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Motivation
e0

Systems of Stieltjes differential equations

What is a recurrence relation with reflection?

Something like
Xpp1 — X, +mx_, =0, neZ.

They are similar to differential equations with reflection such as

X' +mx(-)=0, teR.

F. Adrian Fdez. Tojo Recurrence relations with reflection



Motivation
oe

Systems of Stieltjes differential equations

Previous work

[3 cabada,A,T,FAF: Gmsﬁw@mmﬁe@udwﬂ&éumﬁwm]
%qual @(],LIAM Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

[§ cabada, A, T, FAF: On linear, diffenential equations and systems

mﬂwz%flectom Appl. Math. Comput. 305, 84-102 (2017)
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Motivation
oe

Systems of Stieltjes differential equations

Previous work

[3 cabada,A,T,FAF: Gwmsﬁw@mwﬁsmudw&/&éumﬁeml
%qual @(],LIAM Bull. Malays. Math. Sci. Soc. pp. 1-22 (2016)

[§ cabada, A, T, FAF: On linear, diffenential equations and systems

mﬂwz%flectwn Appl. Math. Comput. 305, 84-102 (2017)

Difpenentiol Equations + Algebraic Sthucture

D#e/wmfw/ gq,tmt(m Homogeneous linear differential equations with
reflection and constant coefficients:

Tu(t) := Z au®() + 2 bu®(—1) =

k=0

T'is a composition of the usuald#e/wn}&al efze/zaife/z,D and the pullback
()1/ ﬂwfwg—/wtomfunctlon @(t) = —t, that is, the operator @* such that
(@ NH@) = f(-1).
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Recurrence relations with reflection
@00

Definitions and notation

Objective, notation and preliminaries

OWV@ To obtain analogous results as the ones known for the
case of linear recurrence equations and systems with reflection.
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Recurrence relations with reflection
@00

Definitions and notation

Objective, notation and preliminaries

OWV@ To obtain analogous results as the ones known for the
case of linear recurrence equations and systems with reflection.

Let V be vector space, S the space of Z-sequences in V. We define the

WdWWD as

Ss—2 s
(X ez > (Xi1)kez

D is bijective and will play the role the differential operator.
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Recurrence relations with reflection
(o] le}

Definitions and notation

An erder n linear recurrence relolion is

n—1

xk+n=2ajxk+j+ck,keN; xp=6.k=1,...,n, (2.1)
=0

whereé, e, k = l,....,n;a; €F, j=0,...,n— I;a0 #0and ¢ = (¢ )ien-
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Recurrence relations with reflection
(o] le}

Definitions and notation

An order n linear recurrence relalion is
n—1
xk+n=2ajxk+j+ck,keN; xp=6.k=1,...,n, (2.1)
7=0
whereé, e, k = l,....,n;a; €F, j=0,...,n-1;q #0and ¢ = (¢ )ren-

We can write (2.1) as
D"—ZajD/ x=c¢, x,=¢,k=1,...,n,

where x = (x)ien-
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Recurrence relations with reflection
(o] le}

Definitions and notation

An erder n linear recurrence relolion is

n—1

xk+n=2ajxk+j+ck,keN; xp=6.k=1,...,n, (2.1)

Jj=0
whereé, e, k = l,....,n;a; €F, j=0,...,n-1;q #0and ¢ = (¢ )ren-

We can write (2.1) as

n—1
(D" - ZajD/)x=c; X, =&, k=1,...,n,

Jj=0

where x = (x;);en- Hence, we study equations of the kind

Ux:=2aijx=c; x, =& k=1,...,n, (2.2)

Jj=0

where aya, # 0. U € F[D], the a/gdﬂzw %ngnmm on D with

coefficientsin F.
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Recurrence relations with reflection
ooe

Definitions and notation

Recurrence relations with reflection

Let @ : Z — Z be such that ¢(r) = —t. Define thefwl/(mck/ by @, ¢*, as

S L) S
(X kez > (X_pkez
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Recurrence relations with reflection
ooe

Definitions and notation

Recurrence relations with reflection

Let @ : Z — Z be such that ¢(r) = —t. Define thefwl/(mck/ by @, ¢*, as

S L) S
(X kez > (X_pkez

Consider

Lx:= Y (a,+b9") Dix=c, (2.3)

j=n

where x,c € S;a;,b; € Fforj =0,...,nand D~ = (D~'Y for j € N. We

say L belongs to the ofzwafm, alyebmF[D,D”, @*] with the

composition operation.
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Recurrence relations with reflection
[ JeJele]

Algebraic structure

Reduction

Let L = o*P +Q with P, @ € F[D,D~ ] Then
R := ¢*P — ¢*(Q) € F[D, ¢*] satisfies RL = LR € F[D,D'].
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Recurrence relations with reflection
[ JeJele]

Algebraic structure

Reduction

Let L = o*P +Q with P, @ € F[D,D~ ] Then
R := ¢*P — ¢*(Q) € F[D, ¢*] satisfies RL = LR € F[D,D'].

