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Ejection-Collision Trajectories

XY

Source: T.-M. Seara, M. OlI€, 0. Rodriguez, J. Soler: Journal of Nonlinear
Science (2023).

Goal: Prove the existence of ejection-collision (EC) orbits in the restricted
circular three-body problem applying a different approach.
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Goal and Method
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Goal and Method

Purpose and Techniques

What: Provide a proof on the existence of EC solutions in the planar restricted
circular three-body problem relating these orbits to the KAM 2-tori of
“rectilinear” type.

How: Applying regularisation, normalisation, symplectic reduction and a
special KAM theorem.
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Other Cases

@ Ejection-collision orbits from one primary body to the other (M.J.
Capinski, S. Kepley, J.D. Mireles James).

@ Orbits of infinitesimal body which are asymptotic to L4 in backward time
and collide with a primary in forward time (M.J. Capinski, S. Kepley,
J.D. Mireles James).

© Parabolic ejection-collision orbits for the restricted planar circular three
body problem (M. Guardia, J. Lamas, T.-M. Seara): go arbitrarily far
away for small values of the mass ratio.

[ T

This is a classic problem, treated mainly using numerical approaches but also
applying analytical tools.
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Goal and Method

EC Solutions Related to Quasi-Periodic Motions of
Rectilinear Type

It seems rather natural to link these solutions with the invariant tori leading to
motions near rectilinear in different classes of N-body problems:

© Sitnikov restricted problems;

© planar and spatial restricted circular three-body problems;

© planar and spatial three-body problems;

© extension to N-body problems.

Common feature: One particle (the infinitesimal in the restricted cases) is near
to another mass).

This is what is called Lunar regime
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Quasi-Periodic Motions in the Spatial Three-Body Problem

Source: J.F. P, F. Sayas, P. Yanguas: Journal of Differential Equations (2024)
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PRNBP
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PRNBP

Hamiltonian Functions

e For the planar RCTBP the Hamiltonian of the infinitesimal particle is

1 1H
H; = E(Y%+y%)H(x1y2HXZYI),H a H a

(n+x1)2+x3 (1 +x1 H1)2+ x3
2 2

e For the (restricted) N-body case, if (ax, my) is a central configuration, it is

N—1
1 my

Hy = = (y +¥3) H (x1y2 Hoxoyr) H .
27 1;1 Vi Han)? + (v Ha)?

The central configuration can be the Lagrangian triangle, colineal, rhomb,
kite, N-polygonal, etc.
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PRNBP

Lunar Regime

The infinitesimal particle moves in the neighbourhood of one primary: ¢ is
introduced as

1/3 _1.1/3
(X1,ps%2,p) = 52’"1/ (X195 %2,p)s (Vs y2p) — € 1’”1/ V1ps ¥2,0)-

Resulting Hamiltonian functions:

5 . 1
H3 = %(.\T.p + .\%p) H \/+63 (x2717y17177_['x1:17y2717)+%56# (x%J? H 2x%,ﬁ)
+ X
1,p 2

+0(*),
+e (xl,pyl,pml,pylp)"‘g(Clxl,p+02x2,p)

+ 86(d1x%7p + dyx1 px2p + d3x%,p) + (9(58),

where c1, c; and d, d,, d3 are constant terms that depend on a; and my.
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PRNBP

Levi-Civita Regularisation

e We apply a parabolic symplectic transformation:

24 0 ul HvV uV +vv
Yp ZUTHY xap =2uv, yip = 202 +42)" T T 202 12)
together with
T u 4+ v

e We fix an energy level & < 0 and the frequency w = v/ HS8h.
e After an appropriate scaling the dominant term becomes

1
5(U2 + V2 +07).

Higher-order terms are a polynomial perturbation of the harmonic oscillator.
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PRNBP

Action-Angle Coordinates

We put the Hamiltonian in Lissajous action-angle variables (¢;, ®;):

u=/(9+ ®)/2 cos(p1 + p2) H+/(P1 H P2)/2 cos(p1 H ),

v =1/(®1 + ®2)/2 sin(p1 + @2) + /(P H P2)/2 sin(p1 H ),

U=H\/ (P + P2)/2 sin(p) + v2) + /(P H P2)/2 sin(p; Hea),

V =1/(®1+ P2)/2 cos(p1 + ¥2) + /(D1 HDP2)/2 cos(p1 Hpa).

Then we average with respect to ¢ first and ¢ later, so that we push them to
higher orders.
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Symplectic Reduction

After truncating remainder and fixing ®; = L, we rewrite the Hamiltonians in
terms of invariants:

1 1 )
i = Ey/LZHq)%cosgoz, i = T/LZchgsingpz, iy = 72

@ The poles correspond to circular solutions with opposite orientation.

© The circles around the poles are KAM 2D-tori.

