Green's functions of recurrence relations $_{OO}$

Linear systems 0 000 0

Open problems

Recurrence relations with reflection

7. Adrián 7. Tojo

CITMAga Universidade de Santiago de Compostela

A B M A B M

э

Motivation Recurrence relations with reflection

Green's functions of recurrence relations

Linear systems

Open problems

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

< ∃ >

Ξ.

Motivation ••• Recurrence relations with reflection ••• •••

Green's functions of recurrence relations $_{OO}$

Linear systems

Open problems

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like

$$x_{n+1} - x_n + m x_{-n} = 0, \quad n \in \mathbb{Z}.$$

포 제 표

Motivation ••• Recurrence relations with reflection 00000000

Green's functions of recurrence relations

Linear systems 000

글 🖌 🔺 글 🛌 👘

2 / 18

3

Open problems

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like

$$x_{n+1} - x_n + m x_{-n} = 0, \quad n \in \mathbb{Z}.$$

They are similar to differential equations with reflection such as

 $x'(t) + m x(-t) = 0, \quad t \in \mathbb{R}.$

F. Adrián Fdez. Tojo

Motivation ○●	Recurrence relations with reflection	Green's functions of recurrence relations	Linear systems 000	Open problems 00
Systems of S	tieltjes differential equations			
_				

Previous work

Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. **305**, 84-102 (2017)

Differential Equations + Algebraic Structure

A = b < = b</p>

Motivation ○●	Recurrence relations with reflection	Green's functions of recurrence relations	Linear systems	Open problems 00		
Systems of Stieltjes differential equations						
. .	1					

Previous work

Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. **305**, 84-102 (2017)

Differential Equations + Algebraic Structure

Differential Equations: Homogeneous linear differential equations with reflection and constant coefficients:

$$Tu(t) := \sum_{k=0}^{n} a_k u^{(k)}(t) + \sum_{k=0}^{n} b_k u^{(k)}(-t) = 0.$$

• • = • • = • = =

Motivation ○●	Recurrence relations with reflecti	n Green's functions of recurrence relations	Linear systems 000	Open problems
Systems of S	tieltjes differential equations			
. .				

Previous work

Cabada, A., T., F.A.F.: Green's functions for reducible functional differential equations. Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

Cabada, A., T., F.A.F.: On linear differential equations and systems with reflection. Appl. Math. Comput. 305, 84-102 (2017)

Differential Equations + Algebraic Structure

Differential Equations: Homogeneous linear differential equations with reflection and constant coefficients:

$$Tu(t) := \sum_{k=0}^{n} a_k u^{(k)}(t) + \sum_{k=0}^{n} b_k u^{(k)}(-t) = 0.$$

T is a composition of the usual $differential \ operator \ \widetilde{D}$ and the pullbackby the reflection function $\tilde{\varphi}(t) = -t$, that is, the operator $\tilde{\varphi}^*$ such that $(\widetilde{\varphi}^* f)(t) = f(-t).$ F. Adrián Fdez. Tojo 3 / 18

Green's functions of recurrence relations

Linear systems

4 / 18

Open problems

Definitions and notation

Objective, notation and preliminaries

Objective : To obtain analogous results as the ones known for the case of linear recurrence equations and systems with reflection.

Motivation Recurrence relations with reflection

Green's functions of recurrence relations $_{\rm OO}$

Linear systems

Open problems

Definitions and notation

Objective, notation and preliminaries

Objective : To obtain analogous results as the ones known for the case of linear recurrence equations and systems with reflection.

Let V be vector space, S the space of \mathbb{Z} -sequences in V. We define the right shift operator D as

$$\mathcal{S} \xrightarrow{D} \mathcal{S}$$
$$(x_k)_{k \in \mathbb{Z}} \longmapsto (x_{k+1})_{k \in \mathbb{Z}}$$

D is bijective and will play the role the differential operator.

