Invariants and reversibility in polynomial systems of ODEs

Mateja Grašič, Abdul Jarrah, Valery Romanovski

Faculty of Electrical Engineering and Computer Science
Faculty of Natural Science and Mathematics
CAMTP - Center for Applied Mathematics and Theoretical Physics
University of Maribor

Santiago de Compostela
July 9, 2024

Outline:

- Symmetries and polynomial invariants
- Two-dimensional polynomial systems with 1 : -1 resonant singularity at the origin
- Three-dimensional polynomial systems with $1: \zeta: \zeta^{2}$ resonant singularity at the origin
https://arxiv.org/abs/2309.01817

Consider the n-dimensional system of ordinary differential equations

$$
\dot{x}=F(x)
$$

where $F(x)$ is an n-dimensional vector of smooth functions defined on some domain Ω of \mathbb{R}^{n} or \mathbb{C}^{n}.

Definition.

It is said that system $\dot{x}=F(x)$ is time-reversible on Ω if there exists an involution Ψ defined on Ω such that

$$
D_{\Psi}^{-1} \cdot F \circ \Psi=-F
$$

Picture from [Bastos, J. L. R., Buzzi, C. A., Torregrosa, J. CPAA, (2021)].

Motivation: symmetries

In case of a real autonomous two-dimensional system of ODEs a straight line L is an axis of symmetry if the orbits of the system are symmetric with respect to the line L.

- Mirror symmetry: when the phase portrait remains unchanged after it is reflected over the line L.
- Time-reversible symmetry: when the phase portrait remains unchanged after it is reflected over the line L and the sense of every trajectory is reversed (corresponding to a reversal of time).

Motivation: invariants and normal forms

For $\zeta=(-1)^{2 / 3}$ let

$$
\begin{aligned}
& \dot{x}=x+a_{100} x^{2}+a_{001} x z+a_{101} x^{2} z, \\
& \dot{y}=\zeta y+b_{010} y^{2}+b_{100} x y+b_{110} x y^{2}, \\
& \dot{z}=\zeta^{2} z+c_{001} z^{2}+c_{010} y z+c_{011} y z^{2}
\end{aligned}
$$

Normal form up to order 4:
$\dot{x}=x+\frac{1}{3} a_{001} a_{100} c_{010} x^{2} y z+\frac{2}{3}(-1)^{1 / 3} a_{001} a_{100} c_{010} x^{2} y z+\frac{1}{3}(-1)^{2 / 3}{ }^{2001} a_{100} c_{010} x^{2} y z-(-1)^{1 / 3}{ }^{10101} c_{010} x^{2} y z+1 / 3 a_{001} b_{100}$
$\dot{y}=\zeta y-\frac{2}{3} a_{001} b_{010} b_{100} x y^{2} z-\frac{1}{3}(-1)^{1 / 3} a_{0001} b_{010} b_{100} x y^{2} z+\frac{1}{3}(-1)^{2 / 3}{ }_{a 001} b_{010} b_{100} x y^{2} z+(-1)^{2 / 3}{ }^{2001} b_{110} x y^{2} z+\frac{1}{3} a_{001} b_{100}$
$\grave{z}=\zeta^{2} z+-\frac{2}{3} a_{001} b_{100} c_{010} \times y z^{2}-\frac{1}{3}(-1)^{1 / 3}{ }_{a 001} b_{100} c_{010} \times y z^{2}+\frac{1}{3}(-1)^{2 / 3}{ }^{0001}{ } b_{100} c_{010} \times y z^{2}+\frac{1}{3} b_{100} c_{001} c_{010} \times y z^{2}-\frac{1}{3}(-1)^{1 / 3}$

- The coefficients of the normal form are invariants of a certain Lie group action
- We will give an algorithm to compute a basis of the subalgebra of invariants
- We will show an interconnection of the invariants and integrability
- Similar properties in 2-dim case have been studied by Yirong Liu and Jibin Li [Y. Liu and J. Li. Theory of values of singular point in complex autonomous differential systems. Sci. China Ser. A 33 (1990) 10-23.]

Motivation: integrability

[Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, LNM, Vol. 702, 1979]:
if the system

$$
\begin{equation*}
\dot{\mathbf{x}}=A \mathbf{x}+X(\mathbf{x}), \quad\left(\mathbf{x} \in \mathbb{C}^{\mathbf{n}}\right) \tag{1}
\end{equation*}
$$

is time-reversibile with respect to a certain linear involution, $A=\operatorname{diag}\left[1,-1, \lambda_{3}, \ldots, \lambda_{n}\right]$, then the system has at least one analytic first integral $\Psi(\mathbf{x})=x_{1} x_{2}+$ h.o.t. in a neighborhood of the origin.
[J. Llibre, C. Pantazi, S. Walcher, Bull. Sci. Math. 136 (2012), 342-359], [S. Walcher, J. Math. Anal. Appl. 180 (1993), 617-632]:
If for the vector field \mathcal{X} of system (1) under a linear transformation it holds

