Recurrence relations with reflection

7. Adrián 7. Tojo

CITMAga
Universidade de Santiago de Compostela

What is a recurrence relation with reflection?

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like

$$
x_{n+1}-x_{n}+m x_{-n}=0, \quad n \in \mathbb{Z} .
$$

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like

$$
x_{n+1}-x_{n}+m x_{-n}=0, \quad n \in \mathbb{Z} .
$$

They are similar to differential equations with reflection such as

$$
x^{\prime}(t)+m x(-t)=0, \quad t \in \mathbb{R} .
$$

Systems of Stieltjes differential equations

Previous work

- Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)
- Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. 305, 84-102 (2017)
Differential Equations + Algebraic Structure

Previous work

(R.: Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)
-in Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. 305, 84-102 (2017)
Differential Equations + Algebraic Structure

Differential Equations: Homogeneous linear differential equations with reflection and constant coefficients:

$$
T u(t):=\sum_{k=0}^{n} a_{k} u^{(k)}(t)+\sum_{k=0}^{n} b_{k} u^{(k)}(-t)=0 .
$$

Previous work

- Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)
© Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. 305, 84-102 (2017)

Differential Equations + Algebraic Structure

Differential Equations: Homogeneous linear differential equations with reflection and constant coefficients:

$$
T u(t):=\sum_{k=0}^{n} a_{k} u^{(k)}(t)+\sum_{k=0}^{n} b_{k} u^{(k)}(-t)=0 .
$$

T is a composition of the usual differential operator \widetilde{D} and the pullback by the reflection function $\widetilde{\varphi}(t)=-t$, that is, the operator $\widetilde{\varphi}^{*}$ such that $\left(\widetilde{\varphi}^{*} f\right)(t)=f(-t)$.
F. Adrián Fdez. Tojo

Recurrence relations with reflection
$3 / 18$
$\square \|$

Objective, notation and preliminaries

Objective: To obtain analogous results as the ones known for the case of linear recurrence equations and systems with reflection.

Objective, notation and preliminaries

Objective: To obtain analogous results as the ones known for the case of linear recurrence equations and systems with reflection.

Let V be vector space, \mathcal{S} the space of \mathbb{Z}-sequences in V. We define the right shift operator D as

D is bijective and will play the role the differential operator.

An order n linear recurrence relation is

$$
\begin{equation*}
x_{k+n}=\sum_{j=0}^{n-1} a_{j} x_{k+j}+c_{k}, k \in \mathbb{N} ; \quad x_{k}=\xi_{k}, k=1, \ldots, n, \tag{2.1}
\end{equation*}
$$

where $\xi_{k} \in \mathbb{F}, k=1, \ldots, n ; a_{j} \in \mathbb{F}, j=0, \ldots, n-1 ; a_{0} \neq 0$ and $c=\left(c_{k}\right)_{k \in \mathbb{N}}$.

An order n linear recurrence relation is

$$
\begin{equation*}
x_{k+n}=\sum_{j=0}^{n-1} a_{j} x_{k+j}+c_{k}, k \in \mathbb{N} ; \quad x_{k}=\xi_{k}, k=1, \ldots, n, \tag{2.1}
\end{equation*}
$$

where $\xi_{k} \in \mathbb{F}, k=1, \ldots, n ; a_{j} \in \mathbb{F}, j=0, \ldots, n-1 ; a_{0} \neq 0$ and $c=\left(c_{k}\right)_{k \in \mathbb{N}}$.
We can write (2.1) as

$$
\left(D^{n}-\sum_{j=0}^{n-1} a_{j} D^{j}\right) x=c ; \quad x_{k}=\xi_{k}, k=1, \ldots, n,
$$

where $x=\left(x_{k}\right)_{k \in \mathbb{N}}$.