F. Adrián Fdez. Tojo

4 / 18

Motivation	Recurrence relations with reflection
00	0000000

Definitions and notation

An order n linear recurrence relation is

$$x_{k+n} = \sum_{j=0}^{n-1} a_j x_{k+j} + c_k, \ k \in \mathbb{N}; \quad x_k = \xi_k, \ k = 1, \dots, n,$$
(2.1)

where $\xi_k \in \mathbb{F}$, k = 1, ..., n; $a_j \in \mathbb{F}$, j = 0, ..., n - 1; $a_0 \neq 0$ and $c = (c_k)_{k \in \mathbb{N}}$.

イロト イヨト イヨト イヨト

2

Motivation	Recurrence relations with reflection
00	0000000

5 / 18

3

Definitions and notation

An order n linear recurrence relation is

$$x_{k+n} = \sum_{j=0}^{n-1} a_j x_{k+j} + c_k, \ k \in \mathbb{N}; \quad x_k = \xi_k, \ k = 1, \dots, n,$$
(2.1)

where $\xi_k \in \mathbb{F}$, k = 1, ..., n; $a_j \in \mathbb{F}$, j = 0, ..., n - 1; $a_0 \neq 0$ and $c = (c_k)_{k \in \mathbb{N}}$. We can write (2.1) as

$$\left(D^n-\sum_{j=0}^{n-1}a_jD^j\right)x=c;\quad x_k=\xi_k,\ k=1,\ldots,n,$$

where $x = (x_k)_{k \in \mathbb{N}}$.

Motivation	Recurrence relations with reflectio	n
00	0000000	

Definitions and notation

An order n linear recurrence relation is

$$x_{k+n} = \sum_{j=0}^{n-1} a_j x_{k+j} + c_k, \ k \in \mathbb{N}; \quad x_k = \xi_k, \ k = 1, \dots, n,$$
(2.1)

where $\xi_k \in \mathbb{F}$, k = 1, ..., n; $a_j \in \mathbb{F}$, j = 0, ..., n - 1; $a_0 \neq 0$ and $c = (c_k)_{k \in \mathbb{N}}$. We can write (2.1) as

$$\left(D^n-\sum_{j=0}^{n-1}a_jD^j\right)x=c;\quad x_k=\xi_k,\ k=1,\ldots,n,$$

where $x = (x_k)_{k \in \mathbb{N}}$. Hence, we study equations of the kind

$$Ux := \sum_{j=0}^{n} a_j D^j x = c; \quad x_k = \xi_k, \ k = 1, \dots, n,$$
(2.2)

where $a_0a_n \neq 0$. $U \in \mathbb{F}[D]$, the algebra of polynomials on D with coefficients in \mathbb{F} .

F. Adrián Fdez. Tojo

5 / 18

э

Green's functions of recurrence relations

Linear systems

Open problems

3

▶ ∢ ∃ ▶

Definitions and notation

Recurrence relations with reflection

Let φ : $\mathbb{Z} \to \mathbb{Z}$ be such that $\varphi(t) = -t$. Define the *pullback* by φ, φ^* , as

$$\mathcal{S} \xrightarrow{\varphi^*} \mathcal{S}$$

$$(x_k)_{k\in\mathbb{Z}}\longmapsto (x_{-k})_{k\in\mathbb{Z}}$$

Motivation Recurrence relations with reflection

Green's functions of recurrence relations $_{\rm OO}$

Linear systems

A B M A B M

6 / 18

э

Open problems

Definitions and notation

Recurrence relations with reflection

Let φ : $\mathbb{Z} \to \mathbb{Z}$ be such that $\varphi(t) = -t$. Define the *pullback* by φ, φ^* , as

Consider

$$Lx := \sum_{j=-n}^{n} \left(a_j + b_j \varphi^* \right) D^j x = c, \qquad (2.3)$$

where $x, c \in S$; $a_j, b_j \in \mathbb{F}$ for j = 0, ..., n and $D^{-j} = (D^{-1})^j$ for $j \in \mathbb{N}$. We say L belongs to the *operator algebra* $\mathbb{F}[D, D^{-1}, \varphi^*]$ with the composition operation.