$$
D_{\varphi} \cdot \mathcal{X}=\zeta \mathcal{X} \circ \varphi
$$

where ζ is a primitive root of unity, then under certain conditions all first integrals of

$$
\begin{equation*}
\dot{\mathrm{x}}=A \mathrm{x} \tag{2}
\end{equation*}
$$

are conserved. That is, if

$$
\Psi(\mathbf{x})=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

is a first integral of (2) then

$$
\widetilde{\Psi}(\mathbf{x})=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}+\text { h.o.t. }
$$

is a first integral of (1).

The two-dimensional case.

We consider a family of two-dimensional systems of ODEs of the form

$$
\begin{align*}
& \dot{x}=x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}, \\
& \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}, \tag{3}
\end{align*}
$$

where the coefficients $a_{p q}, b_{q p}$ are complex numbers, and $S=\left\{\left(p_{j}, q_{j}\right) \mid p_{j}+q_{j} \geq 1, j=1, \ldots, \ell\right\} \subset \mathbb{N}_{-1} \times \mathbb{N}_{0}$.

The interconnection of time-reversibility and a one-parameter group action

$$
x \mapsto e^{-i \varphi} x, \quad y \mapsto e^{i \varphi} y \quad(\varphi \in \mathbb{C} \text { or } \mathbb{R})
$$

on the phase space, by the means of polynomial invariants of corresponding group action on the space of parameters, was studied by K. Sibirsky and by Yirong Liu and Jibin Li.

Polynomial invariants

Let k be a field and G a subgroup of $G L_{n}(k)$. For a matrix $A \in G$ and $x \in k^{n}$ let $A \cdot x$ denote the usual action of G on k^{n} (multiplication).

Definition.

A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is invariant under G (or an invariant of G) if

$$
f(x)=f(A \cdot x) \text { for all } A \in G \text { and all } x \in k^{n} .
$$

$$
\begin{equation*}
x^{\prime}=e^{-\varphi} x, \quad y^{\prime}=e^{\varphi} y \quad(\varphi \in \mathbb{C}) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \dot{x}^{\prime}=x^{\prime}-\sum_{(p, q) \in S} a(\varphi)_{p q} x^{\prime p+1} y^{\prime q}, \quad \dot{y}^{\prime}=-y^{\prime}+\sum_{(p, q) \in S} b(\varphi)_{q p} x^{\prime q} y^{\prime p+1}, \\
& a(\varphi)_{p q}=a_{p q} e^{(p-q) \varphi}, \quad b(\varphi)_{q p}=b_{q p} e^{-(p-q) \varphi}, \tag{5}
\end{align*}
$$

Equations (5) define a representation of group (4) in $\mathbb{C}^{2 \ell}$, the parameter space of system (3).

System (3):

$$
\dot{x}=x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}
$$

$$
\dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}
$$

Let ν denote the 2ℓ-tuple

$$
\nu=\left(\nu_{1}, \ldots, \nu_{2 \ell}\right) \in \mathbb{N}_{0}^{2 \ell} .
$$

For a given (ordered) set $S=\left\{\left(p_{j}, q_{j}\right) \mid j=1, \ldots \ell\right\}$ let $L: \mathbb{N}_{0}^{2 \ell} \rightarrow \mathbb{Z}^{2}$ be a homomorphism of the additive monoids, defined as

$$
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\ldots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\ldots+\binom{q_{1}}{p_{1}} \nu_{2 \ell}
$$

and let \mathcal{M} denote the set

$$
\mathcal{M}=\left\{\nu \in \mathbb{N}^{2 \ell} \left\lvert\, L(\nu)=\binom{k}{k}\right. \text { for some } k \in \mathbb{N}_{0}\right\} .
$$

Obviously, \mathcal{M} is an Abelian monoid.

For $\nu=\left(\nu_{1}, \ldots, \nu_{2 \ell}\right) \in \mathbb{N}_{0}^{2 \ell}$ and the ordered vector of indeterminates $\left(a_{p_{1} q_{1}} \ldots a_{p_{\ell} q_{\ell}}, b_{q_{\ell} p_{\ell}} \ldots b_{q_{1} p_{1}}\right)$, we denote by $[\nu]$ the monomial

$$
[\nu]=a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} \in \mathbb{C}[a, b] .
$$

a monomial $[\nu]$ is an invariant of group (4) $\Longleftrightarrow \nu \in \mathcal{M}$.

