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Motivation

Motivation

In Hilbert’s 16th problem the main goal is to get (good) upper and lower
bounds, for the number of limit cycles of a planar polynomial differential
system in terms of its degree.

This problems turns out to be extremely difficult.

In this talk we try to face the same question but with a different point of
view:

We want to control the number of limit cycles in terms of the
number of monomials
of the planar polynomial differential equation.

This number of monomials can be counted either in the usual real notation
or in the complex notation.

As we will see, both points of view are, not at all, equivalent.
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Motivation

Real and complex notations

In the real notation we simply count the total number of monomials in each
component of the differential equation. For instance, the ODE{

ẋ = ay + by3 + cx5 + dx3y7 + exy23,

ẏ = fx + gy + hxy23,

with a, b, c , d , e, f , g , h ∈ R, has 8 monomials.

In the complex notation we write the planar polynomial ODE as ż = F (z , z̄),
and again simply count the number of monomials. For instance, the ODE

ż = Az2z̄3 + Bz3z̄6 + Cz̄22,

with A,B,C ∈ C has 3 monomials.
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Motivation

Motivation: Descartes rule

From Descartes’ rule it follows that given a polynomial with real coefficients:

its number of complex roots is given by its degree, but

its number of real roots is at most:
2× (its number of monomials)+1,

and it is independent of its degree.
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Results in real notation

Known results about the Hilbert monomial number

Let Mm be the family of real planar polynomial vector fields with m mono-
mials. We define the Hilbert monomial number,

HM(m) = sup{number of limit cycles of X : X ∈Mm}.

So far very little is known about HM(m).

HM(m) = 0 for m ∈ {1, 2, 3},
HM(m) > m − 3 for m > 4, and

there is a sequence (mk) ⊂ N, with mk →∞, such that
HM(mk) > N(mk), with N(m) of order O(m lnm).

C. A. Buzzi, Y. R. Carvalho, A. Gasull Limit cycles for some
families of smooth and non-smooth planar systems. Nonlinear Anal.,
207, 112298, 2021.
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Results in real notation

New results about the Hilbert monomial number

Our main result on this problem is an improvement of these general lower
bounds. Our first main result is:

Theorem

If m > 9, then HM(m) > 1
2m

2 − 3m − 8.

In fact, more concretely, we prove

HM(m) >
1

2
m2 − 3m − 8 +

9

4
(1− (−1)m) >

1

2
m2 − 3m − 8.

Notice that this lower bound is higher when m is even.

We also have some better lower bounds for small values of m like for instance

HM(9) > 24, HM(10) > 32.

but we will skip the details for the sake of shortness.
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Results in real notation

A fundamental result

Theorem

For any n, r ∈ Z>0, there is a planar polynomial vector field with n + r + 4
monomials and at least 2n(r + 1) + n

(
1 + (−1)r

)
limit cycles.

Notice that the above result, by taking m = n + r + 4, implies

HM(m) > 2(m − r − 4)(r + 1).

From it we prove our main results:

By choosing r = 1
2m we get that

HM(m) >
1

2
m2 − 3m − 8.

For instance, by taking r = 2 and n = 3 and 4 in the theorem,

HM(9) > 24, HM(10) > 32.
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Results in complex notation

Known results in complex notation

For ODE with 2 monomials ż = Azk z̄ l + Bzmz̄n, with k, l ,m, n fixed non-
negative integers and A,B ∈ C their maximum number of limit cycles is 1
and it can only exist when the total degree is odd.

M. J. Álvarez, A. Gasull, R. Prohens. Uniqueness of limit
cycles for complex differential equations with two monomials. J. Math.
Anal. Appl., 518, 126663, 2023.

For ODE with 3 monomials:

ż = Azk z̄ l + Bzmz̄n + Czp z̄q,

with k , l ,m, n, p, q fixed non-negative integers and A,B,C ∈ C it was
proved that in general there is no upper bound for its number of limit
cycles.

A. Gasull, C. Li, J. Torregrosa. Limit cycles for 3-monomial
differential equations. J. Math. Anal. Appl., 428, 735–749, 2015.

(UAB-CRM) LC for fewnomial vector fields 13 / 42



Results in complex notation

Known results in complex notation

We rewrite with more detail the above known results by using the following
notation:

N = max(k + l ,m + n, p + q),

Hj(N) ∈ N ∪ {∞} denotes the maximum number of limit cycles of
the systems of the above type, with j monomials.

Theorem (AGP)

For N = 1, or N even, H2(N) = 0 and for N ≥ 3 odd, H2(N) = 1.

