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Introduction.
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History

The term “Variable Structure System” (VSS) appeared in the USSR in the late fifties.

The primitive examples:

Vibrational control of aircraft D.C. (Kulebakin, V. 1932)

On automatic stability of a ship on a given course (Nikolski, G. 1934)

First books:

Discontinuous automatic control by Irmgard Flügge-Lotz, Princeton university Press, 1953.

V. Tsypkin, 1955

First steps: three papers published in the late fifties by S. Emel’yanov.
The novelty of the approach was that the feedback gains could take several values depending
on the system state. Each of the systems consists of a set of linear structures and was
supplied with a switching logic. (VSS). The author observed that, due to altering the
structure in the course of control process, the properties could be attained which were not
inherent in any of the structures.
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ẍ = u u = −ηx, η =

8<: ω2
1

if xẋ > 0
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if xẋ > 0

ω2
2

if xẋ < 0
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Examples (II)

Example

ẍ − k2ẋ = u k2 > 0

u = −k1|x|sign(s), s = cx + ẋ, k1, c > 0
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Characteristics
• the order of the motion equation is
reduced,
• although the original system is gov-
erned by a non-linear second equation,
the motion equation of sliding mode is
linear,
• sliding mode does not depend on the
plant dynamics and is determined by
parameter c selected by a designer.
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Mathematical remarks (I)

System dynamics is not defined on s = 0, however we are interested on this dynamics.
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The universal approach to regularisation consists in introducing a boundary layer ‖s‖ < ∆

around the manifold s = 0, where an ideal discontinuous control is replaced by a real one
such that state trajectories run inside the layer. If, with ∆ tending to zero, the limit
of the solution exists, it is taken as a solution of the ideal sliding dynamics.

Ideal sliding motion is regarded as a result of limiting procedure with all non-idealities
tending to zero.

(Utkin) Ideal Sliding Mode (uniqueness) exits for systems affine in the control.
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Examples (III)

Example

ẋ1 = 0.3x2 + ux1

ẋ2 = −0.7x1 + 4u3x1,

u = −sign(x1s),

s = x1 + x2
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Example

ẋ1 = 0.3x2 + ux1

ẋ2 = −0.7x1 + 4u3x1,

u = −sign(x1s),
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sign function obtained saturating a linear function.

sign function obtained as an hysteresis.

Uniqueness problem.
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Definitions

We deal with systems as

ẋ = f(t, x, u), x(t0) = a

where u = u(x) is discontinuous on s(x) = 0.
Equivalently, we are given a multifunction (set-valued mapping)

G : Ω −→ R
n

G(x) = f(t, x, u) where f is continuous, G(x) is the convex hull generated by f(t, x, ui).
The previous initial-value problem results in

ẋ ∈ G(x), x(t : 0) = a

A solution to the initial-value problem is a function y : [t0, t0 + T ) −→ Ω for some positive T ≤ +∞

such that its derivative exists for almost all t ∈ (t0, t0 + T ), it is locally integrable for every
(a, b) ⊂ (t0, t0 + T ) and ẏ(t) ∈ G(y(t)) for almost all t ∈ (t0, t0 + T ).
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Uniqueness Problem (i)

For the simple case

ẋ = f(x, u) u =

8<: u+ if s(x) > 0

u− if s(x) < 0

where ∂xs 6= 0 on s(x) = 0, the Filipov dynamics on s(x) = 0 is given by

ẏ(t) =
[(∂xsf−)f+ − (∂xsf+)f−]

∂xs(f− − f+)

The equivalent control dynamics is obtained by

f(x, ueq) ∈ TxS

where S := {x | s(x) = 0}
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Uniqueness Problem (ii)

Utkin There exist unique solutions (ideal sliding dynamics) for systems affine in the control input

f(t, x, u) = f1(t, x) +

X

ui(t, x)gi(t, x)
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Uniqueness Problem (ii)

Utkin There exist unique solutions (ideal sliding dynamics) for systems affine in the control input

f(t, x, u) = f1(t, x) +

X

ui(t, x)gi(t, x)

The sliding dynamics obtained by using the equivalent control agree with Filipov dynamics in the
particular case of control systems affine in the control input.
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Design

The design procedure may be illustrated easily for systems represented in the regular form

ẋ1 = f1(x1,x2, t),

ẋ2 = f2(x1,x2, t) + B2(x1,x2, t)u, det(B2) 6= 0

RTNS 2007. Granada February, 5-9. Sliding Control Modes – p. 10/11



Design

The design procedure may be illustrated easily for systems represented in the regular form
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The state vector x2 is handled as a fictitious control in the first equation and selected as a
function of x1 to provide the desired dynamics in the first subsystem: x2 = −s0(x1)

Then the discontinuous control should be designed to enforce sliding motion in the manifold

s(x1,x2) = x2 + s0(x1) = 0

After a finite time interval sliding mode in the manifold s(x1,x2) = 0 starts and the system will
exhibit the desired behaviour governed by ẋ1 = f1(x1, s0(x1), t).

Note that the motion is of a reduced order and neither depends on function f2(x1,x2, t)

nor on function B2(x1,x2, t) in the second equation of the original system.
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