© When moving towards the equator, the eccentricity of the quasi-periodic
orbits increases until arriving at relctilinear motions (i3 = 0).
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Normalised Hamiltonian Functions

We scale the angular momentum ®; to e, (three-body and N-body if
ci =0)ortoe*®, (N -body if some ¢; # 0), as the orbits are near rectilinear:

5uP3 29,D
1% 912_|_

Hy = @ He— 3t He' =

10
2+ 0(),

63(d) + d3)®3 gy 7201 %

Hy =® +¢ 3 > + (’)(68) (if some ¢; # 0),
w w

5(d; + d3)®3 20,
6(1+43) 19729 122

+0E®) (ife; = =0).
w

HNI(I)1+€

As the actions appear in three different scales, the Hamiltonians are very
degenerate.
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PRNBP

Invariant Tori in Hamiltonian Systems with High-Order
Proper Degeneracy

Han, Li, Yi (2010)
Let

h(I,¢,€) = ho(I") + P hy (I") + ... + %o (I") + % Hp(1, 0, ),
such that the intermediate Hamiltonian admits a family of invariant n-tori.

Let
o "= (In_,41,-..,1n), withn_y = 0 and I = [".

° 0= (v;noho(lno), N .,vjnah,,,,(lﬂa)>, i=0,1,....a.
e Condition to be satisfied: Rank{@,“Q(l) :0<|al < s} =n.

There exists a Cantor family of real analytic invariant n-tori with
excluding measure for the existence of invariant tori O (/%) with
0<d<1/s.
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Application of Han-Li-Y1 Theorem

It is enough to build the matrix

0 Ohy Ohy Ohy
\ 0D, 9P, 0D, )’

where hg, hy, hy are the first three terms of the Hamiltonians and the matrix
a=(a o0 7 o0 '
0®," 09,

e Since H1/(2n*/3) is a minor of order two then Rank(A) = 2 and we can
ensure the persistence of invariant 2D-tori of rectilinear type.

e The excluding measure for the persistence of these KAM tori is improved to

be of an order £’ or £°.
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Next Steps

© On the 2-sphere, we solve the variational equations of the reduced
system order by order to determine the quasi-periodic solutions of
rectilinear type.

@ Return to the initial rectangular coordinates, i.e. undo the successive
transformations: (i) normalisation procedure; (ii) from Lissajous to LC
coordinates; (iii) from LC to rectangular coordinates.

The (approximate) quasi-periodic solutions of rectilinear type we have
determined depend upon a parameter.
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PRNBP

How to Get the EC Orbits?

To characterise EC orbits we use the idea of T.-M. Seara et al.:

Assume ¢ small enough: an ejection orbit is an EC orbit if and only if it

satisfies that at a minimum in the distance (with the primary) the angular
momentum M = uV HvU = 0.

We compute the time fy such that the infinitesimal particle gets the n-th
minimum in the distance, so for 6y € [0, 7) we get M(fy) as

157

M;(ty) = 7—[”4/3 O sin(46y) + O(£),

6
My(ty) = nz%szt (€2 cos(26p) H c1 sin(26p))

10
HT;;56 ((ds Hdy) sin(460y) + d cos(46y)) + O(e).
n
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Main Result

Theorem

In the planar restricted N-body problem, when the particle is in a sufficiently
small neighbourhood of one of the primaries, for any n € N, there exist either
two or four families of n-EC orbits depending on the configuration of the
primaries.

If c1cy # O there are two families of n-EC, if cic; = 0 and (dz Hdy)dy # 0
there are four families.
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PRNBP

Some Cases

o All configurations we have checked: equilateral Lagrangian triangle,
colinear with N H 1 masses (either evenly distributed or with the same
masses), thomb, kite, etc. satisfy ¢; = ¢, = 0 and there are four n-EC
solutions.

e The exceptions are the regular N H 1-polygon central configurations (with
or without) the infinitesimal body around one vertex as then ¢; # 0 and there
are two n-EC solutions.
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A Picture for the Restricted Circular Three-Body Problem

x2

0.2

0.1

Figure: n-EC orbits to the big primary of the CRTBP in (x;, x; )-coordinates for
n=3u= %,5 = 0.5. Blue: 6y = 0. Red: 0y = 7. Yellow: 0y = 7. Green: 0y = 37”.
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Regular N H 2-Polygon with a Central Mass

e When the infinitesimal particle is in the neighbourhood of the central mass
there are 2N H 2 EC solutions.

Figure: (Left) Position of the primaries in the rotating coordinates system. In red the
primary in the neighborhood of with moves the particle. (Right) n-EC orbits with

N =6,n=4ande = 1/3. Blue: 6y = 0. Red: 6y = 7/4. Yellow: 6y = /2. Green:
6y = 37w /4. Purple: 6y = /8. Pink: 6y = 37/8. Brown: 6y = 57 /8. Black:

90 = 77T/8
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SRCBP

Hamiltonian Function

For the spatial RCTBP the Hamiltonian of the infinitesimal particle is
_ 2, 2., .2

H3y = - (v +y3 +y3) H (x1y2 Hxoy1)

1H
H a H a .
\/(M+x1)2+x%—|—x§ \/(u+x1’Hl)2+x§+x%

| =

© 3 DOF Hamiltonian system.
© There are Lagrangian 3-KAM tori in different regions of phase space.

© Some near the coplanar plane and some near vertical to them.
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Main Idea

We use a similar approach to the planar case with some remarks:
@ We apply Moser regularisation of the Kepler problem, valid for n
dimensions.
© The reduced space is the manifold S* x S2.

© We apply a theory that combines normalisation with reduction, to get the
quasi-periodic solutions related to nearly vertical and rectilinear motions.
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