Ejection-Collision Solutions from KAM tori in Restricted N-Body Problems

Aitor Ayape, Jesús F. Palacián and Patricia Yanguas

Dpt. Estadística, Informática y Matemáticas and Institute for Advanced Materials and Mathematics, Universidad Pública de Navarra, Pamplona, Spain

Recent Advances in Nonlinear Dynamics, GDM2024 Santiago de Compostela, Spain, 2024

Ejection-Collision Trajectories

Source: T.-M. Seara, M. Ollé, Ó. Rodríguez, J. Soler: Journal of Nonlinear Science (2023).
Goal: Prove the existence of ejection-collision (EC) orbits in the restricted circular three-body problem applying a different approach.

Contents

(1) Goal and Method

2) Restricted Circular Three- and N-Body Problems

3 Spatial Restricted Circular Three-Body Problems

Purpose and Techniques

What: Provide a proof on the existence of EC solutions in the planar restricted circular three-body problem relating these orbits to the KAM 2-tori of "rectilinear" type.

How: Applying regularisation, normalisation, symplectic reduction and a special KAM theorem.

Other Cases

(1) Ejection-collision orbits from one primary body to the other (M.J. Capiński, S. Kepley, J.D. Mireles James).
(2) Orbits of infinitesimal body which are asymptotic to L_{4} in backward time and collide with a primary in forward time (M.J. Capiński, S. Kepley, J.D. Mireles James).
(3) Parabolic ejection-collision orbits for the restricted planar circular three body problem (M. Guardia, J. Lamas, T.-M. Seara): go arbitrarily far away for small values of the mass ratio.
(9) ...

This is a classic problem, treated mainly using numerical approaches but also applying analytical tools.

EC Solutions Related to Quasi-Periodic Motions of Rectilinear Type

It seems rather natural to link these solutions with the invariant tori leading to motions near rectilinear in different classes of N-body problems:
(1) Sitnikov restricted problems;
(2) planar and spatial restricted circular three-body problems;
(3) planar and spatial three-body problems;
(9) extension to N -body problems.

Common feature: One particle (the infinitesimal in the restricted cases) is near to another mass).

This is what is called Lunar regime

Quasi-Periodic Motions in the Spatial Three-Body Problem

Source: J.F. P., F. Sayas, P. Yanguas: Journal of Differential Equations (2024)

Contents

(1) Goal and Method

(2) Restricted Circular Three- and N-Body Problems

3 Spatial Restricted Circular Three-Body Problems

Hamiltonian Functions

- For the planar RCTBP the Hamiltonian of the infinitesimal particle is

$$
H_{3}=\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right) \mathcal{H}\left(x_{1} y_{2} \mathcal{H} x_{2} y_{1}\right) \mathcal{H} \frac{1 \mathcal{H} \mu}{\sqrt{\left(\mu+x_{1}\right)^{2}+x_{2}^{2}}} \mathcal{H} \frac{\mu}{\sqrt{\left(\mu+x_{1} \mathcal{H} 1\right)^{2}+x_{2}^{2}}} .
$$

- For the (restricted) N-body case, if $\left(a_{k}, m_{k}\right)$ is a central configuration, it is

$$
H_{N}=\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right) \mathcal{H}\left(x_{1} y_{2} \mathcal{H} x_{2} y_{1}\right) \mathcal{H} \sum_{k=1}^{N-1} \frac{m_{k}}{\sqrt{\left(x_{1} \mathcal{H} a_{k 1}\right)^{2}+\left(x_{2} \mathcal{H} a_{k 2}\right)^{2}}}
$$

The central configuration can be the Lagrangian triangle, colineal, rhomb, kite, N-polygonal, etc.

Lunar Regime

The infinitesimal particle moves in the neighbourhood of one primary: ε is introduced as

$$
\left(x_{1, p}, x_{2, p}\right) \rightarrow \varepsilon^{2} m_{1}^{1 / 3}\left(x_{1, p}, x_{2, p}\right), \quad\left(y_{1, p}, y_{2, p}\right) \rightarrow \varepsilon^{-1} m_{1}^{1 / 3}\left(y_{1, p}, y_{2, p}\right)
$$