For ν in \mathcal{M} let $\hat{\nu}$ denote the involution of the vector ν,

$$
\begin{gathered}
\hat{\nu}=\left(\nu_{2 \ell}, \nu_{2 \ell-1}, \ldots, \nu_{1}\right) \\
\mathcal{I}_{S}=\langle[\nu]-[\hat{\nu}] \mid \nu \in \mathcal{M}\rangle \subset \mathbb{C}[a, b] .
\end{gathered}
$$

The ideal \mathcal{I}_{S} is called the Sibirsky ideal of system (3).
It was proved in [V. R. Open Syst. \& Inform. Dyn. 2008] that the variety $\mathbf{V}\left(\mathcal{I}_{S}\right)$ of the ideal \mathcal{I}_{S} is the Zariski closure of the set of systems which are time-reversible with respect to the linear transformations

$$
x \mapsto \alpha y, \quad y \mapsto \alpha^{-1} x
$$

for some $\alpha \in \mathbb{C} \backslash\{0\}$. It was also proved that all systems (3) whose parameters belong to $\mathbf{V}\left(\mathcal{I}_{S}\right)$ are locally analytically integrable in a neighborhood of the origin.

$$
\begin{equation*}
x^{\prime}=e^{-\phi} x, \quad y^{\prime}=e^{\phi} y \tag{4}
\end{equation*}
$$

Let $\alpha \in \mathbb{C} \backslash\{0\}$ and denote

$$
\begin{equation*}
x \mapsto \alpha y, \quad y \mapsto \alpha^{-1} x \tag{6}
\end{equation*}
$$

Transformation (6) is a composition of an orthogonal transformation and the permutation with the matrix

$$
T_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

The diagonalization of T_{2} is the matrix

$$
E_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Clearly, the Lie group $e^{E_{2} \varphi}$ with the infinitesimal generator E_{2} gives rise to the same group of transformations as (4).

Algorithm for computing the Hilbert basis

Let $A=\left(a_{i j}\right)$ be an $n \times d$-matrix, $n \geq d$, with integer elements and rank d. Let $t_{1}, \ldots, t_{d}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ be variables and fix any elimination monomial order with $\left\{t_{1}, \ldots, t_{d}\right\} \succ\left\{x_{1}, \ldots, x_{n}\right\} \succ\left\{y_{1}, \ldots, y_{n}\right\}$. Consider C-algebra homomorphism

$$
\begin{gathered}
\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \longrightarrow \mathbb{C}\left[t_{1}, \ldots, t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}, y_{1}, \ldots, y_{n}\right] \\
x_{i} \mapsto y_{i} \prod_{j=1}^{d} t_{j}^{a_{i j}}, \quad y_{i} \mapsto y_{i} \text { for all } i=1, \ldots, n .
\end{gathered}
$$

The Hilbert basis H of monoid $\mathcal{M}_{A}=\left\{\nu \in \mathbb{N}_{0}^{n}: \nu \cdot A=0\right\}$ can be obtained using Algorithm 1.4.5 in [B. Sturmfels, Algorithms in Invariant Theory]:
(1) Compute the reduced Gröbner basis \mathcal{G} with respect to \succ for the ideal

$$
\left\langle x_{i}-y_{i} \prod_{j=1}^{d} t_{j}^{a_{i j}}: i=1, \ldots, n\right\rangle
$$

(2) The Hilbert basis H of \mathcal{M}_{A} consists of all vectors ν such that $\mathbf{x}^{\nu}-\mathbf{y}^{\nu}$ appears in \mathcal{G}. (Here: for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ we denote by \mathbf{x}^{ν} the monomial $x_{1}^{\nu_{1}} x_{2}^{\nu_{2}} \ldots x_{n}^{\nu_{n}}$.)

Recall:

$$
\begin{gathered}
L(\nu)=\binom{p_{1}}{q_{1}} \nu_{1}+\ldots+\binom{p_{\ell}}{q_{\ell}} \nu_{\ell}+\binom{q_{\ell}}{p_{\ell}} \nu_{\ell+1}+\ldots+\binom{q_{1}}{p_{1}} \nu_{2 \ell} \\
\mathcal{M}=\left\{\nu \in \mathbb{N}^{2 \ell} \left\lvert\, L(\nu)=\binom{k}{k}\right. \text { for some } k \in \mathbb{N}_{0}\right\} .
\end{gathered}
$$

The set of all nonegative integer vector solutions ν of equation

$$
\left(p_{1}-q_{1}\right) \nu_{1}+\cdots+\left(p_{\ell}-q_{\ell}\right) \nu_{\ell}+\left(q_{\ell}-p_{\ell}\right) \nu_{\ell+1}+\cdots+\left(q_{1}-p_{1}\right) \nu_{2 \ell}=0
$$

coincides with monoid \mathcal{M}. Therefore, to obtain a Hilbert basis of \mathcal{M} with the algorithm presented in the previous slide, the matrix

$$
\left[\left(p_{1}-q_{1}\right) \ldots\left(p_{\ell}-q_{\ell}\right)\left(q_{\ell}-p_{\ell}\right) \ldots\left(q_{1}-p_{1}\right)\right]^{\top} \in \mathbb{Z}^{2 \ell \times 1}
$$

can be used.
For $\mathbf{y}=\left(y_{1}, \ldots, y_{2 \ell}\right)$ we denote by \mathbf{y}^{ν} the monomial $y_{1}^{\nu_{1}} y_{2}^{\nu_{2}} \ldots y_{2 \ell}^{\nu_{2 \ell}}$.

