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Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like
𝑥𝑛+1 − 𝑥𝑛 + 𝑚 𝑥−𝑛 = 0, 𝑛 ∈ ℤ.

They are similar to differential equations with reflection such as

𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = 0, 𝑡 ∈ ℝ.
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Systems of Stieltjes differential equations

Previous work
Cabada, A., T., F.A.F.:Green's functions for reducible functional
differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

Cabada, A., T., F.A.F.: On linear differential equations and systems
with reflection. Appl. Math. Comput. 305, 84-102 (2017)

Differential Equations + Algebraic Structure

Differential Equations: Homogeneous linear differential equations with
reflection and constant coefficients:

𝑇𝑢(𝑡) ∶=
𝑛

∑
𝑘=0

𝑎𝑘𝑢(𝑘)(𝑡) +
𝑛

∑
𝑘=0

𝑏𝑘𝑢(𝑘)(−𝑡) = 0.

𝑇 is a composition of the usual differential operator 𝐷̃ and the pullback
by the reflection function 𝜑̃(𝑡) = −𝑡, that is, the operator 𝜑̃∗ such that
(𝜑̃∗𝑓)(𝑡) = 𝑓(−𝑡).
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Definitions and notation

Objective, notation and preliminaries

Objective : To obtain analogous results as the ones known for the
case of linear recurrence equations and systems with reflection.

Let 𝑉 be vector space, S the space of ℤ-sequences in 𝑉. We define the
right shift operator 𝐷 as

S S

(𝑥𝑘)𝑘∈ℤ (𝑥𝑘+1)𝑘∈ℤ

𝐷

𝐷 is bijective and will play the role the differential operator.
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Definitions and notation

An order 𝑛 linear recurrence relation is

𝑥𝑘+𝑛 =
𝑛−1

∑
𝑗=0

𝑎𝑗𝑥𝑘+𝑗 + 𝑐𝑘, 𝑘 ∈ ℕ; 𝑥𝑘 = 𝜉𝑘, 𝑘 = 1, … , 𝑛, (2.1)

where 𝜉𝑘 ∈ 𝔽, 𝑘 = 1, … , 𝑛; 𝑎𝑗 ∈ 𝔽, 𝑗 = 0, … , 𝑛 − 1; 𝑎0 ≠ 0 and 𝑐 = (𝑐𝑘)𝑘∈ℕ.

We can write (2.1) as

(
𝐷𝑛 −

𝑛−1

∑
𝑗=0

𝑎𝑗𝐷𝑗
)

𝑥 = 𝑐; 𝑥𝑘 = 𝜉𝑘, 𝑘 = 1, … , 𝑛,

where 𝑥 = (𝑥𝑘)𝑘∈ℕ. Hence, we study equations of the kind

𝑈𝑥 ∶=
𝑛

∑
𝑗=0

𝑎𝑗𝐷𝑗𝑥 = 𝑐; 𝑥𝑘 = 𝜉𝑘, 𝑘 = 1, … , 𝑛, (2.2)

where 𝑎0𝑎𝑛 ≠ 0. 𝑈 ∈ 𝔽[𝐷], the algebra of polynomials on 𝐷 with
coefficients in 𝔽.
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Definitions and notation

Recurrence relations with reflection

Let 𝜑 ∶ ℤ → ℤ be such that 𝜑(𝑡) = −𝑡. Define the pullback by 𝜑, 𝜑∗, as

S S

(𝑥𝑘)𝑘∈ℤ (𝑥−𝑘)𝑘∈ℤ

𝜑∗

Consider
𝐿𝑥 ∶=

𝑛

∑
𝑗=−𝑛

(𝑎𝑗 + 𝑏𝑗𝜑∗) 𝐷𝑗𝑥 = 𝑐, (2.3)

where 𝑥, 𝑐 ∈ S; 𝑎𝑗, 𝑏𝑗 ∈ 𝔽 for 𝑗 = 0, … , 𝑛 and 𝐷−𝑗 = (𝐷−1)𝑗 for 𝑗 ∈ ℕ. We
say 𝐿 belongs to the operator algebra 𝔽[𝐷, 𝐷−1, 𝜑∗] with the
composition operation.
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Algebraic structure