Resulting Hamiltonian functions:

$$
\begin{aligned}
H_{3}=\frac{1}{2}\left(y_{1, p}^{2}+y_{2, p}^{2}\right) \mathcal{H} \frac{1}{\sqrt{x_{1, p}^{2}+x_{2, p}^{2}}} & +\varepsilon^{3}\left(x_{2, p} y_{1, p} \mathcal{H} x_{1, p} y_{2, p}\right)+\frac{1}{2} \varepsilon^{6} \mu\left(x_{2, p}^{2} \mathcal{H} 2 x_{1, p}^{2}\right) \\
& +\mathcal{O}\left(\varepsilon^{8}\right), \\
H_{N}=\frac{1}{2}\left(y_{1, p}^{2}+y_{2, p}^{2}\right) \mathcal{H} \frac{1}{\sqrt{x_{1, p}^{2}+x_{2, p}^{2}}} & +\varepsilon^{3}\left(x_{2, p} y_{1, p} \mathcal{H} x_{1, p} y_{2, p}\right)+\varepsilon^{4}\left(c_{1} x_{1, p}+c_{2} x_{2, p}\right) \\
+ & \varepsilon^{6}\left(d_{1} x_{1, p}^{2}+d_{2} x_{1, p} x_{2, p}+d_{3} x_{2, p}^{2}\right)+\mathcal{O}\left(\varepsilon^{8}\right)
\end{aligned}
$$

where c_{1}, c_{2} and d_{1}, d_{2}, d_{3} are constant terms that depend on a_{k} and m_{k}.

Levi-Civita Regularisation

- We apply a parabolic symplectic transformation:

$$
x_{1, p}=u^{2} \mathcal{H} v^{2}, \quad x_{2, p}=2 u v, \quad y_{1, p}=\frac{u U \mathcal{H} v V}{2\left(u^{2}+v^{2}\right)}, \quad y_{2, p}=\frac{u V+v V}{2\left(u^{2}+v^{2}\right)},
$$

together with

$$
\frac{d t}{d s}=u^{2}+v^{2}
$$

- We fix an energy level $h<0$ and the frequency $w=\sqrt{\mathcal{H} 8 h}$.
- After an appropriate scaling the dominant term becomes

$$
\frac{1}{2}\left(U^{2}+V^{2}+u^{2}+v^{2}\right)
$$

Higher-order terms are a polynomial perturbation of the harmonic oscillator.

Action-Angle Coordinates

We put the Hamiltonian in Lissajous action-angle variables $\left(\varphi_{i}, \Phi_{i}\right)$:

$$
\begin{aligned}
u & =\sqrt{\left(\Phi_{1}+\Phi_{2}\right) / 2} \cos \left(\varphi_{1}+\varphi_{2}\right) \mathcal{H} \sqrt{\left(\Phi_{1} \mathcal{H} \Phi_{2}\right) / 2} \cos \left(\varphi_{1} \mathcal{H} \varphi_{2}\right) \\
v & =\sqrt{\left(\Phi_{1}+\Phi_{2}\right) / 2} \sin \left(\varphi_{1}+\varphi_{2}\right)+\sqrt{\left(\Phi_{1} \mathcal{H} \Phi_{2}\right) / 2} \sin \left(\varphi_{1} \mathcal{H} \varphi_{2}\right) \\
U & =\mathcal{H} \sqrt{\left(\Phi_{1}+\Phi_{2}\right) / 2} \sin \left(\varphi_{1}+\varphi_{2}\right)+\sqrt{\left(\Phi_{1} \mathcal{H} \Phi_{2}\right) / 2} \sin \left(\varphi_{1} \mathcal{H} \varphi_{2}\right) \\
V & =\sqrt{\left(\Phi_{1}+\Phi_{2}\right) / 2} \cos \left(\varphi_{1}+\varphi_{2}\right)+\sqrt{\left(\Phi_{1} \mathcal{H} \Phi_{2}\right) / 2} \cos \left(\varphi_{1} \mathcal{H} \varphi_{2}\right)
\end{aligned}
$$

Then we average with respect to φ_{1} first and φ_{2} later, so that we push them to higher orders.

Symplectic Reduction

After truncating remainder and fixing $\Phi_{1}=L$, we rewrite the Hamiltonians in terms of invariants:

$$
i_{1}=\frac{1}{2} \sqrt{L^{2} \mathcal{H} \Phi_{2}^{2}} \cos \varphi_{2}, \quad i_{2}=\frac{1}{2} \sqrt{L^{2} \mathcal{H} \Phi_{2}^{2}} \sin \varphi_{2}, \quad i_{3}=\frac{\Phi_{2}}{2} .
$$

(1) The poles correspond to circular solutions with opposite orientation.
(2) The circles around the poles are KAM $2 D$-tori.
(3) When moving towards the equator, the eccentricity of the quasi-periodic orbits increases until arriving at rectilinear motions $\left(i_{3}=0\right)$.

