

∂x
f +

∂s

∂x
GM û

Thus M =

�

∂s

∂x
G

�−1

solves the decoupling problem.

Note that with this change of variables the actual meaning of the control actions uk may be lost.

Let us take now ŝ = M(x, t)s, then

dŝ

dt
=

dM

dt
s + M

�
∂s

∂x
f +

∂s

∂x
Gu

�

Then, M =

�

∂s

∂x
G

�−1

solves the decoupling problem provided that M neither depends on x,

nor on t.
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Examples /or exercises.

Following the paper Design considerations in Sliding-mode controlled parallel connected inverters by
Biel et al. published in Proceedings if ISCAS-2002, design appropriate control gains in order to fulfil the
following specifications:

Output voltage tracking of a pure sinusoidal signal.

Equilibrating currents.
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