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Figure 3. The lunar problem.

with masses m1 and m2 and are located at the points (−µ, 0) and (1 − µ, 0), respectively.
Parameter µ = m1/(m1 +m2) (it is assumed that m1 ≥ m2). The motion of the infinitesimal
particle is confined to either one of the yellow regions around the primaries. The points
L1, . . . , L5 are the equilibria of the restricted three-body problem in the rotating frame. The
infinitesimal particle touches neither L1 nor L2.

We start with the Hamiltonian of the planar circular restricted three-body problem in
rotating coordinates given by

(13) H =
1

2
(y21 + y22)− (x1y2 − x2y1)−

µ√
(x1 − 1 + µ)2 + x22

− 1− µ√
(x1 + µ)2 + x22

.

We now change coordinates in order to bring H into suitable form. First we perform the
linear change from y2 and x1 to y2 − µ and x1 − µ, respectively, to bring one primary to the
origin. Then, we introduce a small parameter ε by replacing y = (y1, y2) by ε−1(1 − µ)1/3y
and x = (x1, x2) by ε2(1 − µ)1/3x. By doing so we restrict H to a particular case where the
infinitesimal particle is moving around one of the primaries. This change is symplectic with
multiplier ε−1(1− µ)−2/3; thus H must be replaced by ε−1(1− µ)−2/3H.

In the next step, we scale time by dividing t by ε3 and multiplying H by ε3. Then we
expand the resulting Hamiltonian in powers of ε to get

(14) Hε =
1

2
(y21 + y22)−

1√
x21 + x22

− ε3(x1y2 − x2y1) +
1

2
ε6µ(−2x21 + x22) + · · · .

The zeroth-order term is the Hamiltonian of the Kepler problem and the O(ε3) term is due to
the rotating coordinates. It is not until O(ε6) that the second primary influences the motion.

Source: T.-M. Seara, M. Ollé, Ó. Rodrı́guez, J. Soler: Journal of Nonlinear
Science (2023).
Goal: Prove the existence of ejection-collision (EC) orbits in the restricted
circular three-body problem applying a different approach.
Ayape, Palacián & Yanguas (UPNA) Ejection-Collision Solutions 11/7/2024 2 / 25



Goal and Method

Contents

1 Goal and Method

2 Restricted Circular Three- and N-Body Problems

3 Spatial Restricted Circular Three-Body Problems

Ayape, Palacián & Yanguas (UPNA) Ejection-Collision Solutions 11/7/2024 3 / 25



Goal and Method

Purpose and Techniques

What: Provide a proof on the existence of EC solutions in the planar restricted
circular three-body problem relating these orbits to the KAM 2-tori of

“rectilinear” type.

How: Applying regularisation, normalisation, symplectic reduction and a
special KAM theorem.
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Goal and Method

Other Cases

1 Ejection-collision orbits from one primary body to the other (M.J.
Capiński, S. Kepley, J.D. Mireles James).

2 Orbits of infinitesimal body which are asymptotic to L4 in backward time
and collide with a primary in forward time (M.J. Capiński, S. Kepley,
J.D. Mireles James).

3 Parabolic ejection-collision orbits for the restricted planar circular three
body problem (M. Guardia, J. Lamas, T.-M. Seara): go arbitrarily far
away for small values of the mass ratio.

4 ...

This is a classic problem, treated mainly using numerical approaches but also
applying analytical tools.
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Goal and Method

EC Solutions Related to Quasi-Periodic Motions of
Rectilinear Type

It seems rather natural to link these solutions with the invariant tori leading to
motions near rectilinear in different classes of N-body problems:

1 Sitnikov restricted problems;
2 planar and spatial restricted circular three-body problems;
3 planar and spatial three-body problems;
4 extension to N-body problems.

Common feature: One particle (the infinitesimal in the restricted cases) is near
to another mass).

This is what is called Lunar regime
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Goal and Method

Quasi-Periodic Motions in the Spatial Three-Body Problem

Source: J.F. P., F. Sayas, P. Yanguas: Journal of Differential Equations (2024)
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PRNBP

Hamiltonian Functions

• For the planar RCTBP the Hamiltonian of the infinitesimal particle is

H3 =
1
2

(y2
1 +y2

2)H(x1y2Hx2y1)H 1H µ√
(µ+ x1)2 + x2

2

H µ√
(µ+ x1 H 1)2 + x2

2

.

• For the (restricted) N-body case, if (ak,mk) is a central configuration, it is

HN =
1
2

(y2
1 + y2

2)H (x1y2 H x2y1)H
N−1∑

k=1

mk√
(x1 H ak1)2 + (x2 H ak2)2

.