Reduction

Theorem

Let 𝐿 = 𝜑∗𝑃 + 𝑄 with 𝑃, 𝑄 ∈ 𝔽[𝐷, 𝐷−1]. Then
𝑅̃ ∶= 𝜑∗𝑃 − 𝜑∗(𝑄) ∈ 𝔽[𝐷, 𝜑∗] satisfies 𝑅̃𝐿 = 𝐿𝑅̃ ∈ 𝔽[𝐷, 𝐷−1].

There exists a least 𝑘 ∈ {0, 1, 2, … } such that 𝐿𝑅̃𝐷𝑘 ∈ 𝔽[𝐷]. From now on
we will write 𝑅 ∶= 𝑅̃𝐷𝑘.

F. Adrián Fdez. Tojo Recurrence relations with reflection 7 / 18



Motivation Recurrence relations with reflection Green’s functions of recurrence relations Linear systems Open problems

Algebraic structure

Reduction

Theorem

Let 𝐿 = 𝜑∗𝑃 + 𝑄 with 𝑃, 𝑄 ∈ 𝔽[𝐷, 𝐷−1]. Then
𝑅̃ ∶= 𝜑∗𝑃 − 𝜑∗(𝑄) ∈ 𝔽[𝐷, 𝜑∗] satisfies 𝑅̃𝐿 = 𝐿𝑅̃ ∈ 𝔽[𝐷, 𝐷−1].

There exists a least 𝑘 ∈ {0, 1, 2, … } such that 𝐿𝑅̃𝐷𝑘 ∈ 𝔽[𝐷]. From now on
we will write 𝑅 ∶= 𝑅̃𝐷𝑘.

F. Adrián Fdez. Tojo Recurrence relations with reflection 7 / 18



Motivation Recurrence relations with reflection Green’s functions of recurrence relations Linear systems Open problems

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function
was obtained was 𝑥′(𝑡) + 𝑚 𝑥(−𝑡) = 0 for some 𝑚 ∈ ℝ. This operator is a
square root of the harmonic oscillator.

Substitute 𝐷̃ by forward difference operator Δ = 𝐷 − Id and 𝜑̃ by 𝜑 and
we get 𝐿 = Δ + 𝑚𝜑∗ = 𝐷 − Id+𝑚𝜑∗, that is,

𝑥𝑛+1 − 𝑥𝑛 + 𝑚 𝑥−𝑛 = 0, 𝑛 ∈ ℤ.

We have that 𝑅̃ = Id−𝐷−1 + 𝑚𝜑∗. Thus,

𝐿𝑅̃ = 𝑅̃𝐿 = (𝐷 − Id+𝑚𝜑∗)(Id−𝐷−1 + 𝑚𝜑∗) = 𝐷 + 𝐷−1 + (𝑚2 − 2) Id .

Hence, if 𝐿𝑥 = 0 holds, so does 𝐷𝑅𝐿𝑥 = 0 and we get the equation

(𝐷2 + (𝑚2 − 2)𝐷 + Id)𝑥 = 0,

that is, 𝑥𝑛+2 + (𝑚2 − 2)𝑥𝑛+1 + 𝑥𝑛 = 0 for 𝑛 ∈ ℤ.
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Algebraic structure

Case Example : |𝑚| > 2. Solutions are are of the form

𝑥𝑛 = 𝑐12−𝑛
(−𝑚2 + |𝑚|√𝑚2 − 4 + 2)

𝑛
+ 𝑐22−𝑛

(−𝑚2 − |𝑚|√𝑚2 − 4 + 2)
𝑛

with 𝑐1, 𝑐2 ∈ ℝ.