Normalised Hamiltonian Functions

We scale the angular momentum Φ_{2} to $\varepsilon^{6} \Phi_{2}$ (three-body and N-body if $c_{i}=0$) or to $\varepsilon^{4} \Phi_{2}$ (N-body if some $c_{i} \neq 0$), as the orbits are near rectilinear:

$$
\begin{gathered}
H_{3}=\Phi_{1} \mathcal{H} \varepsilon^{6} \frac{5 \mu \Phi_{1}^{3}}{2 w^{4}} \mathcal{H} \varepsilon^{9} \frac{2 \Phi_{1} \Phi_{2}}{w^{2}}+\mathcal{O}\left(\varepsilon^{10}\right) \\
H_{N}=\Phi_{1}+\varepsilon^{6} \frac{5\left(d_{1}+d_{3}\right) \Phi_{1}^{3}}{w^{4}} \mathcal{H} \varepsilon^{7} \frac{2 \Phi_{1} \Phi_{2}}{w^{2}}+\mathcal{O}\left(\varepsilon^{8}\right) \quad\left(\text { if some } c_{i} \neq 0\right) \\
H_{N}=\Phi_{1}+\varepsilon^{6} \frac{5\left(d_{1}+d_{3}\right) \Phi_{1}^{3}}{w^{4}} \mathcal{H} \varepsilon^{9} \frac{2 \Phi_{1} \Phi_{2}}{w^{2}}+\mathcal{O}\left(\varepsilon^{18}\right) \quad\left(\text { if } c_{1}=c_{2}=0\right)
\end{gathered}
$$

As the actions appear in three different scales, the Hamiltonians are very degenerate.

Invariant Tori in Hamiltonian Systems with High-Order Proper Degeneracy

Han, Li, Yi (2010)
Let

$$
h(I, \varphi, \varepsilon)=h_{0}\left(I^{n_{0}}\right)+\varepsilon^{\beta_{1}} h_{1}\left(I^{n_{1}}\right)+\ldots+\varepsilon^{\beta_{a}} h_{a}\left(I^{n_{a}}\right)+\varepsilon^{\beta_{a}+1} p(I, \varphi, \varepsilon),
$$

such that the intermediate Hamiltonian admits a family of invariant n-tori.
Let

- $\bar{I}^{n_{i}}=\left(I_{n_{i-1}+1}, \ldots, I_{n_{i}}\right)$, with $n_{-1}=0$ and $\bar{I}^{n_{0}}=I^{n_{0}}$.
- $\Omega=\left(\nabla_{\bar{I}^{n_{0}}} h_{0}\left(I^{n_{0}}\right), \ldots, \nabla_{\bar{I}^{n_{a}}} h_{n_{a}}\left(I^{n_{a}}\right)\right), i=0,1, \ldots, a$.
- Condition to be satisfied: $\operatorname{Rank}\left\{\partial_{I}^{\alpha} \Omega(I): 0 \leq|\alpha| \leq s\right\}=n$.

There exists a Cantor family of real analytic invariant n-tori with excluding measure for the existence of invariant tori $\mathcal{O}\left(\varepsilon^{\delta / s}\right)$ with $0<\delta<1 / 5$.

Application of Han-Li-Yi Theorem

It is enough to build the matrix

$$
\Omega=\left(\frac{\partial h_{0}}{\partial \Phi_{1}}, \frac{\partial h_{1}}{\partial \Phi_{1}}, \frac{\partial h_{2}}{\partial \Phi_{2}}\right)
$$

where h_{0}, h_{1}, h_{2} are the first three terms of the Hamiltonians and the matrix

$$
A=\left(\begin{array}{lll}
\Omega, & \frac{\partial \Omega}{\partial \Phi_{1}}, & \frac{\partial \Omega}{\partial \Phi_{2}}
\end{array}\right) .
$$

- Since $\mathcal{H} 1 /\left(2 n^{2 / 3}\right)$ is a minor of order two then $\operatorname{Rank}(A)=2$ and we can ensure the persistence of invariant $2 D$-tori of rectilinear type.
- The excluding measure for the persistence of these KAM tori is improved to be of an order ε^{7} or ε^{9}.

Next Steps

(1) On the 2 -sphere, we solve the variational equations of the reduced system order by order to determine the quasi-periodic solutions of rectilinear type.
(2) Return to the initial rectangular coordinates, i.e. undo the successive transformations: (i) normalisation procedure; (ii) from Lissajous to LC coordinates; (iii) from LC to rectangular coordinates.

The (approximate) quasi-periodic solutions of rectilinear type we have determined depend upon a parameter.

How to Get the EC Orbits?

To characterise EC orbits we use the idea of T.-M. Seara et al.:
Assume ε small enough: an ejection orbit is an EC orbit if and only if it satisfies that at a minimum in the distance (with the primary) the angular momentum $M=u V \mathcal{H} v U=0$.