An order n linear recurrence relation is

$$
\begin{equation*}
x_{k+n}=\sum_{j=0}^{n-1} a_{j} x_{k+j}+c_{k}, k \in \mathbb{N} ; \quad x_{k}=\xi_{k}, k=1, \ldots, n, \tag{2.1}
\end{equation*}
$$

where $\xi_{k} \in \mathbb{F}, k=1, \ldots, n ; a_{j} \in \mathbb{F}, j=0, \ldots, n-1 ; a_{0} \neq 0$ and $c=\left(c_{k}\right)_{k \in \mathbb{N}}$.
We can write (2.1) as

$$
\left(D^{n}-\sum_{j=0}^{n-1} a_{j} D^{j}\right) x=c ; \quad x_{k}=\xi_{k}, k=1, \ldots, n,
$$

where $x=\left(x_{k}\right)_{k \in \mathbb{N}}$. Hence, we study equations of the kind

$$
\begin{equation*}
U x:=\sum_{j=0}^{n} a_{j} D^{j} x=c ; \quad x_{k}=\xi_{k}, k=1, \ldots, n, \tag{2.2}
\end{equation*}
$$

where $a_{0} a_{n} \neq 0 . U \in \mathbb{F}[D]$, the algebra of polynomials on D with coefficients in \mathbb{F}.

Definitions and notation

Recurrence relations with reflection

Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that $\varphi(t)=-t$. Define the pullback by φ, φ^{*}, as

$$
\begin{gathered}
\mathcal{S} \xrightarrow{\varphi^{*}} \mathcal{S} \\
\left(x_{k}\right)_{k \in \mathbb{Z}} \longmapsto\left(x_{-k}\right)_{k \in \mathbb{Z}}
\end{gathered}
$$

Recurrence relations with reflection

Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that $\varphi(t)=-t$. Define the pullback by φ, φ^{*}, as

$$
\begin{gathered}
\mathcal{S} \xrightarrow[\varphi^{*}]{\longrightarrow} \mathcal{S} \\
\left(x_{k}\right)_{k \in \mathbb{Z}} \longmapsto\left(x_{-k}\right)_{k \in \mathbb{Z}}
\end{gathered}
$$

Consider

$$
\begin{equation*}
L x:=\sum_{j=-n}^{n}\left(a_{j}+b_{j} \varphi^{*}\right) D^{j} x=c \tag{2.3}
\end{equation*}
$$

where $x, c \in \mathcal{S} ; a_{j}, b_{j} \in \mathbb{F}$ for $j=0, \ldots, n$ and $D^{-j}=\left(D^{-1}\right)^{j}$ for $j \in \mathbb{N}$. We say L belongs to the operator algebra $\mathbb{F}\left[D, D^{-1}, \varphi^{*}\right]$ with the composition operation.

Reduction

Theorem

Let $L=\varphi^{*} P+Q$ with $P, Q \in \mathbb{F}\left[D, D^{-1}\right]$. Then $\widetilde{R}:=\varphi^{*} P-\varphi^{*}(Q) \in \mathbb{F}\left[D, \varphi^{*}\right]$ satisfies $\widetilde{R} L=L \widetilde{R} \in \mathbb{F}\left[D, D^{-1}\right]$.

Reduction

Theorem

Let $L=\varphi^{*} P+Q$ with $P, Q \in \mathbb{F}\left[D, D^{-1}\right]$. Then $\widetilde{R}:=\varphi^{*} P-\varphi^{*}(Q) \in \mathbb{F}\left[D, \varphi^{*}\right]$ satisfies $\widetilde{R} L=L \widetilde{R} \in \mathbb{F}\left[D, D^{-1}\right]$.

There exists a least $k \in\{0,1,2, \ldots\}$ such that $L \widetilde{R} D^{k} \in \mathbb{F}[D]$. From now on we will write $\bar{R}:=\widetilde{R} D^{k}$.

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function was obtained was $x^{\prime}(t)+m x(-t)=0$ for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.

Example 1

The first differential equation with reflection of which a Green's function was obtained was $x^{\prime}(t)+m x(-t)=0$ for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.
Substitute \widetilde{D} by forward difference operator $\Delta=D$ - Id and $\widetilde{\varphi}$ by φ and we get $L=\Delta+m \varphi^{*}=D-\operatorname{Id}+m \varphi^{*}$, that is,

$$
x_{n+1}-x_{n}+m x_{-n}=0, n \in \mathbb{Z}
$$

We have that $\widetilde{R}=\mathrm{Id}-D^{-1}+m \varphi^{*}$.

