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Symmetries and polynomial invariants
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Consider the n-dimensional system of ordinary differential equations
x = F(x),
where F(x) is an n-dimensional vector of smooth functions defined on some domain Q)
of R" or C".
Definition.

It is said that system x = F(x) is time-reversible on ) if there exists an involution ¥
defined on ) such that

D' Fo¥ =—F.

OOR

Picture from [ Bastos, J. L. R., Buzzi, C. A., Torregrosa, J. CPAA, (2021)].
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Motivation: symmetries

In case of a real autonomous two-dimensional system of ODEs a straight line L is

an axis of symmetry if the orbits of the system are symmetric with respect to the
line L.

@ Mirror symmetry: when the phase portrait remains unchanged after it is
reflected over the line L.

@ Time-reversible symmetry: when the phase portrait remains unchanged after
it is reflected over the line L and the sense of every trajectory is reversed
(corresponding to a reversal of time).
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Motivation: invariants and normal forms
For ¢ = (—1)%/3 let

x =x + a100x? + ago1xz + a101x°z,
¥ =Cy + botoy® + biooxy + brioxy?,

7 =0’z + o012’ + cor0yz + co11yz’
Normal form up to order 4:

) 1 2 2 1/3 2 1 2/3 2 1/3 2
X =x + ~ 001 2100 010X ¥2 + 5(*1) /3 a001 2100 c010x° vz + 5(*1) 73 a001a100€010%°y2 — (—1)*/2a101 co10x° 2 + 1/3001 100

. 2 2 1 1/3 2 1 2/3 2 2/3 2 1
y=Cy — 53001b010b100Xy z— 5(—1) /3 2001 borobiooxy?z + g(—l) /3 3001 bo10b10039° 2 + (—1)* 2 ago1 br1oxy®z + 530011710(

2 1 1 1 1
.2 2 1/3 2 2/3 2 2 1/3
z=C"z+ *53001b1006010><yz - 5(*1) /3 2001 broocor0xv2° + 5(*1) /3 2001 bioo cor0xv2° + §b1006001601oxyz - 5(*1) /

- The coefficients of the normal form are invariants of a certain Lie group action
- We will give an algorithm to compute a basis of the subalgebra of invariants
- We will show an interconnection of the invariants and integrability

- Similar properties in 2-dim case have been studied by Yirong Liu and Jibin Li [Y. Liu and

J. Li. Theory of values of singular point in complex autonomous differential systems.
Sci. China Ser. A 33 (1990) 10-23.]
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Motivation: integrability

[Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, LNM, Vol. 702, 1979]:
if the system

x = Ax + X(x), (xeC™ (1)
is time-reversibile with respect to a certain linear involution,
A = diag[l, —1, A3, ..., An], then the system has at least one analytic first integral

¥ (x) = x1xo + h.o.t. in a neighborhood of the origin.

[J. Llibre, C. Pantazi, S. Walcher, Bull. Sci. Math. 136 (2012), 342-359], [S. Walcher, J. Math. Anal. Appl. 180 (1993),
617-632]:
If for the vector field X' of system (1) under a linear transformation it holds
Dy - X = (Xop
where ( is a primitive root of unity, then under certain conditions all first integrals of
x = Ax 2)
are conserved. That is, if
F(x) =x %52 xp "

is a first integral of (2) then

F(x) = xMx52 - x2" 4 h.o.t.

is a first integral of (1).
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The two-dimensional case.

We consider a family of two-dimensional systems of ODEs of the form
X =x- Z apgxP Ty,
(p.g)es
y=—-y+ Z bqpqup-l—l,
(p.q)€S

where the coefficients apq, bgp are complex numbers, and
S={(pq) | pj+q>1j=1,....0} CN_1xNo.

The interconnection of time-reversibility and a one-parameter group action
x e ?x, yrr ey (peCorR)
on the phase space, by the means of polynomial invariants of corresponding group

action on the space of parameters, was studied by K. Sibirsky and by Yirong Liu
and Jibin Li.
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Polynomial invariants

Let k be a field and G a subgroup of GLn(k). For a matrix A€ G and x € k" let A- x

denote the usual action of G on k" (multiplication).

Definition.

A polynomial f € k[x1, ..., xa] is invariant under G (or an invariant of G) if

f(x)=f(A-x) forall A€ G and all x € k".

Px, y=e’y (peC)

(4)

. 109 +1
K =x = Z a(@)pgxPyT Y = -y Z b(p)gex"Ty"""7,
(p.q)€S (p.q)€S

a(¢)pg = apqe(p_q)wv b(¢)gp = bqpe_(p_qu

(5)

Equations (5) define a representation of group (4) in C?!, the parameter space of
system (3).
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U p+1, 4
X =X E apgX" 'y

(p.g)eS

y=-y+ Z bgpxTyPH!
(p.9)€S

System (3):

Let v denote the 2/-tuple

For a given (ordered) set S = {(p;, q;) | j=1,...¢} let L : IN3* — Z2 be a
homomorphism of the additive monoids, defined as

L(V) = (Pl) vi+...+ (PE) vy + <q€> Vo1 + ...+ <q1> Voy
a1 qe Pr P1

and let M denote the set

M= {u e N* | L(v) = (:) for some k € ]No}.

Obviously, M is an Abelian monoid.
Invariants and reversibility in systems of ODE 9/29
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For v = (v1,...,v5) € N3’ and the ordered vector of indeterminates
(3p1y - - - Apeger bgepe - - - baipr ), We denote by [v] the monomial

_ Ve Vet+1 V2e
(V] = apiq: ** 3prqu bacp, ** baip, € Cla, b].

a monomial [v] is an invariant of group (4) <= v € M.

For v in M let ¥ denote the involution of the vector v,

U= (I/2@,l/2g_]_, .. .,1/1).

Is={([v]-[?p] | v € M) CCla, b].
The ideal Zs is called the Sibirsky ideal of system (3).

It was proved in [V. R. Open Syst. & Inform. Dyn. 2008] that the variety V(Zs) of the
ideal Zg is the Zariski closure of the set of systems which are time-reversible with
respect to the linear transformations

X = ay, y»—>a_1x

for some a € C\ {0}. It was also proved that all systems (3) whose parameters belong
to V(Zs) are locally analytically integrable in a neighborhood of the origin.
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Let o« € C\ {0} and denote

X —=ay, y— a~1lx (6)

Transformation (6) is a composition of an orthogonal transformation and the
permutation with the matrix
01
().

The diagonalization of T is the matrix

-1 0
ae(39).
Clearly, the Lie group ef2# with the infinitesimal generator E gives rise to the
same group of transformations as (4).
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Algorithm for computing the Hilbert basis

Let A= (aj) be an n x d-matrix, n > d, with integer elements and rank d. Let

t1, .-, tg, X1, -+, Xn, Y1, - .., Yn be variables and fix any elimination monomial order with
{t1,...,tg} = {x1,....xn} = {y1,..., ¥n}. Consider C-algebra homomorphism
-1 -1
Clxt,- s Xm Y11+, Yn] —> C[tl,...,td,tl oty Y1 -- 2 Yn)

d
Xj y,-]:[tf"j, yi =y forall i=1,...,n
j=1

The Hilbert basis H of monoid M4 = {v € Nj : v-A =0} can be obtained using
Algorithm 1.4.5 in [B. Sturmfels, Algorithms in Invariant Theory]:

@ Compute the reduced Grébner basis G with respect to = for the ideal

d

X,'—y,'Htjaij ci=1,...,n

j=1

@ The Hilbert basis H of M4 consists of all vectors v such that x¥ — y” appears in
G. (Here: for x = (x1, ..., xn) we denote by x” the monomial x;1x;2 ... x;".)
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Lv) = <P1) v+ .o+ (Pe) vy + <q£> verr+ ...+ (ql) Voy
q1 qe pe p1
M = {1/ eN? | L(v) = (l;) for some k € ]No}.

The set of all nonegative integer vector solutions v of equation

Recall:

(pr—qu)vi+ -+ (pe —qe)ve + (e — pe)ves1 + -+ (g1 — p1)vor =0

coincides with monoid M. Therefore, to obtain a Hilbert basis of M with the
algorithm presented in the previous slide, the matrix

-
[(pr—a1) .- (pe—ae) (qe—pe) - (qa—p1)] €22

can be used.

Fory = (y1.,...,Ya) we denote by y” the monomial y;?y5? ... y,2".

Theorem

Let Y = ([v] —y” | v € H) be the ideal returned by the above algorithm (so H is
a Hilbert basis of M). Then B = {[v] —[?] | v € H,v # D} is a Grébner basis of
7s.

M. Grasi¢, A. Jarrah, V. Romanovski Invariants and reversibility in systems of ODE 13 /29
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Some algebraic properties of ideal Zg

Is ={[v]—[2] |v € M) CCla b].
Let 2 = [a1,...,an] be a d X n-matrix of integers, t = (t1,...,tg), and let
k[t t71] = k[tf:, ce tfﬂ be the Laurent polynomial ring over k in the variables
t1,...tg. We define a k-algebra homomorphism
gy

7 k[x] = k[t tT by  x; — t%.

The image of 7 is the k-subalgebra of k[t, t~1] denoted by k[2] and called the toric ring
of matrix 2. The kernel of 7 is denoted Iy and called the toric ideal of 2.

Denote by 21 the 1 x 2¢ matrix

M= [(p1—aq1) --- (pe—q¢) (qe—pe) - (q1—p1)] (7)

Then Iy is the corresponding toric ideal.
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For a field k we denote by k[x] := k[x1, ..., xn] the polynomial ring in x1,...,xn. A
subgroup L of Z" is called a lattice. For # € Z" we write

o=0"—0",

where 07,0~ € IN{, and denote by f; the binomial x*" —x?" . The ideal of k(x]
generated by all binomials fy, where 6 € L, is the so-called /attice ideal of L.

In our case n = 2¢, the polynomial ring is C|a, b]. Let L be the set consisting of all
elements v — 0, where v € M. Since M is a monoid closed under the action of
involution on vectors, L is a subgroup of z?t. By I we denote the lattice ideal of L.

Theorem

The Sibirsky ideal Zs is a lattice ideal. More precisely, Zs = I for a lattice L consisting
of all elements v — 0, where v € M.
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2-dimensional case
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Ideal Zs and time-reversibility
Conditions of time-reversibility:
— 4P — qs—ps . —
bqsps =a” 5apsqs' apsqs = bqspsa R s = 11 .. ~x£-

Thus, the set R of all time-reversible systems of family (3) in the space of parameters
E(a, b) = C? is subset of the variety of of the first elimination ideal Z of the ideal

_ as—p ps—a e
J—<3Psqs*bqsp5045 *, bgp, —a Tapg, 5—1,-~~,€>.

in Cla, a, b], -,
T = JNnC|a, b|.

Theorem

Lety = (y1,...,¥20). Then T is the kernel of the polynomial map ¢ defined by

qs—p. q.
tS 5, 'S

pe—
apsgs 7 Vs bg.p, > Yor—si1t™ T, Yop_sy1 > Ys

fors=1,...,¢.
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Note that the kernel of the map

aPst = ystCIs*Ps, bClsPs — y2é—5+1tp57qs' Yi — Yis

fors=1,...,0andi=1,...,2¢, is the toric ideal of the Lawrence lifting
m 0
AN = .
() </2e /2z)

The kernel of map introduced in previous theorem is the toric ideal of the matrix

m
B=(, "~ ),
(/215 | I2é>

where 725 is the 2¢ x 2¢ matrix having 1 on the secondary diagonal and the other
elements equal to 0.

Theorem
Is =1 = Ig. J

A similar statement does not hold in the higher dimensional case!
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3-dimensional case
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The three-dimensional case (n-dim case is similar)

We investigate similar problems for the three-dimensional polynomial systems of
the form

x=x|14+ Z apgrxPyiz"
(p.q.r)€s

y=y|(+ Z brpqxrypzq (8)
(p.q.r)€s

=z C2+ Z Cqrpxy" 2P
(p.q,r)es

where ¢3 = 1 the coefficients of the system are complex numbers and S is the
finite set of triples

S={(pqn)lpi+q+r=>1j=1,...,£ CN_1xNgxNo.
e System (8) is a simplest generalization of the 2-dim case to the higher
dimensional case.

M. Grasi¢, A. Jarrah, V. Romanovski Invariants and reversibility in systems of ODE 18 /29



3-dimensional case
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We first study polynomial invariants of the action of the group

X1 = ewx
y=e"y (9)
7 = ¥z,

where 1) is a real or complex parameter, on system (8) and show how to compute
a basis of the subalgebra of invariants.