The central configuration can be the Lagrangian triangle, colineal, rhomb,
kite, N-polygonal, etc.
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PRNBP

Lunar Regime

The infinitesimal particle moves in the neighbourhood of one primary: ε is
introduced as

(x1,p, x2,p)→ ε2m1/3
1 (x1,p, x2,p), (y1,p, y2,p)→ ε−1m1/3

1 (y1,p, y2,p).

Resulting Hamiltonian functions:

H3 = 1
2(y2

1,p + y2
2,p)H 1√

x2
1,p + x2

2,p

+ε3(x2,py1,pHx1,py2,p)+1
2ε

6µ
(
x2

2,p H 2x2
1,p
)

+O(ε8),

HN = 1
2(y2

1,p + y2
2,p)H 1√

x2
1,p + x2

2,p

+ε3(x2,py1,pHx1,py2,p)+ε4(c1x1,p+c2x2,p)

+ ε6(d1x2
1,p + d2x1,px2,p + d3x2

2,p) +O(ε8),

where c1, c2 and d1, d2, d3 are constant terms that depend on ak and mk.
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PRNBP

Levi-Civita Regularisation

•We apply a parabolic symplectic transformation:

x1,p = u2 H v2, x2,p = 2uv, y1,p =
uU H vV

2(u2 + v2)
, y2,p =

uV + vV
2(u2 + v2)

,

together with
dt
ds

= u2 + v2.

•We fix an energy level h < 0 and the frequency w =
√
H8h.

• After an appropriate scaling the dominant term becomes

1
2

(U2 + V2 + u2 + v2).

Higher-order terms are a polynomial perturbation of the harmonic oscillator.
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PRNBP

Action-Angle Coordinates

We put the Hamiltonian in Lissajous action-angle variables (ϕi,Φi):

u =
√

(Φ1 + Φ2)/2 cos(ϕ1 + ϕ2)H
√

(Φ1 H Φ2)/2 cos(ϕ1 H ϕ2),

v =
√

(Φ1 + Φ2)/2 sin(ϕ1 + ϕ2) +
√

(Φ1 H Φ2)/2 sin(ϕ1 H ϕ2),

U = H
√

(Φ1 + Φ2)/2 sin(ϕ1 + ϕ2) +
√

(Φ1 H Φ2)/2 sin(ϕ1 H ϕ2),

V =
√

(Φ1 + Φ2)/2 cos(ϕ1 + ϕ2) +
√

(Φ1 H Φ2)/2 cos(ϕ1 H ϕ2).

Then we average with respect to ϕ1 first and ϕ2 later, so that we push them to
higher orders.
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PRNBP

Symplectic Reduction

After truncating remainder and fixing Φ1 = L, we rewrite the Hamiltonians in
terms of invariants:

i1 =
1
2

√
L2 H Φ2

2 cosϕ2, i2 =
1
2

√
L2 H Φ2

2 sinϕ2, i3 =
Φ2

2
.

1 The poles correspond to circular solutions with opposite orientation.
2 The circles around the poles are KAM 2D-tori.
3 When moving towards the equator, the eccentricity of the quasi-periodic

orbits increases until arriving at rectilinear motions (i3 = 0).
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PRNBP

Normalised Hamiltonian Functions

We scale the angular momentum Φ2 to ε6Φ2 (three-body and N-body if
ci = 0) or to ε4Φ2 (N-body if some ci 6= 0), as the orbits are near rectilinear:

H3 = Φ1 H ε6 5µΦ3
1

2w4 H ε
9 2Φ1Φ2

w2 +O(ε10),

HN = Φ1 + ε6 5(d1 + d3)Φ3
1

w4 H ε7 2Φ1Φ2

w2 +O(ε8) (if some ci 6= 0),

HN = Φ1 + ε6 5(d1 + d3)Φ3
1

w4 H ε9 2Φ1Φ2

w2 +O(ε18) (if c1 = c2 = 0).

As the actions appear in three different scales, the Hamiltonians are very
degenerate.
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PRNBP

Invariant Tori in Hamiltonian Systems with High-Order
Proper Degeneracy

Han, Li, Yi (2010)
Let

h(I, ϕ, ε) = h0(In0) + εβ1h1(In1) + . . .+ εβaha(Ina) + εβa+1p(I, ϕ, ε),

such that the intermediate Hamiltonian admits a family of invariant n-tori.

Let
Īni = (Ini−1+1, . . . , Ini), with n−1 = 0 and Īn0 = In0 .

Ω =
(
∇Īn0 h0(In0), . . . ,∇Īna hna(Ina)

)
, i = 0, 1, . . . , a.

Condition to be satisfied: Rank
{
∂αI Ω(I) : 0 ≤ |α| ≤ s

}
= n.