Theorem

Let $Y=\left\langle[\nu]-\mathbf{y}^{\nu} \mid \nu \in H\right\rangle$ be the ideal returned by the above algorithm (so H is a Hilbert basis of \mathcal{M}). Then $B=\{[\nu]-[\hat{\nu}] \mid \nu \in H, \nu \neq \hat{\nu}\}$ is a Gröbner basis of \mathcal{I}_{S}.

Some algebraic properties of ideal \mathcal{I}_{S}

$$
\mathcal{I}_{S}=\langle[\nu]-[\hat{\nu}] \mid \nu \in \mathcal{M}\rangle \subset \mathbb{C}[a, b] .
$$

Let $\mathfrak{A}=\left[\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right]$ be a $d \times n$-matrix of integers, $\mathbf{t}=\left(t_{1}, \ldots, t_{d}\right)$, and let $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]:=k\left[t_{1}^{ \pm}, \ldots, t_{d}^{ \pm}\right]$be the Laurent polynomial ring over k in the variables $t_{1}, \ldots t_{d}$. We define a k-algebra homomorphism

$$
\pi: k[\mathbf{x}] \rightarrow k\left[\mathbf{t}, \mathbf{t}^{-1}\right] \quad \text { by } \quad x_{i} \rightarrow \mathbf{t}^{\mathfrak{a}_{i}} .
$$

The image of π is the k-subalgebra of $k\left[\mathbf{t}, \mathbf{t}^{-1}\right]$ denoted by $k[\mathfrak{A}]$ and called the toric ring of matrix \mathfrak{A}. The kernel of π is denoted $I_{\mathfrak{A}}$ and called the toric ideal of \mathfrak{A}.

Denote by \mathfrak{M} the $1 \times 2 \ell$ matrix

$$
\begin{equation*}
\mathfrak{M}=\left[\left(p_{1}-q_{1}\right) \ldots\left(p_{\ell}-q_{\ell}\right)\left(q_{\ell}-p_{\ell}\right) \ldots\left(q_{1}-p_{1}\right)\right] . \tag{7}
\end{equation*}
$$

Then $I_{\mathfrak{M}}$ is the corresponding toric ideal.

For a field k we denote by $k[\mathbf{x}]:=k\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in x_{1}, \ldots, x_{n}. A subgroup L of \mathbb{Z}^{n} is called a lattice. For $\theta \in \mathbb{Z}^{n}$ we write

$$
\theta=\theta^{+}-\theta^{-}
$$

where $\theta^{+}, \theta^{-} \in \mathbb{N}_{0}^{n}$, and denote by f_{θ} the binomial $\mathbf{x}^{\theta^{+}}-\mathbf{x}^{\theta^{-}}$. The ideal of $k[\mathbf{x}]$ generated by all binomials f_{θ}, where $\theta \in \mathrm{L}$, is the so-called lattice ideal of L .

In our case $n=2 \ell$, the polynomial ring is $\mathbb{C}[a, b]$. Let L be the set consisting of all elements $\nu-\hat{\nu}$, where $\nu \in \mathcal{M}$. Since \mathcal{M} is a monoid closed under the action of involution on vectors, L is a subgroup of $\mathbb{Z}^{2 \ell}$. By I_{L} we denote the lattice ideal of L.

Theorem

The Sibirsky ideal \mathcal{I}_{S} is a lattice ideal. More precisely, $\mathcal{I}_{S}=I_{\mathrm{L}}$ for a lattice L consisting of all elements $\nu-\hat{\nu}$, where $\nu \in \mathcal{M}$.

Ideal \mathcal{I}_{S} and time-reversibility

Conditions of time-reversibility:

$$
b_{q_{s} p_{s}}=\alpha^{p_{s}-q_{s}} a_{p_{s} q_{s}}, \quad a_{p_{s} q_{s}}=b_{q_{s} p_{s}} \alpha^{q_{s}-p_{s}}: \quad s=1, \ldots, \ell .
$$