In any case, 𝐿𝑥 = 0 has to hold, so we deduce that

𝑐2 = 1
2 (

|𝑚|
𝑚

√𝑚2 − 4 + 𝑚) 𝑐1,

and all solutions of 𝐿𝑥 = 0 are expressed as

𝑥𝑛 =𝑐1 [2−𝑛
(−𝑚2 + |𝑚|√𝑚2 − 4 + 2)

𝑛
+

1
2 (

|𝑚|
𝑚

√𝑚2 − 4 + 𝑚) 2−𝑛
(−𝑚2 − |𝑚|√𝑚2 − 4 + 2)

𝑛

] ,

for some 𝑐1 ∈ ℝ.
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Algebraic structure

Example 2
Now substitute 𝐷̃ by 𝐷, that is, 𝐿 = 𝐷 + 𝑚𝜑∗ and

𝑥𝑛+1 + 𝑚 𝑥𝑛−1 = 0, 𝑛 ∈ ℤ.

We have 𝑅̃ = −𝐷−1 + 𝑚𝜑∗.

𝑅̃𝐿 = 𝐿𝑅̃ = (𝐷 + 𝑚𝜑∗)(−𝐷−1 + 𝑚𝜑∗) = (𝑚2 − 1) Id .

If the equation (𝐷 + 𝑚𝜑∗)𝑥 = 0 holds for some nontrivial 𝑥 ∈ S, so does
(𝑚2 − 1)𝑥 = 0, which is only satisfied if 𝑚 = ±1.

𝑥𝑛+1 − 𝑚 𝑥−𝑛 = 0 is a recurrence relation with reflection with no nontrivial
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Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that
is, 𝑒𝐷̃ = 𝐷.

We can compute 𝑒𝑎𝜑̃∗ for 𝑎 ∈ ℂ taking into account that 𝜑̃|ℤ = 𝜑.

𝑒𝑎𝜑̃∗ =
∞

∑
𝑛=0

(𝑎𝜑̃∗)𝑛

𝑛! =
∞

∑
𝑛=0

𝑎 Id
(2𝑛)! +

∞

∑
𝑛=0

𝑎𝜑̃∗

(2𝑛 + 1)! = cosh(𝑎) Id+ sinh(𝑎)𝜑∗.

Analogously, we obtain Euler's formula:

𝑒𝜑̃∗𝐷̃ =
∞

∑
𝑛=0

(𝜑̃∗𝐷̃)𝑛

𝑛! = cos(𝐷̃) + 𝜑̃∗ sin(𝐷̃).
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General boundary conditions

Given a vector space 𝑉 we denote by 𝑉∗ its algebraic dual. Let

T𝑛 =
⎧{
⎨{⎩(

𝑝

∑
𝑗=1

𝛼𝑗𝑘
𝑛𝑗𝑧𝑘

𝑗 )
𝑘∈ℤ

∈ S ∶ 𝑧𝑗 ∈ 𝔽, 𝑛𝑗 ∈ {0, 1, … , 𝑛}, 𝛼𝑗 ∈ 𝔽; 𝑝 ∈ ℕ
⎫}
⎬}⎭
.

For every 𝐿 ∈ 𝔽[𝐷, 𝐷−1, 𝜑∗], we have that 𝐿(𝑓 ) ∈ T𝑛 ∀𝑓 ∈ T𝑛.
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General boundary conditions

Theorem
Let 𝑊 ∈ (T ∗

𝑛 )𝑛. Consider the problem

𝐿𝑥 = 𝑐, 𝑊𝑥 = ℎ. (3.1)

Then, there exists 𝑅 ∈ 𝔽[𝐷, 𝜑∗] such that 𝐿𝑅 ∈ 𝔽[𝐷] and a solution of
problem (3.1) is given by

𝑢 ∶= Φ (𝑊Φ)−1ℎ + (𝑅𝐻 − Φ(𝑊Φ)−1𝑊𝑅𝐻) 𝑐

where 𝐻 is a Green’s function associated to the problem

𝐿𝑅𝑥 = 𝑐, 𝑊𝑥 = 𝑊𝑅𝑥 = 0, (3.2)

assuming it exists, 𝑊𝑅𝐻𝑐 is well defined, Φ is the general solution of
𝐿𝑅𝑥 = 0 and 𝑊Φ is invertible.
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Systems of linear recurrence