F. Adrián Fdez. Tojo

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems
Algebraic str	ucture			
Reduc	tion			

Theorem

Let $L = \varphi^*P + Q$ with $P, Q \in \mathbb{F}[D, D^{-1}]$. Then $\widetilde{R} := \varphi^*P - \varphi^*(Q) \in \mathbb{F}[D, \varphi^*]$ satisfies $\widetilde{R}L = L\widetilde{R} \in \mathbb{F}[D, D^{-1}]$.

★ E ► ★ E ► E

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems
Algebraic str	ucture			
Reduc	ction			

Theorem

Let $L = \varphi^*P + Q$ with $P, Q \in \mathbb{F}[D, D^{-1}]$. Then $\widetilde{R} := \varphi^*P - \varphi^*(Q) \in \mathbb{F}[D, \varphi^*]$ satisfies $\widetilde{R}L = L\widetilde{R} \in \mathbb{F}[D, D^{-1}]$.

There exists a least $k \in \{0, 1, 2, ...\}$ such that $L\widetilde{R}D^k \in \mathbb{F}[D]$. From now on we will write $\overline{R} := \widetilde{R}D^k$.

크 > - 크

Motivation 00	Recurrence relations with reflection $000000000000000000000000000000000000$	Green's functions of recurrence relations	Linear systems 000	Open problems 00
Algebraic stru	ucture			
Exam	ple 1			

The first differential equation with reflection of which a Green's function was obtained was x'(t) + mx(-t) = 0 for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations 00	Linear systems	Open problems 00		
Algebraic structure						
Exam	ple 1					

The first differential equation with reflection of which a Green's function was obtained was x'(t) + m x(-t) = 0 for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.

Substitute \widetilde{D} by forward difference operator $\Delta = D - \text{Id}$ and $\widetilde{\varphi}$ by φ and we get $L = \Delta + m\varphi^* = D - \text{Id} + m\varphi^*$, that is,

$$x_{n+1} - x_n + m x_{-n} = 0, \ n \in \mathbb{Z}.$$

We have that $\widetilde{R} = \operatorname{Id} - D^{-1} + m\varphi^*$.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems 00
Algebraic str	ucture			
Exam	ple 1			

The first differential equation with reflection of which a Green's function was obtained was x'(t) + m x(-t) = 0 for some $m \in \mathbb{R}$. This operator is a square root of the harmonic oscillator.

Substitute \widetilde{D} by forward difference operator $\Delta = D - \text{Id}$ and $\widetilde{\varphi}$ by φ and we get $L = \Delta + m\varphi^* = D - \text{Id} + m\varphi^*$, that is,

$$x_{n+1} - x_n + m x_{-n} = 0, \ n \in \mathbb{Z}.$$

We have that $\widetilde{R} = \operatorname{Id} - D^{-1} + m\varphi^*$. Thus,

$$L\widetilde{R} = \widetilde{R}L = (D - \operatorname{Id} + m\phi^*)(\operatorname{Id} - D^{-1} + m\phi^*) = D + D^{-1} + (m^2 - 2)\operatorname{Id}.$$

Hence, if Lx = 0 holds, so does DRLx = 0 and we get the equation

$$(D^2 + (m^2 - 2)D + \mathsf{Id})x = 0,$$

that is, $x_{n+2} + (m^2 - 2)x_{n+1} + x_n = 0$ for $n \in \mathbb{Z}$.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems			
Algebraic structure							

Case Example : |m| > 2. Solutions are of the form $x_n = c_1 2^{-n} \left(-m^2 + |m| \sqrt{m^2 - 4} + 2 \right)^n + c_2 2^{-n} \left(-m^2 - |m| \sqrt{m^2 - 4} + 2 \right)^n$ with $c_1, c_2 \in \mathbb{R}$.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems
Algobraic stru	cturo			

lgebraic structure

Case Example :
$$|m| > 2$$
. Solutions are of the form
 $x_n = c_1 2^{-n} \left(-m^2 + |m| \sqrt{m^2 - 4} + 2 \right)^n + c_2 2^{-n} \left(-m^2 - |m| \sqrt{m^2 - 4} + 2 \right)^n$
with $c_1, c_2 \in \mathbb{R}$.