Thus, the set \mathcal{R} of all time-reversible systems of family (3) in the space of parameters $E(a, b)=\mathbb{C}^{2 \ell}$ is subset of the variety of of the first elimination ideal \mathcal{I} of the ideal

$$
J=\left\langle a_{p_{s} q_{s}}-b_{q_{s} p_{s}} \alpha^{q_{s}-p_{s}}, b_{q_{s} p_{s}}-\alpha^{p_{s}-q_{s}} a_{p_{s} q_{s}}: s=1, \ldots, \ell\right\rangle .
$$

in $\mathbb{C}[\alpha, a, b]$,

$$
\mathcal{I}=J \cap \mathbb{C}[a, b] .
$$

Theorem

Let $\mathbf{y}=\left(y_{1}, \ldots, y_{2 \ell}\right)$. Then \mathcal{I} is the kernel of the polynomial map ϕ defined by

$$
a_{p_{s} q_{s}} \mapsto y_{s} t^{q_{s}-p_{s}}, \quad b_{q_{s} p_{s}} \mapsto y_{2 \ell-s+1} t^{p_{s}-q_{s}}, \quad y_{2 \ell-s+1} \mapsto y_{s}
$$

for $s=1, \ldots, \ell$.

Note that the kernel of the map

$$
a_{p_{s} q_{s}} \mapsto y_{s} t^{q_{s}-p_{s}}, \quad b_{q_{s} p_{s}} \mapsto y_{2 \ell-s+1} t^{p_{s}-q_{s}}, \quad y_{i} \mapsto y_{i}
$$

for $s=1, \ldots, \ell$ and $i=1, \ldots, 2 \ell$, is the toric ideal of the Lawrence lifting

$$
\Lambda(\mathfrak{M})=\left(\begin{array}{cc}
\mathfrak{M} & 0 \\
I_{2 \ell} & I_{2 \ell}
\end{array}\right)
$$

The kernel of map introduced in previous theorem is the toric ideal of the matrix

$$
B=\binom{\mathfrak{M}}{I_{2 \ell} \mid \widetilde{I}_{2 \ell}}
$$

where $\widetilde{I}_{2 \ell}$ is the $2 \ell \times 2 \ell$ matrix having 1 on the secondary diagonal and the other elements equal to 0 .

Theorem
$\mathcal{I}_{S}=\mathcal{I}=I_{B}$.
A similar statement does not hold in the higher dimensional case!

The three-dimensional case (n -dim case is similar)

We investigate similar problems for the three-dimensional polynomial systems of the form

$$
\begin{align*}
& \dot{x}=x\left(1+\sum_{(p, q, r) \in S} a_{p q r} x^{p} y^{q} z^{r}\right) \\
& \dot{y}=y\left(\zeta+\sum_{(p, q, r) \in S} b_{r p q} x^{r} y^{p} z^{q}\right) \tag{8}\\
& \dot{z}=z\left(\zeta^{2}+\sum_{(p, q, r) \in S} c_{q r p} x^{q} y^{r} z^{p}\right),
\end{align*}
$$

where $\zeta^{3}=1$ the coefficients of the system are complex numbers and S is the finite set of triples
$S=\left\{\left(p_{j}, q_{j}, r_{j}\right) \mid p_{j}+q_{j}+r_{j} \geq 1, j=1, \ldots, \ell\right\} \subset \mathbb{N}_{-1} \times \mathbb{N}_{0} \times \mathbb{N}_{0}$.

- System (8) is a simplest generalization of the 2-dim case to the higher dimensional case.

We first study polynomial invariants of the action of the group

$$
\begin{align*}
& x_{1}=e^{\psi} x \\
& y_{1}=e^{\psi \zeta} y \tag{9}\\
& z_{1}=e^{\psi \zeta^{2}} z,
\end{align*}
$$

where ψ is a real or complex parameter, on system (8) and show how to compute a basis of the subalgebra of invariants.

Then we study properties of system (8) related to reversibility and their connection to the invariants. It is shown that the arising binomial ideals in the two-dimensional case and in the three dimensional case have essential differences.

For the permutation matrix

$$
T_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

the diagonalization is the matrix

$$
E_{3}=\operatorname{diag}\left(1, \zeta, \zeta^{2}\right)
$$

where $\zeta^{3}=1, \zeta \neq 1$. Applying the Lie group $e^{E_{3} \psi}$ with the infinitesimal generator E_{3} to the phase space of system (8) we have transformation (9). It is easy to see that there are no systems in family (8) which are time-reversible with respect to a linear involution Ψ.

The following generalization of time-reversibility was already considered in [J. Llibre, C. Pantazi, and S. Walcher. Bull. Sci. Math., 136 (2012) 342-359]

Definition

Let $F(x, y, z)$ be the right hand side of system (8). We say that system (8) is ζ-reversible if

$$
\begin{equation*}
T_{3}^{-1} \cdot F \circ T_{3}=\zeta F \tag{10}
\end{equation*}
$$

with $\zeta^{3}=1, \zeta \neq 1$. If (10) holds with $\zeta=1$, we say that system (8) is T_{3}-equivariant.