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function was obtained was $x^{\prime}(t)+m x(-t)=0$ for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.
Substitute \widetilde{D} by forward difference operator $\Delta=D$ - Id and $\widetilde{\varphi}$ by φ and we get $L=\Delta+m \varphi^{*}=D-\operatorname{Id}+m \varphi^{*}$, that is,

$$
x_{n+1}-x_{n}+m x_{-n}=0, n \in \mathbb{Z}
$$

We have that $\widetilde{R}=\mathrm{Id}-D^{-1}+m \varphi^{*}$. Thus,

$$
L \widetilde{R}=\widetilde{R} L=\left(D-\mathrm{Id}+m \varphi^{*}\right)\left(\mathrm{Id}-D^{-1}+m \varphi^{*}\right)=D+D^{-1}+\left(m^{2}-2\right) \mathrm{Id} .
$$

Hence, if $L x=0$ holds, so does $D R L x=0$ and we get the equation

$$
\left(D^{2}+\left(m^{2}-2\right) D+\mathrm{Id}\right) x=0
$$

that is, $x_{n+2}+\left(m^{2}-2\right) x_{n+1}+x_{n}=0$ for $n \in \mathbb{Z}$.

Algebraic structure

Case $\mathcal{E x a m p l e}:|m|>2$. Solutions are are of the form
$x_{n}=c_{1} 2^{-n}\left(-m^{2}+|m| \sqrt{m^{2}-4}+2\right)^{n}+c_{2} 2^{-n}\left(-m^{2}-|m| \sqrt{m^{2}-4}+2\right)^{n}$ with $c_{1}, c_{2} \in \mathbb{R}$.

Case Example: $|m|>2$. Solutions are are of the form
$x_{n}=c_{1} 2^{-n}\left(-m^{2}+|m| \sqrt{m^{2}-4}+2\right)^{n}+c_{2} 2^{-n}\left(-m^{2}-|m| \sqrt{m^{2}-4}+2\right)^{n}$
with $c_{1}, c_{2} \in \mathbb{R}$.
In any case, $L x=0$ has to hold, so we deduce that

$$
c_{2}=\frac{1}{2}\left(\frac{|m|}{m} \sqrt{m^{2}-4}+m\right) c_{1}
$$

and all solutions of $L x=0$ are expressed as

$$
\begin{aligned}
& x_{n}=c_{1}\left[2^{-n}\left(-m^{2}+|m| \sqrt{m^{2}-4}+2\right)^{n}+\right. \\
& \left.\frac{1}{2}\left(\frac{|m|}{m} \sqrt{m^{2}-4}+m\right) 2^{-n}\left(-m^{2}-|m| \sqrt{m^{2}-4}+2\right)^{n}\right],
\end{aligned}
$$

for some $c_{1} \in \mathbb{R}$.

Algebraic structure

Example 2

Now substitute \widetilde{D} by D, that is, $L=D+m \varphi^{*}$ and

$$
x_{n+1}+m x_{n-1}=0, n \in \mathbb{Z} .
$$

We have $\widetilde{R}=-D^{-1}+m \varphi^{*}$.

Algebraic structure

Example 2

Now substitute \widetilde{D} by D, that is, $L=D+m \varphi^{*}$ and

$$
x_{n+1}+m x_{n-1}=0, n \in \mathbb{Z} .
$$

We have $\widetilde{R}=-D^{-1}+m \varphi^{*}$.

$$
\widetilde{R} L=L \widetilde{R}=\left(D+m \varphi^{*}\right)\left(-D^{-1}+m \varphi^{*}\right)=\left(m^{2}-1\right) \mathrm{Id} .
$$

If the equation $\left(D+m \varphi^{*}\right) x=0$ holds for some nontrivial $x \in \mathcal{S}$, so does ($m^{2}-1$) $x=0$, which is only satisfied if $m= \pm 1$.