Then we study properties of system (8) related to reversibility and their

connection to the invariants. It is shown that the arising binomial ideals in the
two-dimensional case and in the three dimensional case have essential differences.
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3-dimensional case
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For the permutation matrix

o

T3 =

= o
O O =
O = O

the diagonalization is the matrix

Es = diag(1,¢, (%),
where (3 =1, ¢ # 1. Applying the Lie group eF3¥ with the infinitesimal
generator E3 to the phase space of system (8) we have transformation (9). It is

easy to see that there are no systems in family (8) which are time-reversible with
respect to a linear involution ¥.

M. Grasi¢, A. Jarrah, V. Romanovski Invariants and reversibility in systems of ODE 20/29



3-dimensional case
000®00000000

The following generalization of time-reversibility was already considered in
[J. Llibre, C. Pantazi, and S. Walcher. Bull. Sci. Math., 136 (2012) 342-359]

Definition

Let F(x,y, z) be the right hand side of system (8). We say that system (8) is
C-reversible if
T3l FoTs=¢F (10)

with (3 =1, ¢ # 1. If (10) holds with ¢ = 1, we say that system (8) is
Ts-equivariant.

By the result of J. Llibre, C. Pantazi, and S. Walcher all (-reversible systems
are locally integrable.

We look for (-reversibile and T3-equivariant systems in family (8) and discuss a
connection of such systems and invariants of group (9).
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3-dimensional case

Invariants
The map L : N3¢ — Z3 defined as
bj ] qj
V)= | @) 2t (P |vaiat | 1| v
Jj=1 r qj Pj
is a homomorphism of additive monoids.
k
Let M = I/GNSZ | L(v) = | k| forsome k=0,1,2,...
k
V3e—2 | V3e—1
[ ] P1€I1f1 b712p1¢h Cll/lsflpl az2Q2f2 aPé‘M’Z b’U’é‘M CIerPé’
Theorem
A monomial [v] is an invariant of the group (9) if and only if v € M. J
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For v e C3 let ¥ = (v3,v1, 12, U6, . .., U3y, V30—2, V3g—1) and
7= (v2,v3,V1,U5,...,V30_1,V3¢, V30_2)-

v=diag[Ts,..., T3lv, 0= diag[Tgl, ol T3_1]1/.

Definition J

A monomial [D] is conjugate to the monomial [v] if 0 € {V, }.

If v € M, then ¥ € M.
We call the ideal Js = ([v] — [?] : v € M) the Sibirsky ideal of system (8).

Theorem

Let Y = ([v] —y” | v € H) be the ideal returned by Algorithm (thus H is a
Hilbert basis of M). Then B = {[v| — [?] | v € H,v # D} is a Grébner basis of
Js.
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Invariants and normal forms
Let ® = xyx0x3.
For system (8) the Stanley decomposition of the normal form module in V3 is
ker £ = &7 Q[[®]]x;e.
We can show that the decomposition of the normal form module can be written as

ker £ = &}, Q[H][[®]]xie;.
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3-dimensional case
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Reversibility

We obtain the following facts about ideal Z;, that corresponds to all (-reversible
systems, and ideal Zg, representing T3-equivariance.
The condition of (-reversibility is equivalent to

Capgr &”BIY" = brpg

C brpg @ BP9 = cqnp

Cqup aqﬁr’}/p = dapgr

for all (p,q,r) € S. Using the Elimination Theorem we have the following statement.

Proposition

The Zariski closure of the set of (-reversible systems is the variety of the ideal
Is = 1Nkla, b, c],

where | = (1 —wapBy,1—v((—1), §3 —1, ¢ apgr &P BIY" — brpq, € brpg a" BP9 —
Cqrp, G Cqrp 9B VP — apgr) C Qla, B, 7y, w, v, a, b, c].
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Theorem

If the parameters of system (8) belong to the variety of the ideal I, then the
corresponding system has a local analytic first integral in a neighborhood of the
origin.

Denote by a- b- ¢ the product of all parameters of system (8).

The main result of our work:

Theorem A
Js:(a-b-c)® =1 J

@ Similar results hold in the n-dim case.