By the result of J. Llibre, C. Pantazi, and S. Walcher all ζ-reversible systems are locally integrable.

We look for ζ-reversibile and T_{3}-equivariant systems in family (8) and discuss a connection of such systems and invariants of group (9).

Invariants

The map $L: \mathbb{N}_{0}^{3 \ell} \rightarrow \mathbb{Z}^{3}$ defined as

$$
L(\nu)=\sum_{j=1}^{\ell}\left(\left(\begin{array}{c}
p_{j} \\
q_{j} \\
r_{j}
\end{array}\right) \nu_{3 j-2}+\left(\begin{array}{c}
r_{j} \\
p_{j} \\
q_{j}
\end{array}\right) \nu_{3 j-1}+\left(\begin{array}{c}
q_{j} \\
r_{j} \\
p_{j}
\end{array}\right) \nu_{3 j}\right)
$$

is a homomorphism of additive monoids.

$$
\text { Let } \begin{aligned}
\mathcal{M}= & \left\{\nu \in \mathbb{N}_{0}^{3 \ell} \left\lvert\, L(\nu)=\left(\begin{array}{l}
k \\
k \\
k
\end{array}\right)\right. \text { for some } k=0,1,2, \ldots\right\} \\
& {[\nu]=a_{p_{1} q_{1} r_{1}}^{\nu_{1}} b_{r_{1} p_{1} q_{1}}^{\nu_{2}} c_{q_{1} r_{1} p_{1}}^{\nu_{3}} a_{p_{2} q_{2} r_{2}}^{\nu_{4}} \cdots a_{p_{\ell} q_{l} r_{l}}^{\nu_{3 \ell}} b_{r_{\ell} p_{\ell} q_{\ell}}^{\nu_{3}-1} c_{q_{l} r_{\ell} r_{\ell} p_{\ell}}^{\nu_{3}} }
\end{aligned}
$$

Theorem
A monomial $[\nu]$ is an invariant of the group (9) if and only if $\nu \in \mathcal{M}$.

For $\nu \in \mathbb{C}^{3 \ell}$ let $\widetilde{\nu}=\left(\nu_{3}, \nu_{1}, \nu_{2}, \nu_{6}, \ldots, \nu_{3 \ell}, \nu_{3 \ell-2}, \nu_{3 \ell-1}\right)$ and $\bar{\nu}=\left(\nu_{2}, \nu_{3}, \nu_{1}, \nu_{5}, \ldots, \nu_{3 \ell-1}, \nu_{3 \ell}, \nu_{3 \ell-2}\right)$.

$$
\widetilde{\nu}=\operatorname{diag}\left[T_{3}, \ldots, T_{3}\right] \nu, \quad \bar{\nu}=\operatorname{diag}\left[T_{3}^{-1}, \ldots, T_{3}^{-1}\right] \nu
$$

Definition

A monomial $[\hat{\nu}]$ is conjugate to the monomial $[\nu]$ if $\hat{\nu} \in\{\widetilde{\nu}, \bar{\nu}\}$.
If $\nu \in \mathcal{M}$, then $\hat{\nu} \in \mathcal{M}$.
We call the ideal $\mathcal{J}_{S}=\langle[\nu]-[\hat{\nu}]: \nu \in \mathcal{M}\rangle$ the Sibirsky ideal of system (8).

Theorem

Let $Y=\left\langle[\nu]-\mathbf{y}^{\nu} \mid \nu \in H\right\rangle$ be the ideal returned by Algorithm (thus H is a Hilbert basis of \mathcal{M}). Then $B=\{[\nu]-[\hat{\nu}] \mid \nu \in H, \nu \neq \hat{\nu}\}$ is a Gröbner basis of \mathcal{J}_{S}.

Invariants and normal forms

Let $\Phi=x_{1} x_{2} x_{3}$.
For system (8) the Stanley decomposition of the normal form module in \mathcal{V}^{3} is

$$
\operatorname{ker} £=\oplus_{i=1}^{3} \mathbb{Q}[[\Phi]] x_{i} \mathbf{e}_{i}
$$

We can show that the decomposition of the normal form module can be written as

$$
\operatorname{ker} \mathcal{E}=\oplus_{i=1}^{3} \mathbb{Q}[H][[\Phi]] x_{i} \mathbf{e}_{i}
$$

Reversibility

We obtain the following facts about ideal \mathcal{I}_{ζ}, that corresponds to all ζ-reversible systems, and ideal \mathcal{I}_{E}, representing $T_{3 \text {-equivariance. }}$
The condition of ζ-reversibility is equivalent to

$$
\begin{aligned}
& \zeta a_{p q r} \alpha^{p} \beta^{q} \gamma^{r}=b_{r p q} \\
& \zeta b_{r p q} \alpha^{r} \beta^{p} \gamma^{q}=c_{q r p} \\
& \zeta c_{q r p} \alpha^{q} \beta^{r} \gamma^{p}=a_{p q r}
\end{aligned}
$$

for all $(p, q, r) \in S$. Using the Elimination Theorem we have the following statement.