Algebraic structure

Example 2

Now substitute \widetilde{D} by D, that is, $L=D+m \varphi^{*}$ and

$$
x_{n+1}+m x_{n-1}=0, n \in \mathbb{Z}
$$

We have $\widetilde{R}=-D^{-1}+m \varphi^{*}$.

$$
\widetilde{R} L=L \widetilde{R}=\left(D+m \varphi^{*}\right)\left(-D^{-1}+m \varphi^{*}\right)=\left(m^{2}-1\right) \mathrm{Id} .
$$

If the equation $\left(D+m \varphi^{*}\right) x=0$ holds for some nontrivial $x \in \mathcal{S}$, so does ($m^{2}-1$) $x=0$, which is only satisfied if $m= \pm 1$.
$x_{n+1}-m x_{-n}=0$ is a recurrence relation with reflection with no nontrivial solution for $m \neq \pm 1$. In the case $m= \pm 1$, the equation $L \widetilde{R} x=0$ is trivial and provides no information on $L x=0$.

Example 2

Now substitute \widetilde{D} by D, that is, $L=D+m \varphi^{*}$ and

$$
x_{n+1}+m x_{n-1}=0, n \in \mathbb{Z}
$$

We have $\widetilde{R}=-D^{-1}+m \varphi^{*}$.

$$
\widetilde{R} L=L \widetilde{R}=\left(D+m \varphi^{*}\right)\left(-D^{-1}+m \varphi^{*}\right)=\left(m^{2}-1\right) \mathrm{Id} .
$$

If the equation $\left(D+m \varphi^{*}\right) x=0$ holds for some nontrivial $x \in \mathcal{S}$, so does ($m^{2}-1$) $x=0$, which is only satisfied if $m= \pm 1$.
$x_{n+1}-m x_{-n}=0$ is a recurrence relation with reflection with no nontrivial solution for $m \neq \pm 1$. In the case $m= \pm 1$, the equation $L \widetilde{R} x=0$ is trivial and provides no information on $L x=0$.
In the case $L=D-\varphi^{*}$, take $\left(v_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{F}$ arbitrarily and define $x_{n}=v_{n}$ if $n \in \mathbb{N}$ and $x_{n}=x_{1-n}$ if $n \leqslant 0 . x$ satisfies $L x=0$.
If $L=D+\varphi^{*}$, take ($\left.v_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{F}$ arbitrarily and define $x_{n}=v_{n}$ if $n \in \mathbb{N}$ and $x_{n}=-x_{1-n}$ if $n \leqslant 0 . x$ satisfies $L x=0$.

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that is, $e^{\widetilde{D}}=D$.

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that is, $e^{\widetilde{D}}=D$.

We can compute $e^{a \widetilde{\varphi}^{*}}$ for $a \in \mathbb{C}$ taking into account that $\left.\widetilde{\varphi}\right|_{\mathbb{Z}}=\varphi$.
$e^{a \widetilde{\varphi}^{*}}=\sum_{n=0}^{\infty} \frac{\left(a \widetilde{\varphi}^{*}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{a \mathrm{Id}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{a \widetilde{\varphi}^{*}}{(2 n+1)!}=\cosh (a) \mathrm{Id}+\sinh (a) \varphi^{*}$.

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that is, $e^{\widetilde{D}}=D$.

We can compute $e^{a \widetilde{\varphi}^{*}}$ for $a \in \mathbb{C}$ taking into account that $\left.\widetilde{\varphi}\right|_{\mathbb{Z}}=\varphi$.
$e^{a \widetilde{\varphi}^{*}}=\sum_{n=0}^{\infty} \frac{\left(a \widetilde{\varphi}^{*}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{a \mathrm{Id}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{a \widetilde{\varphi}^{*}}{(2 n+1)!}=\cosh (a) \mathrm{Id}+\sinh (a) \varphi^{*}$.
Analogously, we obtain Euler's formula:

$$
e^{\widetilde{\varphi}^{*} \widetilde{D}}=\sum_{n=0}^{\infty} \frac{\left(\widetilde{\varphi}^{*} \widetilde{D}\right)^{n}}{n!}=\cos (\widetilde{D})+\widetilde{\varphi}^{*} \sin (\widetilde{D}) .
$$

Given a vector space V we denote by V^{*} its algebraic dual. Let

$$
\mathcal{T}_{n}=\left\{\left(\sum_{j=1}^{p} \alpha_{j} k^{n_{j}} z_{j}^{k}\right)_{k \in \mathbb{Z}} \in \mathcal{S}: z_{j} \in \overline{\mathbb{F}}, n_{j} \in\{0,1, \ldots, n\}, \alpha_{j} \in \mathbb{F} ; p \in \mathbb{N}\right\}
$$