There exists a Cantor family of real analytic invariant n-tori with
excluding measure for the existence of invariant tori O(εδ/s) with
0 < δ < 1/5.
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PRNBP

Application of Han-Li-Yi Theorem

It is enough to build the matrix

Ω =

(
∂h0

∂Φ1
,
∂h1

∂Φ1
,
∂h2

∂Φ2

)
,

where h0, h1, h2 are the first three terms of the Hamiltonians and the matrix

A =

(
Ω,

∂Ω

∂Φ1
,

∂Ω

∂Φ2

)
.

• Since H1/(2n2/3) is a minor of order two then Rank(A) = 2 and we can
ensure the persistence of invariant 2D-tori of rectilinear type.

• The excluding measure for the persistence of these KAM tori is improved to
be of an order ε7 or ε9.
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PRNBP

Next Steps

1 On the 2-sphere, we solve the variational equations of the reduced
system order by order to determine the quasi-periodic solutions of
rectilinear type.

2 Return to the initial rectangular coordinates, i.e. undo the successive
transformations: (i) normalisation procedure; (ii) from Lissajous to LC
coordinates; (iii) from LC to rectangular coordinates.

The (approximate) quasi-periodic solutions of rectilinear type we have
determined depend upon a parameter.
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PRNBP

How to Get the EC Orbits?

To characterise EC orbits we use the idea of T.-M. Seara et al.:

Assume ε small enough: an ejection orbit is an EC orbit if and only if it
satisfies that at a minimum in the distance (with the primary) the angular
momentum M = uV H vU = 0.

We compute the time t0 such that the infinitesimal particle gets the n-th
minimum in the distance, so for θ0 ∈ [0, π) we get M(t0) as

M3(t0) = H15π
n4/3 ε

6µ sin(4θ0) +O(ε8),

MN(t0) =
6π

n2/3 ε
4 (c2 cos(2θ0)H c1 sin(2θ0))

H10π
n4/3 ε

6 ((d3 H d1) sin(4θ0) + d2 cos(4θ0)) +O(ε7).
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PRNBP

Main Result

Theorem
In the planar restricted N-body problem, when the particle is in a sufficiently
small neighbourhood of one of the primaries, for any n ∈ N, there exist either
two or four families of n-EC orbits depending on the configuration of the
primaries.

If c1c2 6= 0 there are two families of n-EC, if c1c2 = 0 and (d3 H d1)d2 6= 0
there are four families.
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PRNBP

Some Cases

• All configurations we have checked: equilateral Lagrangian triangle,
colinear with N H 1 masses (either evenly distributed or with the same
masses), rhomb, kite, etc. satisfy c1 = c2 = 0 and there are four n-EC
solutions.

• The exceptions are the regular N H 1-polygon central configurations (with
or without) the infinitesimal body around one vertex as then c1 6= 0 and there
are two n-EC solutions.
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PRNBP

A Picture for the Restricted Circular Three-Body Problem
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Figure: n-EC orbits to the big primary of the CRTBP in (x1, x2)-coordinates for
n = 3, µ = 1

3 , ε = 0.5. Blue: θ0 = 0. Red: θ0 = π
4 . Yellow: θ0 = π

2 . Green: θ0 = 3π
4 .
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PRNBP

Regular N H 2-Polygon with a Central Mass

•When the infinitesimal particle is in the neighbourhood of the central mass
there are 2N H 2 EC solutions.
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Figure: (Left) Position of the primaries in the rotating coordinates system. In red the
primary in the neighborhood of with moves the particle. (Right) n-EC orbits with
N = 6, n = 4 and ε = 1/3. Blue: θ0 = 0. Red: θ0 = π/4. Yellow: θ0 = π/2. Green:
θ0 = 3π/4. Purple: θ0 = π/8. Pink: θ0 = 3π/8. Brown: θ0 = 5π/8. Black:
θ0 = 7π/8.
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SRCBP

Hamiltonian Function

For the spatial RCTBP the Hamiltonian of the infinitesimal particle is

H3 =
1
2

(y2
1 + y2

2 + y2
3)H (x1y2 H x2y1)

H 1H µ√
(µ+ x1)2 + x2

2 + x2
3

H µ√
(µ+ x1 H 1)2 + x2

2 + x2
3

.

1 3 DOF Hamiltonian system.
2 There are Lagrangian 3-KAM tori in different regions of phase space.
3 Some near the coplanar plane and some near vertical to them.
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SRCBP

Main Idea

We use a similar approach to the planar case with some remarks:

1 We apply Moser regularisation of the Kepler problem, valid for n
dimensions.

2 The reduced space is the manifold S2 × S2.
3 We apply a theory that combines normalisation with reduction, to get the

quasi-periodic solutions related to nearly vertical and rectilinear motions.

Ayape, Palacián & Yanguas (UPNA) Ejection-Collision Solutions 11/7/2024 25 / 25


	Presentation
	Goal and Method
	Restricted Circular Three- and N-Body Problems
	Spatial Restricted Circular Three-Body Problems