Proposition

The Zariski closure of the set of ζ-reversible systems is the variety of the ideal

$$
\mathcal{I}_{\zeta}=I \cap k[a, b, c]
$$

where $I=\left\langle 1-w \alpha \beta \gamma, 1-v(\zeta-1), \zeta^{3}-1, \zeta a_{p q r} \alpha^{p} \beta^{q} \gamma^{r}-b_{r p q}, \zeta b_{r p q} \alpha^{r} \beta^{p} \gamma^{q}-\right.$ $\left.c_{q r p}, \zeta c_{q r p} \alpha^{q} \beta^{r} \gamma^{p}-a_{p q r}\right\rangle \subset \mathbb{Q}[\alpha, \beta, \gamma, w, v, a, b, c]$.

Theorem

If the parameters of system (8) belong to the variety of the ideal \mathcal{I}_{ζ}, then the corresponding system has a local analytic first integral in a neighborhood of the origin.

Denote by $a \cdot b \cdot c$ the product of all parameters of system (8).
The main result of our work:
Theorem A
$\mathcal{J}_{S}:(a \cdot b \cdot c)^{\infty}=\mathcal{I}_{\zeta}$.

- Similar results hold in the n-dim case.

Proof: https://arxiv.org/abs/2309.01817

Example: a cubic system

$$
\begin{align*}
& \dot{x}=x+a_{100} x^{2}+a_{001} x z+a_{101} x^{2} z, \\
& \dot{y}=\zeta y+b_{010} y^{2}+b_{100} x y+b_{110} x y^{2}+, \tag{11}\\
& \dot{z}=\zeta^{2} z+c_{001} z^{2}+c_{010} y z+c_{011} y z^{2}
\end{align*}
$$

In this case the corresponding matrix \mathcal{A} is

$$
\mathfrak{M}=\left(\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & 1 & -1 & 1 & 0 & -1 \\
0 & 1 & -1 & -1 & 0 & 1 & -1 & 1 & 0
\end{array}\right)
$$

The corresponding toric ideal $I_{\mathfrak{M}}$ is

$$
\begin{gathered}
I_{\mathfrak{M}}=\left\langle-1+a_{101} b_{110} c_{011}, c_{010}-b_{110} c_{011}, c_{001}-a_{101} c_{011}, b_{100}-a_{101} b_{110},\right. \\
\left.b_{010}-b_{110} c_{011}, a_{100}-a_{101} b_{110}, a_{001}-a_{101} c_{011}\right\rangle
\end{gathered}
$$

To compute the Hilbert basis we use the Algorithm and consider the ideal

$$
\begin{gathered}
\left\langle a_{100}-t_{1} y_{1}, b_{010}-\left(t_{2} y_{2}\right) / t_{1}, c_{001}-y_{3} / t_{2}, a_{001}-y_{4} / t_{2}, b_{100}-t_{1} y_{5},\right. \\
\left.c_{010}-\left(t_{2} y_{6}\right) / t_{1}, a_{101}-\left(t_{1} y_{7}\right) / t_{2}, b_{110}-t_{2} y_{8}, c_{011}-y_{9} / t_{1}\right\rangle .
\end{gathered}
$$