We compute the time t_{0} such that the infinitesimal particle gets the n-th minimum in the distance, so for $\theta_{0} \in[0, \pi)$ we get $M\left(t_{0}\right)$ as

$$
\begin{aligned}
M_{3}\left(t_{0}\right)= & \mathcal{H} \frac{15 \pi}{n^{4 / 3}} \varepsilon^{6} \mu \sin \left(4 \theta_{0}\right)+\mathcal{O}\left(\varepsilon^{8}\right) \\
M_{N}\left(t_{0}\right)= & \frac{6 \pi}{n^{2 / 3}} \varepsilon^{4}\left(c_{2} \cos \left(2 \theta_{0}\right) \mathcal{H} c_{1} \sin \left(2 \theta_{0}\right)\right) \\
& \mathcal{H} \frac{10 \pi}{n^{4 / 3}} \varepsilon^{6}\left(\left(d_{3} \mathcal{H} d_{1}\right) \sin \left(4 \theta_{0}\right)+d_{2} \cos \left(4 \theta_{0}\right)\right)+\mathcal{O}\left(\varepsilon^{7}\right)
\end{aligned}
$$

Main Result

Theorem

In the planar restricted N-body problem, when the particle is in a sufficiently small neighbourhood of one of the primaries, for any $n \in \mathbb{N}$, there exist either two or four families of n - EC orbits depending on the configuration of the primaries.
If $c_{1} c_{2} \neq 0$ there are two families of $n-E C$, if $c_{1} c_{2}=0$ and $\left(d_{3} \mathcal{H} d_{1}\right) d_{2} \neq 0$ there are four families.

Some Cases

- All configurations we have checked: equilateral Lagrangian triangle, colinear with $N \mathcal{H} 1$ masses (either evenly distributed or with the same masses), rhomb, kite, etc. satisfy $c_{1}=c_{2}=0$ and there are four n-EC solutions.
- The exceptions are the regular $N \mathcal{H}$ 1-polygon central configurations (with or without) the infinitesimal body around one vertex as then $c_{1} \neq 0$ and there are two n-EC solutions.

A Picture for the Restricted Circular Three-Body Problem

Figure: n-EC orbits to the big primary of the CRTBP in $\left(x_{1}, x_{2}\right)$-coordinates for $n=3, \mu=\frac{1}{3}, \varepsilon=0.5$. Blue: $\theta_{0}=0$. Red: $\theta_{0}=\frac{\pi}{4}$. Yellow: $\theta_{0}=\frac{\pi}{2}$. Green: $\theta_{0}=\frac{3 \pi}{4}$.

Regular $N \mathcal{H}$ 2-Polygon with a Central Mass

- When the infinitesimal particle is in the neighbourhood of the central mass there are $2 N \mathcal{H} 2 \mathrm{EC}$ solutions.

Figure: (Left) Position of the primaries in the rotating coordinates system. In red the primary in the neighborhood of with moves the particle. (Right) n-EC orbits with $N=6, n=4$ and $\varepsilon=1 / 3$. Blue: $\theta_{0}=0$. Red: $\theta_{0}=\pi / 4$. Yellow: $\theta_{0}=\pi / 2$. Green: $\theta_{0}=3 \pi / 4$. Purple: $\theta_{0}=\pi / 8$. Pink: $\theta_{0}=3 \pi / 8$. Brown: $\theta_{0}=5 \pi / 8$. Black: $\theta_{0}=7 \pi / 8$.

Contents

(1) Goal and Method

2 Restricted Circular Three- and N-Body Problems

(3) Spatial Restricted Circular Three-Body Problems

Hamiltonian Function

For the spatial RCTBP the Hamiltonian of the infinitesimal particle is

$$
\begin{aligned}
H_{3}= & \frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \mathcal{H}\left(x_{1} y_{2} \mathcal{H} x_{2} y_{1}\right) \\
& \mathcal{H} \frac{1 \mathcal{H} \mu}{\sqrt{\left(\mu+x_{1}\right)^{2}+x_{2}^{2}+x_{3}^{2}}} \mathcal{H} \frac{\mu}{\sqrt{\left(\mu+x_{1} \mathcal{H} 1\right)^{2}+x_{2}^{2}+x_{3}^{2}}}
\end{aligned}
$$

(1) 3 DOF Hamiltonian system.
(2) There are Lagrangian 3-KAM tori in different regions of phase space.
(3) Some near the coplanar plane and some near vertical to them.

Main Idea

We use a similar approach to the planar case with some remarks:
(1) We apply Moser regularisation of the Kepler problem, valid for n dimensions.
(2) The reduced space is the manifold $S^{2} \times S^{2}$.
(3) We apply a theory that combines normalisation with reduction, to get the quasi-periodic solutions related to nearly vertical and rectilinear motions.

