EJECTION-COLLISION SOLUTIONS FROM KAM TORI IN RESTRICTED N-BODY PROBLEMS

Aitor Ayape, Jesús F. Palacián and Patricia Yanguas

Dpt. Estadística, Informática y Matemáticas and Institute for Advanced Materials and Mathematics, Universidad Pública de Navarra, Pamplona, Spain

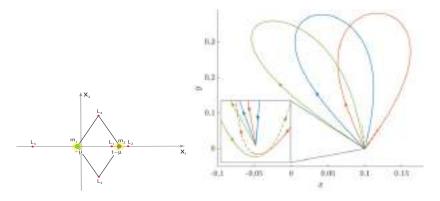
> Recent Advances in Nonlinear Dynamics, GDM2024 Santiago de Compostela, Spain, 2024

Ayape, Palacián & Yanguas (UPNA)

Ejection-Collision Solutions

11/7/2024 1 / 25

Ejection-Collision Trajectories



Source: T.-M. Seara, M. Ollé, Ó. Rodríguez, J. Soler: Journal of Nonlinear Science (2023).

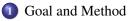
Goal: Prove the existence of ejection-collision (EC) orbits in the restricted circular three-body problem applying a different approach

Ayape, Palacián & Yanguas (UPNA)

Ejection-Collision Solutions

11/7/2024 2 / 25

Contents



イロト イポト イヨト イヨト

Purpose and Techniques

What: Provide a proof on the existence of EC solutions in the planar restricted circular three-body problem relating these orbits to the KAM 2-tori of "rectilinear" type.

How: Applying regularisation, normalisation, symplectic reduction and a special KAM theorem.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Other Cases

- Ejection-collision orbits from one primary body to the other (M.J. Capiński, S. Kepley, J.D. Mireles James).
- Orbits of infinitesimal body which are asymptotic to L₄ in backward time and collide with a primary in forward time (M.J. Capiński, S. Kepley, J.D. Mireles James).
- Parabolic ejection-collision orbits for the restricted planar circular three body problem (M. Guardia, J. Lamas, T.-M. Seara): go arbitrarily far away for small values of the mass ratio.

() ...

This is a classic problem, treated mainly using numerical approaches but also applying analytical tools.

イロト 不得 とく ヨト イヨト 二日

EC Solutions Related to Quasi-Periodic Motions of Rectilinear Type

It seems rather natural to link these solutions with the invariant tori leading to motions near rectilinear in different classes of *N*-body problems:

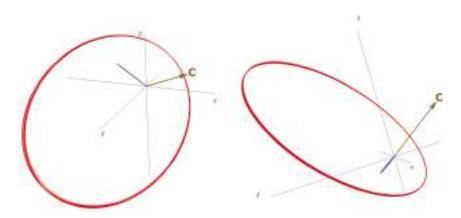
- Sitnikov restricted problems;
- 2 planar and spatial restricted circular three-body problems;
- In planar and spatial three-body problems;
- extension to *N*-body problems.

Common feature: One particle (the infinitesimal in the restricted cases) is near to another mass).

This is what is called Lunar regime

イロト 不得 とくほ とくほ とうほ

Quasi-Periodic Motions in the Spatial Three-Body Problem



Source: J.F. P., F. Sayas, P. Yanguas: Journal of Differential Equations (2024)

Ayape, Palacián & Yanguas (UPNA)

Ejection-Collision Solutions

11/7/2024 7 / 25

Contents

2 Restricted Circular Three- and *N*-Body Problems

Spatial Restricted Circular Three-Body Problems

(日)

PRNBP

Hamiltonian Functions

• For the planar RCTBP the Hamiltonian of the infinitesimal particle is

$$H_3 = \frac{1}{2} (y_1^2 + y_2^2) \mathcal{H}(x_1 y_2 \mathcal{H} x_2 y_1) \mathcal{H} \frac{1 \mathcal{H} \mu}{\sqrt{(\mu + x_1)^2 + x_2^2}} \mathcal{H} \frac{\mu}{\sqrt{(\mu + x_1 \mathcal{H} 1)^2 + x_2^2}}$$

• For the (restricted) *N*-body case, if (a_k, m_k) is a central configuration, it is

$$H_N = \frac{1}{2} (y_1^2 + y_2^2) \mathcal{H} (x_1 y_2 \mathcal{H} x_2 y_1) \mathcal{H} \sum_{k=1}^{N-1} \frac{m_k}{\sqrt{(x_1 \mathcal{H} a_{k1})^2 + (x_2 \mathcal{H} a_{k2})^2}}.$$

The central configuration can be the Lagrangian triangle, colineal, rhomb, kite, *N*-polygonal, etc.