There exists a_leasthc € {0,1,2,...}such that LRD* € F[D]. From now on
we will write R := RD*.
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Recurrence relations with reflection
[e] Tele]

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function
was obtained was x’(¢) + m x(—t) = 0 for some m € R. This operatorisa
square root of the harmonic oscillator.

F. Adrian Fdez. Tojo Recurrence relations with reflection



Recurrence relations with reflection
[e] Tele]

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function
was obtained was x’(¢) + m x(—t) = 0 for some m € R. This operatorisa
square root of the harmonic oscillator.

Substitute D byﬁmum&dd«#mno& WMA =D —Idand @ by ¢ and
we get L = A + me* = D — Id +me*, that is,

Xpp1 — X, +mx_, =0, ne€ Z.

We have that R = Id =D~ + me*.
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Recurrence relations with reflection
[e] Tele]

Algebraic structure

Example 1

The first differential equation with reflection of which a Green's function
was obtained was x’(¢) + m x(—t) = 0 for some m € R. This operatorisa
square root of the harmonic oscillator.

Substitute D byﬁmum&dd«#mno& WMA =D —Idand @ by ¢ and
we get L = A + me* = D — Id +me*, that is,

Xpp1 — X, +mx_, =0, ne€ Z.
We have that R = Id =D~ + me*. Thus,
LR =RL = (D - Id+m@*)({d =D~ + mg*) =D + D~ + (m* —=2)Id.
Hence, if Lx = 0 holds, so does DRLx = 0 and we get the equation
(D? + (m?* = 2)D + Id)x = 0,

thatis, x,.,, + (m* = 2)x,,, + x, = 0 forn € Z.
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Recurrence relations with reflection
[e]e] o]

Algebraic structure

Case gxamf,le/: |m| > 2. Solutions are are of the form
X, =027" (—m2 + |m|Vm? —4 + 2) + 27" (—m2 — |m|Vm? — 4 + 2)

with ¢, ¢, € R.
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Recurrence relations with reflection
[e]e] o]

Algebraic structure

Case gxamf,le/: |m| > 2. Solutions are are of the form
X, =027" (—m2 + |m|Vm? —4 + 2) + 27" (—m2 — |m|Vm? — 4 + 2)

with ¢, ¢, € R.

In any case, Lx = 0 has to hold, so we deduce that

¢y = % <m\/m2—4+m> s
m

and all solutions of Lx = 0 are expressed as
X, =¢ [2‘" (—m2 + |m|Vm? — 4 + 2) +

%(%\/mz—4+m> 2" (—mz— |m|\/m2—4+2> ],

forsomec, € R.
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Recurrence relations with reflection
[e]e]e] ]

Algebraic structure

Example 2

Now substitute D by D, thatis, L = D + m¢* and
Xpp1+mx,_; =0,n € Z.

We have R = —D~! + me*.
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Recurrence relations with reflection
[e]e]e] ]

Algebraic structure

Example 2

Now substitute D by D, thatis, L = D + m¢* and
Xpp1+mx,_; =0,n € Z.
We have R = —D~! + me*.
RL =LR = (D + mp*) (=D~ + m¢p*) = (m> — 1) Id.

If the equation (D + me*)x = 0 holds for some nontrivial x € S, so does
(m* — 1)x = 0, which is only satisfied if m = +1.
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Recurrence relations with reflection
[e]e]e] ]

Algebraic structure

Example 2

Now substitute D by D, thatis, L = D + m¢* and
Xpp1+mx,_; =0,n € Z.
We have R = —D~! + me*.
RL =LR = (D + mp*) (=D~ + m¢p*) = (m> — 1) Id.

If the equation (D + me*)x = 0 holds for some nontrivial x € S, so does
(m* — 1)x = 0, which is only satisfied if m = +1.

Xp41 —mx_, = 0isarecurrence relation with reflection with no nontrivial
solution for m # +1. In the case m = +1, the equation LRx = 0 is trivial

andfz/wwlde/s n&ér%e/wwmmoan =0.
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Recurrence relations with reflection
[e]e]e] ]

Algebraic structure

Example 2

Now substitute D by D, thatis, L = D + m¢* and
Xpp1+mx,_; =0,n € Z.
We have R = —D~! + me*.
RL =LR = (D + mp*) (=D~ + m¢p*) = (m> — 1) Id.
If the equation (D + me*)x = 0 holds for some nontrivial x € S, so does
(m* — 1)x = 0, which is only satisfied if m = +1.

Xp41 —mx_, = 0isarecurrence relation with reflection with no nontrivial
solution for m # +1. In the case m = +1, the equation LRx = 0 is trivial

andfz/wwlde/s n&ér%e/wwmmoan =0.

Inthe case L = D — ¢*, take (v,),en C F arbitrarily and define x,, = v, if
n € Nandx, =x,_,ifn<0. xsatisfies Lx = 0.

If L =D + ¢*, take (v,),en C F arbitrarily and definex, = v, ifn € N and
x, = —x;_, ifn < 0. x satisfies Lx = 0.
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Recurrence relations with reflection
[ ]

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that
is, eP = D.
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Recurrence relations with reflection
[ ]

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that
is, eP = D.