Given a vector space V we denote by V^{*} its algebraic dual. Let
$\mathcal{T}_{n}=\left\{\left(\sum_{j=1}^{p} \alpha_{j} k^{n_{j}} z_{j}^{k}\right)_{k \in \mathbb{Z}} \in \mathcal{S}: z_{j} \in \overline{\mathbb{F}}, n_{j} \in\{0,1, \ldots, n\}, \alpha_{j} \in \mathbb{F} ; p \in \mathbb{N}\right\}$.
For every $L \in \mathbb{F}\left[D, D^{-1}, \varphi^{*}\right]$, we have that $L(f) \in \mathcal{T}_{n} \forall f \in \mathcal{T}_{n}$.

Given a vector space V we denote by V^{*} its algebraic dual. Let
$\mathcal{T}_{n}=\left\{\left(\sum_{j=1}^{p} \alpha_{j} k^{n_{j}} z_{j}^{k}\right)_{k \in \mathbb{Z}} \in \mathcal{S}: z_{j} \in \overline{\mathbb{F}}, n_{j} \in\{0,1, \ldots, n\}, \alpha_{j} \in \mathbb{F} ; p \in \mathbb{N}\right\}$.
For every $L \in \mathbb{F}\left[D, D^{-1}, \varphi^{*}\right]$, we have that $L(f) \in \mathcal{T}_{n} \forall f \in \mathcal{T}_{n}$.

Theorem

Let $W \in\left(\mathcal{T}_{n}^{*}\right)^{n}$. Consider the problem

$$
\begin{equation*}
L x=c, W x=h . \tag{3.1}
\end{equation*}
$$

Then, there exists $\bar{R} \in \mathbb{F}\left[D, \varphi^{*}\right]$ such that $L \bar{R} \in \mathbb{F}[D]$ and a solution of problem (3.1) is given by

$$
u:=\Phi(W \Phi)^{-1} h+\left(\bar{R} H-\Phi(W \Phi)^{-1} W \bar{R} H\right) c
$$

where H is a Green's function associated to the problem

$$
\begin{equation*}
L \bar{R} x=c, W x=W \bar{R} x=0, \tag{3.2}
\end{equation*}
$$

assuming it exists, $W \bar{R} H c$ is well defined, Φ is the general solution of $L \bar{R} x=0$ and $W \Phi$ is invertible.

Systems of linear recurrence

$$
\begin{equation*}
(J u)_{k}:=F x_{k+1}+G x_{-k-1}+A x_{k}+B x_{-k}=0, k \in \mathbb{Z}, \tag{4.1}
\end{equation*}
$$

where $x_{k} \in \mathbb{F}^{n}, n \in \mathbb{N}, A, B, F, G \in \mathcal{M}_{n}(\mathbb{F})$ and $u \in \mathcal{F}\left(\mathbb{Z}, \mathbb{F}^{n}\right)$.

Systems of linear recurrence

$$
\begin{equation*}
(J u)_{k}:=F x_{k+1}+G x_{-k-1}+A x_{k}+B x_{-k}=0, k \in \mathbb{Z}, \tag{4.1}
\end{equation*}
$$

where $x_{k} \in \mathbb{F}^{n}, n \in \mathbb{N}, A, B, F, G \in \mathcal{M}_{n}(\mathbb{F})$ and $u \in \mathcal{F}\left(\mathbb{Z}, \mathbb{F}^{n}\right)$.
We say that $M \in \mathcal{F}\left(\mathbb{Z}, M_{n}(\mathbb{F})\right)$ is a fundamental matrix of problem (4.1) if $\left.\left(u_{k}\right)_{k \in \mathbb{Z}}=\left(M(k) u_{0}\right)\right)_{k \in \mathbb{Z}}$ is a solution of equation (4.1) for every $u_{0} \in \mathbb{F}^{n}$, that is

$$
F M(k+1)+G M(-k-1)+A M(k)+B M(-k)=0, k \in \mathbb{Z} .
$$

Systems of linear recurrence

$$
\begin{equation*}
(J u)_{k}:=F x_{k+1}+G x_{-k-1}+A x_{k}+B x_{-k}=0, k \in \mathbb{Z}, \tag{4.1}
\end{equation*}
$$