In any case, Lx = 0 has to hold, so we deduce that

$$c_2 = \frac{1}{2} \left(\frac{|m|}{m} \sqrt{m^2 - 4} + m \right) c_1,$$

and all solutions of Lx = 0 are expressed as

$$\begin{split} x_n = & c_1 \left[2^{-n} \left(-m^2 + |m| \sqrt{m^2 - 4} + 2 \right)^n + \\ & \frac{1}{2} \left(\frac{|m|}{m} \sqrt{m^2 - 4} + m \right) 2^{-n} \left(-m^2 - |m| \sqrt{m^2 - 4} + 2 \right)^n \right], \end{split}$$

for some $c_1 \in \mathbb{R}$.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems	Open problems 00	
Algebraic structure					
Exam	ple 2				

$$x_{n+1} + m x_{n-1} = 0, n \in \mathbb{Z}.$$

We have $\widetilde{R} = -D^{-1} + m\varphi^*$.

크 > - 크

Motivation 00	Recurrence relations with reflection ○○○○○●○	Green's functions of recurrence relations 00	Linear systems 000	Open problems 00	
Algebraic structure					
Evam	nle 2				

$$x_{n+1} + m x_{n-1} = 0, n \in \mathbb{Z}.$$

We have $\widetilde{R} = -D^{-1} + m\varphi^*$.

$$\widetilde{R}L = L\widetilde{R} = (D + m\varphi^*)(-D^{-1} + m\varphi^*) = (m^2 - 1) \operatorname{Id}.$$

If the equation $(D + m\varphi^*)x = 0$ holds for some nontrivial $x \in S$, so does $(m^2 - 1)x = 0$, which is only satisfied if $m = \pm 1$.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems 000	Open problems 00	
Algebraic structure					
Exam	ple 2				

$$x_{n+1} + m x_{n-1} = 0, n \in \mathbb{Z}.$$

We have $\widetilde{R} = -D^{-1} + m\varphi^*$.

$$\widetilde{R}L = L\widetilde{R} = (D + m\varphi^*)(-D^{-1} + m\varphi^*) = (m^2 - 1) \operatorname{Id} A$$

If the equation $(D + m\varphi^*)x = 0$ holds for some nontrivial $x \in S$, so does $(m^2 - 1)x = 0$, which is only satisfied if $m = \pm 1$.

 $x_{n+1} - m x_{-n} = 0$ is a recurrence relation with reflection with no nontrivial solution for $m \neq \pm 1$. In the case $m = \pm 1$, the equation $L\widetilde{R}x = 0$ is trivial and *provides no information* on Lx = 0.

Motivation 00	Recurrence relations with reflection $\circ \circ \circ$	Green's functions of recurrence relations 00	Linear systems 000	Open problems 00	
Algebraic structure					
Exam	ple 2				

$$x_{n+1} + m x_{n-1} = 0, n \in \mathbb{Z}.$$

We have $\widetilde{R} = -D^{-1} + m\varphi^*$.

$$\widetilde{R}L = L\widetilde{R} = (D + m\varphi^*)(-D^{-1} + m\varphi^*) = (m^2 - 1) \operatorname{Id} A$$

If the equation $(D + m\varphi^*)x = 0$ holds for some nontrivial $x \in S$, so does $(m^2 - 1)x = 0$, which is only satisfied if $m = \pm 1$.

 $x_{n+1} - m x_{-n} = 0$ is a recurrence relation with reflection with no nontrivial solution for $m \neq \pm 1$. In the case $m = \pm 1$, the equation $L\widetilde{R}x = 0$ is trivial and *provides no information* on Lx = 0.