(𝐽𝑢)𝑘 ∶= 𝐹𝑥𝑘+1 + 𝐺𝑥−𝑘−1 + 𝐴𝑥𝑘 + 𝐵𝑥−𝑘 = 0, 𝑘 ∈ ℤ, (4.1)

where 𝑥𝑘 ∈ 𝔽𝑛, 𝑛 ∈ ℕ, 𝐴, 𝐵, 𝐹, 𝐺 ∈ M𝑛(𝔽) and 𝑢 ∈ F (ℤ, 𝔽𝑛).

We say that 𝑀 ∈ F (ℤ, 𝑀𝑛(𝔽)) is a fundamental matrix of problem (4.1)
if (𝑢𝑘)𝑘∈ℤ = (𝑀(𝑘) 𝑢0))𝑘∈ℤ is a solution of equation (4.1) for every 𝑢0 ∈ 𝔽𝑛,
that is

𝐹𝑀(𝑘 + 1) + 𝐺𝑀(−𝑘 − 1) + 𝐴𝑀(𝑘) + 𝐵𝑀(−𝑘) = 0, 𝑘 ∈ ℤ.

If 𝑀 is a block matrix of the form

𝑀 = (
𝑀1 𝑀2
𝑀3 𝑀4 ) ,

where 𝑀𝑘 ∈ M𝑛(𝔽), we define 𝑀(𝑘) ∶= 𝑀𝑘.
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Fundamental matrix
Theorem

Assume that

(
𝐹 𝐺
𝐵 𝐴 ) and (

𝐴 𝐵
𝐺 𝐹 )

are invertible. Then

𝑀 ∶=
⎛
⎜
⎜
⎝
[

− (
𝐹 𝐺
𝐵 𝐴 )

−1

(
𝐴 𝐵
𝐺 𝐹 )]

𝑘

(1)

+
[

− (
𝐹 𝐺
𝐵 𝐴 )

−1

(
𝐴 𝐵
𝐺 𝐹 )]

𝑘

(2)

⎞
⎟
⎟
⎠𝑘∈ℤ

.

is a fundamental matrix of problem (4.1). Furthermore, problem (4.1)
equipped with the initial condition 𝑥0 = 𝑢0 ∈ 𝔽𝑛 has a unique solution
given by (𝑢𝑘)𝑘∈ℤ = (𝑀(𝑘) 𝑢0))𝑘∈ℤ.
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Green’s functions

Theorem

Assume

(
𝐹 𝐺
𝐵 𝐴 ) and (

𝐴 𝐵
𝐺 𝐹 )

are invertible. Consider the problem

𝐽𝑥 = 𝑐, 𝑊𝑥 = ℎ. (4.2)

Then the sequence given by

𝑢 = 𝜋1 (𝑋𝑍−1
[(

ℎ
ℎ ) − (

𝑊
𝑊𝜑∗ ) 𝑌] + 𝑌) ,

where
𝑋 ∶=

⎛
⎜
⎜
⎝
[

− (
𝐹 𝐺
𝐵 𝐴 )

−1

(
𝐴 𝐵
𝐺 𝐹 )]

𝑘⎞
⎟
⎟
⎠𝑘∈ℤ

, 𝑌 ∶= 𝐻 (
𝐹 𝐺
𝐵 𝐴 )

−1

(
𝑐

𝜑∗𝑐 ) , 𝑍 ∶= (
𝑊

𝑊𝜑∗ ) 𝑋,

and 𝜋1 ∶ 𝔽𝑛 × 𝔽𝑛 → 𝔽𝑛 is such that 𝜋1(𝑥, 𝑦) = 𝑥, is the unique solution of
problem (4.2).
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Open problems

There are some clear ways in which the theory could be extended. We
point out here some of them.

Non-constant coefficients.

General involutions (order 𝑛).

Partial difference equations.
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More Information:

T., F.A.F.: Green’s functions of recurrence relations with reflection. J.
Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.

Thank you for your attention!
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