where $x_{k} \in \mathbb{F}^{n}, n \in \mathbb{N}, A, B, F, G \in \mathcal{M}_{n}(\mathbb{F})$ and $u \in \mathcal{F}\left(\mathbb{Z}, \mathbb{F}^{n}\right)$.
We say that $M \in \mathcal{F}\left(\mathbb{Z}, M_{n}(\mathbb{F})\right)$ is a fundamental matrix of problem (4.1) if $\left.\left(u_{k}\right)_{k \in \mathbb{Z}}=\left(M(k) u_{0}\right)\right)_{k \in \mathbb{Z}}$ is a solution of equation (4.1) for every $u_{0} \in \mathbb{F}^{n}$, that is

$$
F M(k+1)+G M(-k-1)+A M(k)+B M(-k)=0, k \in \mathbb{Z} .
$$

If M is a block matrix of the form

$$
M=\left(\begin{array}{l|l}
M_{1} & M_{2} \\
\hline M_{3} & M_{4}
\end{array}\right),
$$

where $M_{k} \in \mathcal{M}_{n}(\mathbb{F})$, we define $M_{(k)}:=M_{k}$.

Fundamental matrix

Theorem

Assume that

$$
\left(\begin{array}{c|c}
F & G \\
\hline B & A
\end{array}\right) \text { and }\left(\begin{array}{c|c}
A & B \\
\hline G & F
\end{array}\right)
$$

are invertible. Then

$$
\left.\left.\left.\begin{array}{rl}
M:= & \left(\left[-\left(\begin{array}{l|l}
F & G \\
\hline B & A
\end{array}\right)\left(\begin{array}{l|l}
A & B \\
\hline G & F
\end{array}\right)\right]_{(1)}^{k}\right. \\
& +\left[-\left(\begin{array}{l|l}
F & G \\
\hline B & A
\end{array}\right)^{-1}\left(\left.\begin{array}{l|l}
A & B \\
\hline & G
\end{array} \right\rvert\,\right.\right.
\end{array}\right)\right]_{(2)}^{k}\right)_{k \in \mathbb{Z}} .
$$

is a fundamental matrix of problem (4.1). Furthermore, problem (4.1) equipped with the initial condition $x_{0}=u_{0} \in \mathbb{F}^{n}$ has a unique solution given by $\left.\left(u_{k}\right)_{k \in \mathbb{Z}}=\left(M(k) u_{0}\right)\right)_{k \in \mathbb{Z}}$.

Theorem

Assume

$$
\left(\begin{array}{c|c}
F & G \\
\hline B & A
\end{array}\right) \text { and }\left(\begin{array}{c|c}
A & B \\
\hline G & F
\end{array}\right)
$$

are invertible. Consider the problem

$$
\begin{equation*}
J x=c, \quad W x=h . \tag{4.2}
\end{equation*}
$$

Then the sequence given by

$$
u=\pi_{1}\left(X Z^{-1}\left[\left(\frac{h}{h}\right)-\left(\frac{W}{W \varphi^{*}}\right) Y\right]+Y\right)
$$

where
$X:=\left(\left[\begin{array}{c|c}\left.\left.-\left(\begin{array}{l|l|l}F & G \\ \hline B & A\end{array}\right)^{-1}\left(\begin{array}{c|c}A & B \\ \hline G & F\end{array}\right)\right]^{k}\right)_{k \in \mathbb{Z}}, Y:=\bar{H}\left(\left.\frac{F}{B} \right\rvert\, A\right. \\ \hline\end{array}\right)^{-1}\left(\frac{c}{\varphi^{*} c}\right), Z:=\binom{W}{W \varphi^{*}} X\right.$, and $\pi_{1}: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ is such that $\pi_{1}(x, y)=x$, is the unique solution of problem (4.2).

Open problems

There are some clear ways in which the theory could be extended. We point out here some of them.

- Non-constant coefficients.
- General involutions (order n).
- Partial difference equations.

More Information:
\square T., F.A.F.: Green's functions of recurrence relations with reflection. J. Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.

More Information:T., F.A.F.: Green's functions of recurrence relations with reflection. J. Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.

Thank you for your attention!