In the case $L = D - \varphi^*$, take $(v_n)_{n \in \mathbb{N}} \subset \mathbb{F}$ arbitrarily and define $x_n = v_n$ if $n \in \mathbb{N}$ and $x_n = x_{1-n}$ if $n \leq 0$. x satisfies Lx = 0.

If $L = D + \varphi^*$, take $(v_n)_{n \in \mathbb{N}} \subset \mathbb{F}$ arbitrarily and define $x_n = v_n$ if $n \in \mathbb{N}$ and $x_n = -x_{1-n}$ if $n \leq 0$.

F. Adrián Fdez. Tojo

Motivation 00	Recurrence relations with reflection $\circ \circ \circ \circ \circ \circ \circ \bullet$	Green's functions of recurrence relations	Linear systems 000	Open problems	
Related Operators					
The e	xponential map				

The exponential of the differential operator is the right shift operator, that is, $e^{\tilde{D}} = D$.

문어 문

Motivation 00	Recurrence relations with reflection ○○○○○○●	Green's functions of recurrence relations	Linear systems	Open problems
Related Oper	rators			
The e	xponential map			

The exponential of the differential operator is the right shift operator, that is, $e^{\tilde{D}} = D$.

We can compute $e^{a\widetilde{\varphi}^*}$ for $a \in \mathbb{C}$ taking into account that $\widetilde{\varphi}|_{\mathbb{Z}} = \varphi$.

$$e^{a\widetilde{\varphi}^*} = \sum_{n=0}^{\infty} \frac{(a\widetilde{\varphi}^*)^n}{n!} = \sum_{n=0}^{\infty} \frac{a \operatorname{Id}}{(2n)!} + \sum_{n=0}^{\infty} \frac{a\widetilde{\varphi}^*}{(2n+1)!} = \cosh(a) \operatorname{Id} + \sinh(a)\varphi^*.$$

Motivation 00	Recurrence relations with reflection ○○○○○○●	Green's functions of recurrence relations	Linear systems	Open problems 00
Related Ope	rators			
The e	xponential map			

The exponential of the differential operator is the right shift operator, that is, $e^{\tilde{D}} = D$.

We can compute $e^{a\widetilde{\varphi}^*}$ for $a \in \mathbb{C}$ taking into account that $\widetilde{\varphi}|_{\mathbb{Z}} = \varphi$.

$$e^{a\widetilde{\varphi}^*} = \sum_{n=0}^{\infty} \frac{(a\widetilde{\varphi}^*)^n}{n!} = \sum_{n=0}^{\infty} \frac{a \operatorname{Id}}{(2n)!} + \sum_{n=0}^{\infty} \frac{a\widetilde{\varphi}^*}{(2n+1)!} = \cosh(a)\operatorname{Id} + \sinh(a)\varphi^*.$$

Analogously, we obtain *Euler's formula*:

$$e^{\widetilde{\varphi}^*\widetilde{D}} = \sum_{n=0}^{\infty} \frac{(\widetilde{\varphi}^*\widetilde{D})^n}{n!} = \cos(\widetilde{D}) + \widetilde{\varphi}^* \sin(\widetilde{D}).$$

F. Adrián Fdez. Tojo

11 / 18

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations $\bullet \circ$	Linear systems 000	Open problems	
General boundary conditions					

Given a vector space *V* we denote by *V*^{*} its algebraic dual. Let

$$\mathcal{T}_n = \left\{ \left(\sum_{j=1}^p \alpha_j k^{n_j} z_j^k \right)_{k \in \mathbb{Z}} \in \mathcal{S} : z_j \in \overline{\mathbb{F}}, n_j \in \{0, 1, \dots, n\}, \, \alpha_j \in \mathbb{F}; \, p \in \mathbb{N} \right\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations $\bullet \circ$	Linear systems 000	Open problems	
General boundary conditions					

Given a vector space *V* we denote by *V*^{*} its algebraic dual. Let
$$\mathcal{T}_n = \left\{ \left(\sum_{j=1}^p \alpha_j k^{n_j} z_j^k \right)_{k \in \mathbb{Z}} \in \mathcal{S} : z_j \in \overline{\mathbb{F}}, n_j \in \{0, 1, \dots, n\}, \, \alpha_j \in \mathbb{F}; \, p \in \mathbb{N} \right\}.$$

For every $L \in \mathbb{F}[D, D^{-1}, \varphi^*]$, we have that $L(f) \in \mathcal{T}_n \ \forall f \in \mathcal{T}_n$.