Theorem (GLT)

For N ≥ 3 odd, H3(N) ≥ N + 3

2
.

The second aim of this talk is:

Improve the lower bound of H3(N).

Study H3(2).
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Results in complex notation

New results about H3(N)

Recall that it is known that for N odd, H3(N) ≥ (N + 3)/2.

We prove:

Theorem

For N ≥ 4, H3(N) ≥ N − 3.
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Results in complex notation

Results about H3(2)

ż = A + Bz + Cz̄+Dz2 + Ezz̄+F z̄2.

There are
(6

3

)
= 20 families of QS with 3 monomials. Among them it is

well-known that the linear systems,

ż = A + Bz + Cz̄ ,

and the homogenous QS,

ż = Az2 + Bzz̄ + Cz̄2

do not have limit cycles.

Hence it remains to study 18 families of QS, 9 of them with exactly one
non-linear term and 9 with exactly two non-linear terms.

Our results about their number of limit cycles are resumed in next theorem.
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Results in complex notation

Results about H3(2)

Theorem

Consider the differential equation

ż = AM1 + BM2 + CM3,

with A,B,C ∈ C and M1,M2 and M3, are 3 different fixed monomials
Mj ∈ {1, z , z̄ , z2, zz̄ , z̄2}, corresponding each one of the 18 families
described above. Then its number of limit cycles is given in next tables.
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Results in complex notation

Results about H3(2)

Theorem

Monomials 1, z 1, z̄ z , z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

z ≥ 1 ≥ 2 ≥ 1

z̄ ≥ 1 ≥ 1 ≥ 1

The 1 + 1 means that the family has at most 2 limit cycles, that when they
exist they are not nested.
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Some proofs in real notation

Recall our fundamental result

Theorem

For any n, r ∈ Z>0, there is a planar polynomial vector field with n + r + 4
monomials and at least 2n(r + 1) + n

(
1 + (−1)r

)
limit cycles.

We will give some ideas of its proof. We will use the Poincaré–Pontryagin
Theorem and the study of some Abelian integrals.
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Some proofs in real notation

The Poincaré–Pontryagin Theorem: an extended version

Consider a smooth perturbation of a smooth Hamiltonian system

ẋ = −∂H
∂y

(x , y) + εf (x , y), ẏ =
∂H

∂x
(x , y) + εg(x , y),

with a continuum of periodic orbits γh, h ∈ (a, b). Define

I (h) =

∫
γh

f dy − g dx =

∫∫
Γh

∂f

∂x
+
∂g

∂y
dxdy ,

where Γh ⊂ R2 is the interior region bounded by γh. Then

If I (h∗) = 0 and I ′(h∗) 6= 0, for |ε| > 0 small enough it has a limit
cycle that tends to γh∗ when ε tends to zero.

Let (h1, h2) ⊂ (a, b) such that I (h1)I (h2) < 0. Then, for |ε| > 0 small
enough it has at least one limit cycle between γh1 and γh2 .
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Some proofs in real notation

Fundamental result: a more detailed statement

Theorem

Given n > 1, there is a polynomial Rn : R2 → R with n + 1 monomials and
ε0 > 0 such that the perturbed system Xn,r = (Pn,Qr ) given by

ẋ = Pn(x , y) = y − y3 + εRn(x , y), ẏ = Qr (x) =
r∏

k=−r
(x − k),

has at least
2n(r + 1) + n

(
1 + (−1)r

)
limit cycles, for 0 < |ε| < ε0. In particular, Xn,r has n + r + 4 monomials.

For the sake of simplicity we will only give the idea of the proof of the
existence of

2n(r + 1)

limit cycles.
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Some proofs in real notation

Proof of the fundamental result

PROOF: For ε = 0, consider the unperturbed Hamiltonian system

ẋ = y − y3, ẏ = x
r∏

k=−r
(x − k).

It has

r + 3 monomials,

3(2r + 1) equilibria,

3r + 1 saddles, and

3r + 2 centers: r + 1 on each of the lines y = ±1 and r on the line
y = 0.
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Some proofs in real notation

Introduction and statement of the main results
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References

x

y

y = a1

y = −a1

p1
γ1

0

γ1
1

p2

γ2
0

γ2
1

p3
γ3

0

γ3
1

p4 γ4
0

γ4
1

p5

γ5
0

γ5
1

p6 γ6
0

γ6
1

Figure: Illustration for r = 2 and n = 1.