We can compute e?" for a € C taking into account that 3|, = @.

=~  x (@@)" < ald < agt . .
ap” — = = *
e nZ:;) ] r;) ! + ;) Gt DI cosh(a) Id + sinh(a)p*.
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Recurrence relations with reflection
[ ]

Related Operators

The exponential map

The exponential of the differential operator is the right shift operator, that
is, eP = D.

We can compute e?" for a € C taking into account that 3|, = @.

=~  x (@@)" < ald < agt . .
ap” — = = *
e nZ:;) ] r;) ! + ;) Gt DI cosh(a) Id + sinh(a)p*.

Analogously, we obtain Culer’s ﬁwmwla/:

D= @DV _ co5(D) + 3 sinD)
=0 :
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Green's functions of recurrence relations
[ Je]

General boundary conditions

Given a vector space V we denote by V* its algebraic dual. Let

)4
T, = Zajk"fzj? €S :z;€F, ne{0,1,....n},aq;€F; peN
j=1

keZ
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Green's functions of recurrence relations
[ Je]

General boundary conditions

Given a vector space V we denote by V* its algebraic dual. Let

)4
T, = Zajk"fzj? €S :z;€F, ne{0,1,....n},aq;€F; peN
J=1 keZ

ForeveryL € F[D,D™!, ¢*], we havethat L(f) € T,Vf € T,.
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Green's functions of recurrence relations
[ Je]

General boundary conditions

Given a vector space V we denote by V* its algebraic dual. Let

)4
T, = Zajk"fzj? €S :z;€F, ne{0,1,....n},aq;€F; peN
J=1 keZ

ForeveryL € F[D,D™!, ¢*], we havethat L(f) € T,Vf € T,.
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Green's functions of recurrence relations
)

General boundary conditions

Let W e (7,})". Consider the problem
Lx=c, Wx=h. (3.1)

Then, there exists R € F[D, ¢*] such that LR € F[D] and a solution of
problem (3.1) is given by

u:=®Wo)'h+ (RH - ®(W®)"'WRH) ¢
where H is a Green's function associated to the problem

LRx =c¢, Wx = WRx =0, (3.2)

as_suming it exists, WRHec is well defined, ® is the general solution of
LRx =0 and W® s invertible. )
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Linear systems
[ le]

Systems of linear recurrence

(Ju)k ::ka+1 + Gx_k_l +Axk +Bx_k = 0, k (S Z, (41)
where x;, € F",n e N,A,B,F,G € M (F)andu € F(Z,F").
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Linear systems
[ le]

Systems of linear recurrence

(Ju)k ::ka+1 + Gx_k_l +Axk +Bx_k = 0, k (S Z, (41)
where x;, € F",n e N,A,B,F,G € M (F)andu € F(Z,F").

We say that M € F(Z,M (F)) is aWM malrix of problem (4.1)

if (W )kez = M(k)ug)),ez is a solution of equation (4.1) for every u, € F",
thatis

FM(k + 1) + GM(—k — 1) + AM(k) + BM(=k) = 0, k € Z.
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Linear systems
[ le]

Systems of linear recurrence

(Ju)k ::ka+1 + Gx_k_l +Axk +Bx_k = 0, k (S Z, (41)
where x;, € F",n e N,A,B,F,G € M (F)andu € F(Z,F").

We say that M € F(Z,M (F)) is aWM malrix of problem (4.1)

if (W )kez = M(k)ug)),ez is a solution of equation (4.1) for every u, € F",
thatis

FM(k+ 1)+ GM(—k — 1)+ AM(k) + BM(-k) =0, k € %.
If M is a block matrix of the form
_( M | M,
M= < M; | M >

where M, € M, (F), we define M, := M,.
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Linear systems
o] ]

Fundamental matrix

Assume that
F |G d A | B
BlA )\ G[F

are invertible. Then

is a fundamental matrix of problem (4.1). Furthermore, problem (4.1)
equipped with the initial condition x, = uy € F" has a unique solution

given by (uy)iez = M(k) up))iez- J

Recurrence relations with reflection
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Linear systems
°
Green's functions

TG )

are invertible. Consider the problem

Jx=c¢, Wx=h. (4.2)

Then the sequence given by

o [(3)-( ).
oG G ) ren (318 () 2= ()

and nr; : F" X F" — F" s such that x,(x,y) = x, is the unique solution of
problem (4.2).
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Open problems
[ le]

Open problems

There are some clear ways in which the theory could be extended. We
point out here some of them.

@ Non-constant coefficients.
@ General involutions (order n).

@ Partial difference equations.
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Open problems
o] ]

Mere #Wu

@ T., F.A.F.: Green’s functions of recurrence relations with reflection. J.
Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.
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Open problems
o] ]

Mere #W

@ T., F.A.F.: Green’s functions of recurrence relations with reflection. J.
Math. Anal. Appl. 477(2). 2019, pp. 1463-1485.
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