э.

A = b < = b</p>

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations $\bullet \circ$	Linear systems 000	Open problems	
General boundary conditions					

Given a vector space *V* we denote by *V*^{*} its algebraic dual. Let
$$\mathcal{T}_n = \left\{ \left(\sum_{j=1}^p \alpha_j k^{n_j} z_j^k \right)_{k \in \mathbb{Z}} \in \mathcal{S} : z_j \in \overline{\mathbb{F}}, n_j \in \{0, 1, \dots, n\}, \, \alpha_j \in \mathbb{F}; \, p \in \mathbb{N} \right\}.$$

For every $L \in \mathbb{F}[D, D^{-1}, \varphi^*]$, we have that $L(f) \in \mathcal{T}_n \ \forall f \in \mathcal{T}_n$.

э.

A = b < = b</p>

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations $\circ \bullet$	Linear systems 000	Open problems
General boun	dary conditions			

Theorem

Let $W \in (\mathcal{T}_n^*)^n$. Consider the problem

$$Lx = c, \ Wx = h. \tag{3.1}$$

Then, there exists $\overline{R} \in \mathbb{F}[D, \varphi^*]$ such that $L\overline{R} \in \mathbb{F}[D]$ and a solution of problem (3.1) is given by

$$u := \Phi (W\Phi)^{-1}h + \left(\overline{R}H - \Phi(W\Phi)^{-1}W\overline{R}H\right)c$$

where H is a Green's function associated to the problem

$$L\overline{R}x = c, \ Wx = W\overline{R}x = 0, \tag{3.2}$$

assuming it exists, $W\overline{R}Hc$ is well defined, Φ is the general solution of $L\overline{R}x = 0$ and $W\Phi$ is invertible.

Motivation	Recurrence	relations	with	reflection
00	00000000			

Green's functions of recurrence relations

Linear systems O

Open problems

3 N 3

14 / 18

Systems of linear recurrence

$$(Ju)_k := Fx_{k+1} + Gx_{-k-1} + Ax_k + Bx_{-k} = 0, \ k \in \mathbb{Z},$$
(4.1)

where $x_k \in \mathbb{F}^n$, $n \in \mathbb{N}$, $A, B, F, G \in \mathcal{M}_n(\mathbb{F})$ and $u \in \mathcal{F}(\mathbb{Z}, \mathbb{F}^n)$.

Systems of linear recurrence

$$(Ju)_k := Fx_{k+1} + Gx_{-k-1} + Ax_k + Bx_{-k} = 0, \ k \in \mathbb{Z},$$
(4.1)

where $x_k \in \mathbb{F}^n$, $n \in \mathbb{N}$, $A, B, F, G \in \mathcal{M}_n(\mathbb{F})$ and $u \in \mathcal{F}(\mathbb{Z}, \mathbb{F}^n)$.

We say that $M \in \mathcal{F}(\mathbb{Z}, M_n(\mathbb{F}))$ is a *fundamental matrix* of problem (4.1) if $(u_k)_{k \in \mathbb{Z}} = (M(k) u_0))_{k \in \mathbb{Z}}$ is a solution of equation (4.1) for every $u_0 \in \mathbb{F}^n$, that is

 $FM(k+1)+GM(-k-1)+AM(k)+BM(-k)=0,\ k\in\mathbb{Z}.$

Systems of linear recurrence

$$(Ju)_k := Fx_{k+1} + Gx_{-k-1} + Ax_k + Bx_{-k} = 0, \ k \in \mathbb{Z},$$
(4.1)

where $x_k \in \mathbb{F}^n$, $n \in \mathbb{N}$, $A, B, F, G \in \mathcal{M}_n(\mathbb{F})$ and $u \in \mathcal{F}(\mathbb{Z}, \mathbb{F}^n)$.