Ayape, Palacián & Yanguas (UPNA)

◆□ → ◆檀 → ◆臣 → ◆臣 →

PRNBP

Lunar Regime

The infinitesimal particle moves in the neighbourhood of one primary: ε is introduced as

$$(x_{1,p}, x_{2,p}) \to \varepsilon^2 m_1^{1/3}(x_{1,p}, x_{2,p}), \qquad (y_{1,p}, y_{2,p}) \to \varepsilon^{-1} m_1^{1/3}(y_{1,p}, y_{2,p}).$$

Resulting Hamiltonian functions:

$$\begin{aligned} H_{3} &= \frac{1}{2} (y_{1,p}^{2} + y_{2,p}^{2}) \mathcal{H} \frac{1}{\sqrt{x_{1,p}^{2} + x_{2,p}^{2}}} + \varepsilon^{3} (x_{2,p} y_{1,p} \mathcal{H} x_{1,p} y_{2,p}) + \frac{1}{2} \varepsilon^{6} \mu \left(x_{2,p}^{2} \mathcal{H} 2x_{1,p}^{2} \right) \\ &+ \mathcal{O}(\varepsilon^{8}), \\ H_{N} &= \frac{1}{2} (y_{1,p}^{2} + y_{2,p}^{2}) \mathcal{H} \frac{1}{\sqrt{x_{1,p}^{2} + x_{2,p}^{2}}} + \varepsilon^{3} (x_{2,p} y_{1,p} \mathcal{H} x_{1,p} y_{2,p}) + \varepsilon^{4} (c_{1} x_{1,p} + c_{2} x_{2,p}) \\ &+ \varepsilon^{6} (d_{1} x_{1,p}^{2} + d_{2} x_{1,p} x_{2,p} + d_{3} x_{2,p}^{2}) + \mathcal{O}(\varepsilon^{8}), \end{aligned}$$

where c_1, c_2 and d_1, d_2, d_3 are constant terms that depend on a_k and m_k .

Levi-Civita Regularisation

• We apply a parabolic symplectic transformation:

$$x_{1,p} = u^2 \mathcal{H} v^2, \ x_{2,p} = 2uv, \ y_{1,p} = \frac{uU\mathcal{H} vV}{2(u^2 + v^2)}, \ y_{2,p} = \frac{uV + vV}{2(u^2 + v^2)},$$

together with

$$\frac{dt}{ds} = u^2 + v^2.$$

- We fix an energy level h < 0 and the frequency $w = \sqrt{\mathcal{H}8h}$.
- After an appropriate scaling the dominant term becomes

$$\frac{1}{2}(U^2 + V^2 + u^2 + v^2).$$

Higher-order terms are a polynomial perturbation of the harmonic oscillator.

(日)

Action-Angle Coordinates

We put the Hamiltonian in Lissajous action-angle variables (φ_i, Φ_i) :

$$u = \sqrt{(\Phi_1 + \Phi_2)/2} \cos(\varphi_1 + \varphi_2) \mathcal{H} \sqrt{(\Phi_1 \mathcal{H} \Phi_2)/2} \cos(\varphi_1 \mathcal{H} \varphi_2),$$

$$v = \sqrt{(\Phi_1 + \Phi_2)/2} \sin(\varphi_1 + \varphi_2) + \sqrt{(\Phi_1 \mathcal{H} \Phi_2)/2} \sin(\varphi_1 \mathcal{H} \varphi_2),$$

$$U = \mathcal{H} \sqrt{(\Phi_1 + \Phi_2)/2} \sin(\varphi_1 + \varphi_2) + \sqrt{(\Phi_1 \mathcal{H} \Phi_2)/2} \sin(\varphi_1 \mathcal{H} \varphi_2),$$

$$V = \sqrt{(\Phi_1 + \Phi_2)/2} \cos(\varphi_1 + \varphi_2) + \sqrt{(\Phi_1 \mathcal{H} \Phi_2)/2} \cos(\varphi_1 \mathcal{H} \varphi_2).$$

Then we average with respect to φ_1 first and φ_2 later, so that we push them to higher orders.