Paulo Santana On a variant of Hilbert’s 16th problem

Figure: Illustration for r = 2 and n = 1 of the unperturbed system. The total
number of centers is 8 and the total number of saddles 7.
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Some proofs in real notation

Proof of the fundamental result

Given a polynomial R : R2 → R and a periodic orbit γ of the unperturbed
vector field, set

I (R, γ) =

∫∫
Γ

∂R

∂x
(x , y) dxdy ,

where Γ is the interior region bounded by γ.

Recall that it is the Abelian integral appearing in the Poincaré-Pontryagin
Theorem associated to

ẋ = P(y) + εR(x , y), ẏ = Qr (x),

associated to γ.
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Some proofs in real notation

Proof of the fundamental result

I (R, γ) =

∫∫
Γ

∂R

∂x
(x , y) dxdy .

Let R0(x , y) = x2n+1 and observe that:

I (R0, γ
k
i ) > 0 because

∂R0

∂x
(x , y) = (2n + 1)x2n ≥ 0.

Given m1 > 1 set,

R1(x , y) = R1(x , y ;m1) = x2n+1 − x2n−1

(
y

a1

)2m1

.

We claim that there is m1 > 1 big enough such that

I (R1, γ
k
0 ) > 0 and I (R1, γ

k
1 ) < 0,

for every k ∈ {1, . . . , 2r + 2}.
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Some proofs in real notation

Proof that I (R1, γ
k
0 ) > 0 and I (R1, γ

k
1 ) < 0
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Figure: Illustration for r = 2 and n = 1.

Paulo Santana On a variant of Hilbert’s 16th problem

I (R1, γ) = (2n + 1)

∫∫
Γ
x2n dxdy − (2n − 1)

∫∫
Γ
x2n−2

(
y

a1

)2m1

dxdy
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Some proofs in real notation

Proof of the fundamental result

Similarly, we can continue this process and obtain another family of 2(r +1)
cycles by considering,

R2(x , y ;m1,m2) = x2n+1 − x2n−1

(
y

a1

)2m1

+x2n−3

(
y

a2

)2m2

.

Then, for this vector field we have obtained 4(r + 1) limit cycles.

More precisely, once obtained R1, we can take m2 > m1 big enough such
that none of the previous Abelian integrals changes sign at the same time
that I (R2, γ

k
2 ) > 0, k ∈ {1, . . . , 2r + 2}.

(UAB-CRM) LC for fewnomial vector fields 28 / 42



Some proofs in real notation

Proof of the fundamental result

Continuing this process, we can obtain a perturbation of the form

Rn(x , y) =
n∑

k=0

(−1)kx2(n−k)+1

(
y

ak

)2mk

,

with a0 = 1, m0 = 0 and mk � mk−1, k ∈ {1, . . . , n}, such that the
perturbed vector field has n + r + 4 monomials and at least 2n(r + 1) limit
cycles, for |ε| > 0 small enough.

Recall that in the theorem we state that the obtained number of limit cycles
is:

2n(r + 1)+n
(
1 + (−1)r

)
.

The remaining n
(
1 + (−1)r

)
cycles can be created from the two centers on

the y -axis, that only exist when r is even.
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Some proofs in complex notation

Proofs of the new results with complex monomials

Theorem

For N ≥ 4, H3(N) ≥ N − 3.

PROOF: For each integer n ≥ 1, let us consider the differential equation
of degree N = n + 3 ≥ 4,

ż = (A + B)z − Azn+1 − Bzn+2z̄ = Az(1− zn) + Bz(1− z̄zn+1),

being A = n + 1 + a + i ,B = −n + i . The critical points of this equation
are z = 0 and the points z = wj such that wn

j = 1 for j = 1, . . . , n.

Observe that this equation is invariant by the change of the dependent
variable u = wn−1

j z for all j = 1, . . . , n. By this change, the critical point wj

of the original equation is transformed into the critical point u = 1. Hence,
varying j we get that all the critical points wj of the original equation have
the same character and stability as z = 1.

Let us study this critical point.
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Some proofs in complex notation

It holds that

div(X )z=1 = −2na,

det(dX )z=1 = n|A|2 + n|B|2 + n(n + 1)|A||B| > 0.

Hence, if a = 0 the point z = 1 is a weak focus.

Let us compute its first Lyapunov quantity L1 and prove that L1 6= 0.

We perform the translation w = z − 1 to move the critical point to the
origin. We arrive to the differential equation

ẇ = (A + B)(w + 1)− A(w + 1)n+1 − B(w + 1)n+2(w̄ + 1).

After some tedious computation we obtain that

L1 = −(5 + 2n − n2)n3

9n2 + 8n + 3
.

Notice that L1 < 0 for n = 1, 2, 3 and L1 > 0 for n ≥ 4. Hence, the point
z = 1 of the initial equation is an attractor when n ≤ 3 and a repellor
otherwise.
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Some proofs in complex notation

Finally it is easy to see that an Andronov-Hopf bifurcation undergoes, mov-
ing slightly the parameter a and taking it with the suitable sign.

One gets a hyperbolic limit cycle born from the critical point (1, 0) of the
original differential equation.

From the symmetries of the initial differential equation, from each one of
the n non-zero critical points of the system a limit cycle is born at the same
time. Thus, the system has at least n = N − 3 hyperbolic limit cycles.

The limit cycles exist for |a| small enough and a < 0 when n = 1, 2, 3 and
are stable and also for |a| small enough and a > 0 when n ≥ 4 and are
unstable.
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Some proofs in complex notation

Color artistic illustration of the distribution of the 8 limit
cycles of our example of vector field with 3 complex
monomials and degree 11
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Some proofs in complex notation

Some other results about H3(N)

We have proved:

Theorem

For N ≥ 4, H3(N) ≥ N − 3.

Some more new results that we have obtained are:

Theorem

For N ≥ 4j − 1 and j ≥ 1, H3(N) ≥ N + 1.

Proposition

For N = 3j − 1, j ≥ 1 there are equations with three monomials and 2j
limit cycles (then H3(N) ≥ 2(N+1)

3 ). The limit cycles are formed by j
couples of two nested limit cycles surrounding, where each couple
surrounds a single critical point.
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Some proofs in complex notation

Study of some quadratic cases

All examples with limit cycles (the lower bounds) of both tables are
realized via Andronov-Hopf type bifurcations. We skip the details.

Let us prove for instance the red cases of next tables:

Monomials 1, z 1, z̄ z , z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

z ≥ 1 ≥ 2 ≥ 1

z̄ ≥ 1 ≥ 1 ≥ 1
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Some proofs in complex notation

Study of some quadratic cases

Monomials 1, z 1, z̄ z , z̄

z̄2 0 0 0

This result is a straightforward consequence of Bendixson–Dulac criterion
because if ż = F (z , z̄) the divergence of the associated vector field is

2 Re

(
∂

∂z
F (z , z̄)

)
,

and for the differential equations

ż = A + Bz + Cz̄2, ż = A + Bz̄ + Cz̄2, ż = Az + Bz̄ + Cz̄2,

the respective divergences are 2 Re(B), 0 and 2 Re(A). Because they do not
change sign, the differential equations do not have limit cycles.
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Some proofs in complex notation

Study of some quadratic cases

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

The proof is based on next result, proved in 1981 by Suo Guangjian and
published in Chinese. We end the talk with a proof inspired by the one of
the original paper.

Theorem (Suo Guangjian)

The system
ż = A + Bz2 + Czz̄ + Dz̄2

either does not have limit cycles or it has exactly two limit cycles, γ and
−γ. Moreover, in this latter case they are hyperbolic, with different
stabilities and each one of them surrounds a different critical point.
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Some proofs in complex notation

A preliminary result

The following theorem is a well-known result on QS. We state next version
due to Coppel:

Theorem (Coppel)

Suppose a QS satisfies one of the following conditions:

it has an invariant straight line,

the highest degree terms are proportional,

Then, the QS has at most one limit cycle and when it exists it is
hyperbolic.
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Some proofs in complex notation

A scheme of the proof of Guangjian’s result

ż = A + Bz2 + Czz̄ + Dz̄2.

⇓{
ẋ = a + a2,0x

2 + a1,1xy + a0,2y
2,

ẏ = b + b2,0x
2 + b1,1xy + b0,2y

2.

⇓ (x0, y0) −→ (1, 0){
ẋ = a− ax2 + a1,1xy + a0,2y

2,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓ A “rotation”{
ẋ = a− ax2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓
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Some proofs in complex notation

A scheme of the proof of Guangjian’s result

{
ẋ = a− ax2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓{
ẋ = 1− x2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓{
ẋ = 1− x2 + xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓ (X = x2, Y = 1− x2 + xy)
X ′ = 2XY ,

Y ′ = b0,2 + (b − 2 b0,2 − b1,1)X − (2 b0,2 + 1)Y + (−b + b0,2 + b1,1)X 2

+ (2 b0,2 + b1,1 − 1)XY + (b0,2 + 1)Y 2.
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Thanks

Figure from: Counting configurations of limit cycles and centers, A. Gasull, A. Guillamon, V. Mañosa, 2023.

Thank you very much for your attention
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