We say that $M \in \mathcal{F}(\mathbb{Z}, M_n(\mathbb{F}))$ is a *fundamental matrix* of problem (4.1) if $(u_k)_{k \in \mathbb{Z}} = (M(k) u_0))_{k \in \mathbb{Z}}$ is a solution of equation (4.1) for every $u_0 \in \mathbb{F}^n$, that is

$$FM(k+1) + GM(-k-1) + AM(k) + BM(-k) = 0, \ k \in \mathbb{Z}.$$

If *M* is a block matrix of the form

$$M = \left(\begin{array}{c|c} M_1 & M_2 \\ \hline M_3 & M_4 \end{array}\right),$$

where $M_k \in \mathcal{M}_n(\mathbb{F})$, we define $M_{(k)} := M_k$.

F. Adrián Fdez. Tojo

Fundamental matrix

Theorem

Assume that

$$\left(egin{array}{c|c} F & G \ \hline B & A \end{array}
ight)$$
 and $\left(egin{array}{c|c} A & B \ \hline G & F \end{array}
ight)$

are invertible. Then

$$M := \left(\left[-\left(\frac{F \mid G}{B \mid A}\right)^{-1} \left(\frac{A \mid B}{G \mid F}\right) \right]_{(1)}^{k} + \left[-\left(\frac{F \mid G}{B \mid A}\right)^{-1} \left(\frac{A \mid B}{G \mid F}\right) \right]_{(2)}^{k} \right)_{k \in \mathbb{N}}$$

is a fundamental matrix of problem (4.1). Furthermore, problem (4.1) equipped with the initial condition $x_0 = u_0 \in \mathbb{F}^n$ has a unique solution given by $(u_k)_{k \in \mathbb{Z}} = (M(k) u_0))_{k \in \mathbb{Z}}$.

Motiva 00	ion Recurrence relations with reflection	Green's functions of recurrence relations	Linear systems ○○●	Open problems
Green's	functions			
	Theorem			
	Assume $\left(\frac{F}{B}\right)$	$\left(egin{array}{c c} G \\ \hline A \end{array} ight)$ and $\left(egin{array}{c c} A & B \\ \hline G & F \end{array} ight)$		
	are invertible. Consider the	problem		

$$Jx = c, \quad Wx = h. \tag{4.2}$$

Then the sequence given by

$$u = \pi_1 \left(X Z^{-1} \left[\left(\frac{h}{h} \right) - \left(\frac{W}{W \varphi^*} \right) Y \right] + Y \right),$$

where $X := \left(\left[-\left(\frac{F \mid G}{B \mid A}\right)^{-1} \left(\frac{A \mid B}{G \mid F}\right) \right]^k \right)_{k \in \mathbb{Z}}, \ Y := \overline{H} \left(\frac{F \mid G}{B \mid A}\right)^{-1} \left(\frac{c}{\varphi^* c}\right), \ Z := \left(\frac{W}{W \varphi^*}\right) X,$ and $\pi_1 : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$ is such that $\pi_1(x, y) = x$, is the unique solution of problem (4.2).

F. Adrián Fdez. Tojo

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations 00	Linear systems	Open problems ●○		
Open problems						

There are some clear ways in which the theory could be extended. We point out here some of them.

- Non-constant coefficients.
- General involutions (order *n*).
- Partial difference equations.

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations	Linear systems	Open problems ⊙●

More Information:

T., F.A.F.: *Green's functions of recurrence relations with reflection*. J. Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.

э

< ∃ ►

Motivation 00	Recurrence relations with reflection	Green's functions of recurrence relations	Linear systems	Open problems ○●

More Information:

T., F.A.F.: *Green's functions of recurrence relations with reflection*. J. Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.

Thank you for your attention!

B b