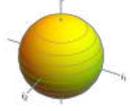
イロト 不得 とくほ とくほ とうほ

Symplectic Reduction

After truncating remainder and fixing $\Phi_1 = L$, we rewrite the Hamiltonians in terms of invariants:

$$i_1 = \frac{1}{2}\sqrt{L^2 \mathcal{H}\Phi_2^2}\cos\varphi_2, \quad i_2 = \frac{1}{2}\sqrt{L^2 \mathcal{H}\Phi_2^2}\sin\varphi_2, \quad i_3 = \frac{\Phi_2}{2}.$$

- The poles correspond to circular solutions with opposite orientation.
- Interpretent of the poles are KAM 2D-tori.
- So When moving towards the equator, the eccentricity of the quasi-periodic orbits increases until arriving at rectilinear motions $(i_3 = 0)$.



Normalised Hamiltonian Functions

We scale the angular momentum Φ_2 to $\varepsilon^6 \Phi_2$ (three-body and *N*-body if $c_i = 0$) or to $\varepsilon^4 \Phi_2$ (*N*-body if some $c_i \neq 0$), as the orbits are near rectilinear:

$$H_3 = \Phi_1 \mathcal{H} \varepsilon^6 \frac{5\mu \Phi_1^3}{2w^4} \mathcal{H} \varepsilon^9 \frac{2\Phi_1 \Phi_2}{w^2} + \mathcal{O}(\varepsilon^{10}),$$

$$H_N = \Phi_1 + \varepsilon^6 \frac{5(d_1 + d_3)\Phi_1^3}{w^4} \mathcal{H} \varepsilon^7 \frac{2\Phi_1 \Phi_2}{w^2} + \mathcal{O}(\varepsilon^8) \quad \text{(if some } c_i \neq 0\text{)},$$

$$H_N = \Phi_1 + \varepsilon^6 \frac{5(d_1 + d_3)\Phi_1^3}{w^4} \mathcal{H} \varepsilon^9 \frac{2\Phi_1 \Phi_2}{w^2} + \mathcal{O}(\varepsilon^{18}) \quad \text{(if } c_1 = c_2 = 0\text{)}.$$

As the actions appear in three different scales, the Hamiltonians are very degenerate.

Ayape, Palacián & Yanguas (UPNA)

イロト イポト イヨト イヨト 二日

Invariant Tori in Hamiltonian Systems with High-Order Proper Degeneracy

Han, Li, Yi (2010) Let

$$h(I,\varphi,\varepsilon) = h_0(I^{n_0}) + \varepsilon^{\beta_1} h_1(I^{n_1}) + \ldots + \varepsilon^{\beta_a} h_a(I^{n_a}) + \varepsilon^{\beta_a+1} p(I,\varphi,\varepsilon),$$

such that the intermediate Hamiltonian admits a family of invariant *n*-tori. Let

•
$$\bar{I}^{n_i} = (I_{n_{i-1}+1}, \dots, I_{n_i})$$
, with $n_{-1} = 0$ and $\bar{I}^{n_0} = I^{n_0}$.
• $\Omega = \left(\nabla_{\bar{I}^{n_0}} h_0(I^{n_0}), \dots, \nabla_{\bar{I}^{n_a}} h_{n_a}(I^{n_a}) \right), i = 0, 1, \dots, a$.

• Condition to be satisfied: Rank $\left\{ \partial_I^{\alpha} \Omega(I) : 0 \le |\alpha| \le s \right\} = n.$

There exists a Cantor family of real analytic invariant *n*-tori with excluding measure for the existence of invariant tori $\mathcal{O}(\varepsilon^{\delta/s})$ with $0 < \delta < 1/5$.

Ayape, Palacián & Yanguas (UPNA)

11/7/2024 15 / 25

Application of Han-Li-Yi Theorem

It is enough to build the matrix

$$\Omega = \left(\frac{\partial h_0}{\partial \Phi_1}, \ \frac{\partial h_1}{\partial \Phi_1}, \ \frac{\partial h_2}{\partial \Phi_2}\right),$$

where h_0, h_1, h_2 are the first three terms of the Hamiltonians and the matrix

$$A = \left(\Omega, \quad \frac{\partial \Omega}{\partial \Phi_1}, \quad \frac{\partial \Omega}{\partial \Phi_2}\right).$$

• Since $\mathcal{H}1/(2n^{2/3})$ is a minor of order two then $\operatorname{Rank}(A) = 2$ and we can ensure the persistence of invariant 2*D*-tori of rectilinear type.

• The excluding measure for the persistence of these KAM tori is improved to be of an order ε^7 or ε^9 .

Next Steps

- On the 2-sphere, we solve the variational equations of the reduced system order by order to determine the quasi-periodic solutions of rectilinear type.
- Return to the initial rectangular coordinates, i.e. undo the successive transformations: (i) normalisation procedure; (ii) from Lissajous to LC coordinates; (iii) from LC to rectangular coordinates.