Proof: https://arxiv.org/abs/2309.01817
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3-dimensional case
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Example: a cubic system
) 2 2
X =x + ajpox~ + app1xz + a101x" z,
¥ =Cy + boroy® + biooxy + biioxy’+, (11)

. 2 2 2
z=C"z+ qo12" + co10¥Z + Co11Y2
In this case the corresponding matrix A is

The corresponding toric ideal lgy is

Iom = (—1+ a101b110011, C010 — b110c011. C001 — 2101011+ b100 — 2101 D110,
bo1o — b110<011, 2100 — 2101 b110, 4001 — 2101011)

To compute the Hilbert basis we use the Algorithm and consider the ideal

(a100 — t1y1, boto — (tay2)/t1, coo1 — ¥3/t2, @001 — ya/t2, bioo — t1ys,
co10 — (tays)/t1, a101 — (t1y7)/t2, biio — tays, co11 — yo/t1).

Polynomials from the Groebner basis which do not depend on t; and tp are

{a101b110011 — Y7¥8Y9. —b110011¥6 + C010¥8Y0, 3101010 — Y6¥7. — 2101 b110¥5 + b1ooy7ys.
biooco11 — ¥s¥9. —bi10ysye + b1o0co10¥8, 001 b110 — Yays, —a101c011¥4 + 2001Y7Y9,
—co11¥4Y6 + 3001€010¥9, —a101YaYs + a001b100y7. 001 b100€010 — Y4ys5¥6, b110C001 — ¥3¥8,
—a101€011Y3 + C001Y7Y9, —a001Y3 + C001Y4, —C011¥3¥6 + C001C010Y9, —a101¥3¥5 + broocoo1y7,
b100c001 010 — ¥3¥5Y6, —b110c011y2 + bo1oysye, —co10¥2 + boioye. a101bo10 — y2y7.
—bi10y2ys + bo1ob100ys, —Co11Y2y4 + a001bo10¥9. 001 bor0b100 — Y2yays,
—co11¥2¥3 + bo10<001Y9, bo10b100C001 — Y2¥3Y5, —ato1b110y1 + ai00¥7ys. —biooy1 + 21005,
2100€011 — Y1Y9, —b110¥1Y6 + 2100€010¥8. —a101¥1¥4 + 30013100¥7, 0013100€010 — Y1Y4 Y6,
—a101¥1Y3 + 3100€001¥7: 3100001010 — Y1¥3Y6, —b110y1y2 + a100bo10ys.
200121006010 — Y1Y2Y4, @100b010C001 — Y1Y2¥3}-
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3-dimensional case
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The Hilbert basis of the monoid M is

H = {(0,0,0,0,0,0,1,1,1),(0,0,0,0,0,1,1,0,0), (0,0,0,0,1,0,0,0, 1), (0,0,0,1,0,0,0,1,0),
(0,0,0,1,1,1,0,0,0),(0,0,1,0,0,0,0,1,0),(0,0,1,0,1,1,0,0,0), (0,1,0,0,0,0, 1,0,0),
(0,1,0,1,1,0,0,0,0),(0,1,1,0,1,0,0,0,0), (1,0,0,0,0,0,0,0,1), (1,0,0,1,0,1,0,0,0),

(1,0,1,0,0,1,0,0,0),(1,1,0,1,0,0,0,0,0),(1,1,1,0,0,0,0,0,0) }

and the Sibirsky ideal Js of system (11) is

Js = (a101¢c010 — a001 b110, b100Co11 — C010a101, 001 b110 — b100C011, b110C001 — A100C011,
b100 €001 €010 — 31002001 €010, 101 010 — 001 D110, 3001 bo10b100 — CO01 P100C010+
bo10b100 €001 — 3100001 €010, 3100011 — b0103101, 30012100010 — bo104001 b100,

3100001 €010 — 3100 b0103001, 001 8100 bo10 — bo10 <001 b100, )-

The ideal Z; is computed as the third elimination ideal of
(1 — wapy, atooa — bo1o, 001y — b10o, ato1ay — brio, bo1oB — coo1, brooc — cozo,
brioaf8 — co11, Coo1y — @100, Co108 — a001, Co1187Y — a101)

and is

T¢ = (—a1o1¢o010 + b1ooco11, a001 b110 — a101 010, a101 bo1o — b110C001, 2001 Bo10 — €001 €010,
—b110c001 + 2100011, —bo1ob100 + 3100010, 30013100 — b100C001)-

Computations with Singular give
Js:(a-b-c)*® =1,

which agrees with Theorem A.
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Thank you for your attention.
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