Polynomials from the Groebner basis which do not depend on t_{1} and t_{2} are

$$
\begin{aligned}
& \left\{a_{101} b_{110} c_{011}-y_{7} y_{8} y_{9},-b_{110} c_{011} y_{6}+c_{010} y_{8} y_{9}, a_{101} c_{010}-y_{6} y_{7},-a_{101} b_{110} y_{5}+b_{100} y_{7} y_{8},\right. \\
& b_{100} c_{011}-y_{5} y_{9},-b_{110} y_{5} y_{6}+b_{100} c_{010} y_{8}, a_{001} b_{110}-y_{4} y_{8},-a_{101} c_{011} y_{4}+a_{001} y_{7} y_{9}, \\
& -c_{011} y_{4} y_{6}+a_{001} c_{010} y_{9},-a_{101} y_{4} y_{5}+a_{001} b_{100} y_{7}, a_{001} b_{100} c_{010}-y_{4} y_{5} y_{6}, b_{110} c_{001}-y_{3} y_{8}, \\
& -a_{101} c_{011} y_{3}+c_{001} y_{7} y_{9},-a_{001} y_{3}+c_{001} y_{4},-c_{011} y_{3} y_{6}+c_{001} c_{010} y_{9},-a_{101} y_{3} y_{5}+b_{100} c_{001} y_{7} \text {, } \\
& b_{100} c_{001} c_{010}-y_{3} y_{5} y_{6},-b_{110} c_{011} y_{2}+b_{010} y_{8} y_{9},-c_{010} y_{2}+b_{010} y_{6}, a_{101} b_{010}-y_{2} y_{7} \text {, } \\
& -b_{110} y_{2} y_{5}+b_{010} b_{100} y_{8},-c_{011} y_{2} y_{4}+a_{001} b_{010} y_{9}, a_{001} b_{010} b_{100}-y_{2} y_{4} y_{5} \text {, } \\
& -c_{011} y_{2} y_{3}+b_{010} c_{001} y_{9}, b_{010} b_{100} c_{001}-y_{2} y_{3} y_{5},-a_{101} b_{110} y_{1}+a_{100} y_{7} y_{8},-b_{100} y_{1}+a_{100} y_{5}, \\
& a_{100} c_{011}-y_{1} y_{9},-b_{110} y_{1} y_{6}+a_{100} c_{010} y_{8},-a_{101} y_{1} y_{4}+a_{001} a_{100} y_{7}, a_{001} a_{100} c_{010}-y_{1} y_{4} y_{6} \text {, } \\
& -a_{101} y_{1} y_{3}+a_{100} c_{001} y_{7}, a_{100} c_{001} c_{010}-y_{1} y_{3} y_{6},-b_{110} y_{1} y_{2}+a_{100} b_{010} y_{8}, \\
& \left.a_{001} a_{100} b_{010}-y_{1} y_{2} y_{4}, a_{100} b_{010} c_{001}-y_{1} y_{2} y_{3}\right\} \text {. }
\end{aligned}
$$

The Hilbert basis of the monoid \mathcal{M} is

$$
\begin{aligned}
H= & \{(0,0,0,0,0,0,1,1,1),(0,0,0,0,0,1,1,0,0),(0,0,0,0,1,0,0,0,1),(0,0,0,1,0,0,0,1,0), \\
& (0,0,0,1,1,1,0,0,0),(0,0,1,0,0,0,0,1,0),(0,0,1,0,1,1,0,0,0),(0,1,0,0,0,0,1,0,0), \\
& (0,1,0,1,1,0,0,0,0),(0,1,1,0,1,0,0,0,0),(1,0,0,0,0,0,0,0,1),(1,0,0,1,0,1,0,0,0), \\
& (1,0,1,0,0,1,0,0,0),(1,1,0,1,0,0,0,0,0),(1,1,1,0,0,0,0,0,0)\}
\end{aligned}
$$

and the Sibirsky ideal J_{S} of system (11) is

$$
\begin{gathered}
J_{S}=\left\langle a_{101} c_{010}-a_{001} b_{110}, b_{100} c_{011}-c_{010} a_{101}, a_{001} b_{110}-b_{100} c_{011}, b_{110} c_{001}-a_{100} c_{011},\right. \\
b_{100} c_{001} c_{010}-a_{100} a_{001} c_{010}, a_{101} b_{010}-c_{001} b_{110}, a_{001} b_{010} b_{100}-c_{001} b_{100} c_{010}, \\
b_{010} b_{100} c_{001}-a_{100} c_{001} c_{010}, a_{100} c_{011}-b_{010} a_{101}, a_{001} a_{100} c_{010}-b_{010} a_{001} b_{100}, \\
\left.a_{100} c_{001} c_{010}-a_{100} b_{010} a_{001}, a_{001} a_{100} b_{010}-b_{010} c_{001} b_{100},\right\rangle .
\end{gathered}
$$

The ideal \mathcal{I}_{ζ} is computed as the third elimination ideal of

$$
\begin{gathered}
\left\langle 1-w \alpha \beta \gamma, a_{100} \alpha-b_{010}, a_{001} \gamma-b_{100}, a_{101} \alpha \gamma-b_{110}, b_{010} \beta-c_{001}, b_{100} \alpha-c_{010}\right. \\
\left.b_{110} \alpha \beta-c_{011}, c_{001} \gamma-a_{100}, c_{010} \beta-a_{001}, c_{011} \beta \gamma-a_{101}\right\rangle
\end{gathered}
$$

and is

$$
\begin{gathered}
\mathcal{I}_{\zeta}=\left\langle-a_{101} c_{010}+b_{100} c_{011}, a_{001} b_{110}-a_{101} c_{010}, a_{101} b_{010}-b_{110} c_{001}, a_{001} b_{010}-c_{001} c_{010}\right. \\
\left.-b_{110} c_{001}+a_{100} c_{011},-b_{010} b_{100}+a_{100} c_{010}, a_{001} a_{100}-b_{100} c_{001}\right\rangle .
\end{gathered}
$$

Computations with Singular give

$$
J_{S}:(a \cdot b \cdot c)^{\infty}=\mathcal{I}_{\zeta},
$$

which agrees with Theorem A.

Thank you for your attention.