The (approximate) quasi-periodic solutions of rectilinear type we have determined depend upon a parameter.

イロト イポト イヨト イヨト 二日

How to Get the EC Orbits?

To characterise EC orbits we use the idea of T.-M. Seara et al.:

Assume ε small enough: an ejection orbit is an EC orbit if and only if it satisfies that at a minimum in the distance (with the primary) the angular momentum $M = uV \mathcal{H} vU = 0$.

We compute the time t_0 such that the infinitesimal particle gets the *n*-th minimum in the distance, so for $\theta_0 \in [0, \pi)$ we get $M(t_0)$ as

Main Result

Theorem

In the planar restricted N-body problem, when the particle is in a sufficiently small neighbourhood of one of the primaries, for any $n \in \mathbb{N}$, there exist either two or four families of n-EC orbits depending on the configuration of the primaries.

If $c_1c_2 \neq 0$ there are two families of n-EC, if $c_1c_2 = 0$ and $(d_3 \mathcal{H} d_1)d_2 \neq 0$ there are four families.

Some Cases

• All configurations we have checked: equilateral Lagrangian triangle, colinear with $N \mathcal{H} 1$ masses (either evenly distributed or with the same masses), rhomb, kite, etc. satisfy $c_1 = c_2 = 0$ and there are four *n*-EC solutions.

• The exceptions are the regular $N \mathcal{H}$ 1-polygon central configurations (with or without) the infinitesimal body around one vertex as then $c_1 \neq 0$ and there are two *n*-EC solutions.

イロト 不得 とくほ とくほ とうほ

PRNBP

A Picture for the Restricted Circular Three-Body Problem

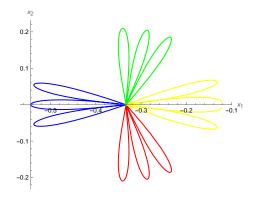


Figure: *n*-EC orbits to the big primary of the CRTBP in (x_1, x_2) -coordinates for $n = 3, \mu = \frac{1}{3}, \varepsilon = 0.5$. Blue: $\theta_0 = 0$. Red: $\theta_0 = \frac{\pi}{4}$. Yellow: $\theta_0 = \frac{\pi}{2}$. Green: $\theta_0 = \frac{3\pi}{4}$.

Regular $N \mathcal{H}$ 2-Polygon with a Central Mass

• When the infinitesimal particle is in the neighbourhood of the central mass there are $2N \mathcal{H} 2$ EC solutions.

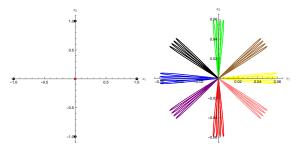


Figure: (Left) Position of the primaries in the rotating coordinates system. In red the primary in the neighborhood of with moves the particle. (Right) *n*-EC orbits with N = 6, n = 4 and $\varepsilon = 1/3$. Blue: $\theta_0 = 0$. Red: $\theta_0 = \pi/4$. Yellow: $\theta_0 = \pi/2$. Green: $\theta_0 = 3\pi/4$. Purple: $\theta_0 = \pi/8$. Pink: $\theta_0 = 3\pi/8$. Brown: $\theta_0 = 5\pi/8$. Black: $\theta_0 = 7\pi/8$.

Contents

2 Restricted Circular Three- and N-Body Problems

Spatial Restricted Circular Three-Body Problems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hamiltonian Function

.

For the spatial RCTBP the Hamiltonian of the infinitesimal particle is

$$H_{3} = \frac{1}{2}(y_{1}^{2} + y_{2}^{2} + y_{3}^{2}) \mathcal{H}(x_{1}y_{2} \mathcal{H}x_{2}y_{1})$$
$$\mathcal{H}\frac{1 \mathcal{H}\mu}{\sqrt{(\mu + x_{1})^{2} + x_{2}^{2} + x_{3}^{2}}} \mathcal{H}\frac{\mu}{\sqrt{(\mu + x_{1} \mathcal{H}1)^{2} + x_{2}^{2} + x_{3}^{2}}}.$$

- **3** DOF Hamiltonian system.
- **2** There are Lagrangian 3-KAM tori in different regions of phase space.
- Some near the coplanar plane and some near vertical to them.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea

We use a similar approach to the planar case with some remarks:

- We apply Moser regularisation of the Kepler problem, valid for *n* dimensions.
- 2 The reduced space is the manifold $S^2 \times S^2$.
- We apply a theory that combines normalisation with reduction, to get the quasi-periodic solutions related to nearly vertical and rectilinear motions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >