
Rigid systems in the plane. Overview and new
results
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Rigid planar systems

We are going to deal with rigid planar polynomial systems.

Characterization of rigid systems

The origin is its only finite critical point and
the solutions rotate around the origin with constant angular velocity.

Rigid planar analytic systems can be written (after a change of time and
variables if necesary) as [Conti]{

x′ = −y + xF(x, y),

y′ = x + yF(x, y),
(1)

for some analytic function F(x, y).
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Basic definitions

A center is a critical point having a neighborhood such that all the
solutions are periodic.
A center is isochronous if all the periodic orbits around it take the same
time in doing a complete revolution.
A focus is a critical point such that the orbits spiral towards or from it in
positive time.
A periodic orbit γ(t) is a solution for which there exists T ∈ R+ such
that γ(T + t) = γ(t), for all t.

A limit cycle is an isolated periodic orbit.
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Rigid systems

{
x′ = −y + xF(x, y),

y′ = x + yF(x, y).
(1)

System (1) is monodromic if F(0, 0) = 0.

In the monodromic case, system (1) in polar coordinates writes as{
r′ = rF(r cos θ, r sin θ),

θ′ = 1,
(2) ⇐⇒ dr

dθ
= rF(r cos θ, r sin θ). (3)
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Isochronous centers

From the form in polar coordinates (2), we can deduce that if the origin is a
center, then it is isochronous.

The centers with constant angular velocity are called uniformly isochronous
centers.

Isochronous 6= uniformly isochronous

Loud QS: 
x′ = −y + xy,

y′ = x +
1
4

y2,
⇐⇒


r′ = r2 sin θ

4
(3 cos2 θ + 1),

θ′ = 1− 3
4

r cos θ sin2 θ,

it has an isochronous center at the origin that it is not uniformly isochronous.

M.J. Álvarez (Universitat de les Illes Balears) Rigid systems in the plane



Introduction
Overwiew: known results

New results
Open questions

Isochronous centers

From the form in polar coordinates (2), we can deduce that if the origin is a
center, then it is isochronous.

The centers with constant angular velocity are called uniformly isochronous
centers.

Isochronous 6= uniformly isochronous

Loud QS: 
x′ = −y + xy,

y′ = x +
1
4

y2,
⇐⇒


r′ = r2 sin θ

4
(3 cos2 θ + 1),

θ′ = 1− 3
4

r cos θ sin2 θ,

it has an isochronous center at the origin that it is not uniformly isochronous.
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Why are rigid systems interesting?

Any potential limit cycles, if they exist, have to be nested around the
origin. All limit cycles are periodic orbits of the associated generalized
Abel equation (3).
The center problem is equivalent to the isochronous problem.
Rudenok proved that any polynomial system with linear part (−y, x)t

has an isochronous center if and only it can be transformed into a rigid
system. Moreover, the change is of type

(x→ x + P(y2), y→ y + Q(x, y))
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Main problems for rigid planar system

Two main problems:

Center-focus problem: distinguishing between a center and a focus.
Number of limit cycles (lower and upper bounds).

REMARK: Rigid planar polynomial systems are equivalent to generalized
polynomial Abel equations.

For concrete systems, the center-focus problem is very difficult.
The number of limit cycles can be as large as desired (Lins-Neto).
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M.J. Álvarez (Universitat de les Illes Balears) Rigid systems in the plane



Introduction
Overwiew: known results

New results
Open questions

Center-focus problem

{
x′ = −y + xFn(x, y),

y′ = x + yFn(x, y).

Theorem (Conti)

Consider the previous system being Fn(x, y) a homogeneous polynomial of
degree n ≥ 1.
The origin of the system is a center if and only if either n is odd or n is even
and ∫ 2π

0
Fn(cos θ, sin θ) = 0.
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Center-focus problem

{
x′ = −y + x(F1(x, y) + Fn(x, y)),

y′ = x + y(F1(x, y) + Fn(x, y)).

{
x′ = −y + x(F2(x, y) + F2n(x, y)),

y′ = x + y(F2(x, y) + F2n(x, y)).

Theorem (Algaba-Reyes)

Consider the previous systems being Fk(x, y) a homogeneous polynomial of
degree k and with n > 1.
The origin of the any of both system is a center if and only if it is reversible.
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Lower bounds for the number of limit cycles

{
x′ = −y + x(F1(x, y) + Fn(x, y)),

y′ = x + y(F1(x, y) + Fn(x, y)).

Theorem (Algaba-Reyes)

There are systems in the family with at
least [ n

2 ] limit cycles.

{
x′ = −y + x(F2(x, y) + F2n(x, y)),

y′ = x + y(F2(x, y) + F2n(x, y)).

Theorem (Algaba-Reyes)

There are systems in the family with at
least n limit cycles.
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Lower bounds for the number of limit cycles{
x′ = −y + x(F0(x, y) + Fm(x, y) + Fn(x, y)),

y′ = x + y(F0(x, y) + Fm(x, y) + Fn(x, y)).

Theorem (Gasull-Torregrosa)

A lower bound for the number of limit cycles of the previous system is given
in the following table, depending on the degrees m, n :

m / n 1 2 3 4
0 0 1 0 1
1 - 2 2 3
2 - - 4 4

Rigid systems with F(x, y) having an even degree monomial, usually have a
rotatory parameter.
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Upper bounds

{
x′ = −y + x(a + fn(x, y)),

y′ = x + y(a + fn(x, y)).

Theorem (Gasull-Torregrosa)

Consider the previous system being fn a homogeneous polynomial of degree
n and define B =

∫ 2π
0 fn(cos θ, sin θ) dθ.

If B = 0 and a = 0 then it has a center at the origin and has no limit
cycles.

If a2 + B2 6= 0 and aB ≥ 0 then it has no periodic orbits.

If aB < 0 then it has at most a periodic orbit, which is, whenever exists,
a hyperbolic limit cycle.
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Upper bounds{
x′ = −y + xF(x, y),

y′ = x + yF(x, y).
(1)

Theorem (Gasull-Giacomini)

Given the general rigid system (1) with F of class C2, consider the function

H(x, y) = FxxFyy − F2
xy.

If H ≥ 0 and it vanishes on a null measure set, then the rigid system (1) has
at most LF(V) limit cycles, where

V = (x2 + y2)(xFFx + yFFy + xFy − yFx − 1− F2)

and LF(V) is the sum of the number of holes of the connected component of
the set R2 \ {V = 0} plus the number of limit cycles contained in {V = 0}.
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Studied family

We are going to study the polynomial rigid family{
x′ = −y + x(F1(x, y) + F3(x, y)),

y′ = x + y(F1(x, y) + F3(x, y)),
(4) ⇐⇒ r′ = B(θ)r2 + A(θ)r4,

where

F1(x, y) = b1x + b2y,

F3(x, y) = a1x3 + a2x2y + a3xy2 + a4y3,

B(θ) = b1 cos θ + b2 sin θ,

A(θ) = a1 cos
3 θ + a2 cos

2 θ sin θ + a3 cos θ sin
2 θ + a4 sin

3 θ.

It is the simplest family for which none of its parameters is rotatory.

It is possible to consider the parameter a4 = 0.
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Center conditions
Theorem
The origin of system (4) is a center if and only if

3a1b2 − a2b1 + a3b2 = 0 and b2(−3a3b2
1 + 2a2b1b2 + a3b2

2) = 0.

Proof.
Necessity: Lyapunov constants.
Sufficiency:

1 If b1 = b2 = 0, the system is integrable, and one first integral is

H(x, y) =
−1 + a2x3 − 3a1x2y− (2a1 + a3)y3

3
√

(x2 + y2)3
.

2 If b2
1 + b2

2 6= 0, the system is reversible with respect to the straight line
b1x + b2y = 0.
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Lower bound for the number of limit cycles
Proposition

There are systems inside the family (4) having at least one limit cycle.

Proof.
Consider next system (?)

x′ = −y + x
(

5x + y +
1 + 120a2π − 82ε

74π
x3 + a2x2y +

−3 + 10a2π + 98ε
74π

xy2
)
,

y′ = x + y
(

5x + y +
1 + 120a2π − 82ε

74π
x3 + a2x2y +

−3 + 10a2π + 98ε
74π

xy2
)
.

Its Lyapunov constants are

l2 = ε, l3 = 1.

Choosing ε < 0 small enough, one limit cycle is born from the origin by a
degenerate Hopf bifurcation.
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Non-existence of limit cycles

Theorem
Consider the family (4) for which it is not restrictive to assume b1 = 0, that
is, the family{

x′ = −y + x(b2y + a1x3 + a2x2y + a3xy2 + a4y3),

y′ = x + y(b2y + a1x3 + a2x2y + a3xy2 + a4y3).

If a1a3 ≥ 0 then the system has no limit cycles.

Proof.
We transform the system into the Abel equation and apply a criterium by
[Bravo-Torregrosa].
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Vector field on the Poincaré sphere

Proposition

The vector field (4) with a4 = 0, is topologically equivalent to the restriction
to the northern hemisphere of the system


z′1 = z3

(
−z2z3 + b1z2

1z2
3 + b2z1z2z2

3 + a1z4
1 + a2z3

1z2 + a3z2
1z2

2

)
,

z′2 = z3
(
z1z3 + b1z1z2z2

3 + b2z2
2z2

3 + a1z3
1z2 + a2z2

1z2
2 + a3z1z3

2

)
,

z′3 =
(
z2

3 − 1
) (

b1z1z2
3 + b2z2z2

3 + a1z3
1 + a2z2

1z2 + a3z1z2
2

)
.

(5)

Remark
By the classical compactification, the infinity is full of critical points. We
reparametrize the system and now the equator is no longer invariant.
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Critical points at infinity (simple ones)


z′1 = z3

(
−z2z3 + b1z2

1z2
3 + b2z1z2z2

3 + a1z4
1 + a2z3

1z2 + a3z2
1z2

2

)
,

z′2 = z3
(
z1z3 + b1z1z2z2

3 + b2z2
2z2

3 + a1z3
1z2 + a2z2

1z2
2 + a3z1z3

2

)
,

z′3 =
(
z2

3 − 1
) (

b1z1z2
3 + b2z2z2

3 + a1z3
1 + a2z2

1z2 + a3z1z2
2

)
.

(5)

Proposition

The simple critical points of system (5) at infinity are cusps.
More concretely, denoting D = a2

2 − 4a1a3, system (5) has only simple
critical points if and only if (a2

1 + a2
2) a3 D 6= 0. Moreover,

If D > 0, there are three infinite critical points in the chart U2, which
are cusps.

If D < 0, there is only one infinite critical point in the chart U2, which
is a cusp.
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Critical points at infinity (multiple ones)

Proposition

The multiple infinite critical points at infinity of system (5) are either cusps,
the union of two hyperbolic sectors, the union of two hyperbolic and one
parabolic sector, or the union of two hyperbolic and two parabolic sectors.
More concretely, assuming u = 0 is the multiple critical point, then:

If a1 6= 0:
If a3 = 0, a2 6= 0, the system in the chart U2 has a simple critical point,
which is a cusp, and a double one that has two hyperbolic and two
parabolic sectors or it has only two hyperbolic sectors.
If a2 = a3 = 0, the system in the chart U2 only has a triple critical point,
which has two hyperbolic and one parabolic sectors when b2 6= 0, and is
a cusp when b2 = 0.

If a1 = 0 (in which case the only possibility is a3 = 0, a2 6= 0) the
system in the chart U2 has a double critical point, which has two
hyperbolic and two parabolic sectors, and a simple one that is a cusp.
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Centers in the sphere
x′ = −y + x(b1x + b2y + a1x3

+ a2x2y + a3xy2
),

y′ = x + y(b1x + b2y + a1x3
+ a2x2y + a3xy2

).

(4)



z′1 = z3
(
−z2z3 + b1z2

1z2
3 + b2z1z2z2

3 + a1z4
1 + a2z3

1z2 + a3z2
1z2

2
)
,

z′2 = z3
(

z1z3 + b1z1z2z2
3 + b2z2

2z2
3 + a1z3

1z2 + a2z2
1z2

2 + a3z1z3
2
)
,

z′3 =
(

z2
3 − 1

) (
b1z1z2

3 + b2z2z2
3 + a1z3

1 + a2z2
1z2 + a3z1z2

2
)
.

(5)

We will say that a vector field has a global center on the sphere if every
solution is periodic, except for a null-measure set containing critical points,
homoclinic and heteroclinic connections.

Theorem
If system (4) has a center at the origin, then it is a global center of the vector
field (5) on the sphere.
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Periodic orbit on the sphere
Theorem
If system (5) has two cusps and no other critical points on the equator, then
it always has a periodic solution in the sphere, symmetric with respect to the
origin and its intersection with the equator consists of two (symmetric)
regular points.

Proof.
If we denote the equator of the sphere as Q, the key point is proving that a
solution starting in Q+ = {(z1, z2, 0)|z2 > 0} intersects Q− (or viceversa). If
this was not true there would exist a nodal sector, but none exist. Hence, we
have a map from Q+ to Q− (or viceversa).
Composing it with the symmetry with respect the center of the sphere, we
have a map from Q+ to Q+ (resp. from Q− to Q−). This map extends to the
closure, but reverts the order. Hence, there cannot be any fixed point in the
border. Applying Brower’s fixed point theorem there is a fixed point, that is
a solution crossing Q at symmetric points. By the symmetry of the system, it
is a periodic solution.
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Periodic orbit on the sphere (II)

Theorem
If system (5) has six cusps on the equator, then it either has an homoclinic or
heteroclinic connection, or a periodic solution in the sphere. In this last
case, the periodic solution is symmetric with respect to the origin and its
intersection with the equator consists of two or six (symmetric) regular
points.
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Proof of the Theorem about the periodic orbit on the sphere

Proof.

pi the infinite critical points in
clockwise order. They are cusps.
si, ui the stable and unstable
varieties of pi, respectively,
Qi the sector of the equator Q
between the critical point pi and
pi+1, where p7 = p1.
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Proof of the Theorem about the periodic orbit on the sphere
Proof (cont).

Claim 1: There exists i ∈ {1, . . . , 6} such that either ui cuts the equator in
the first turn in he sector symmetric to Qi, or si cuts the equator in the first
turn in the sector symmetric to Qi−1.

Case 1. u1 intersects
Q2, but then it does
not intersect Q3 in
the first turn around
the center.

Case 2. u1 intersects
Q2 and then it
intersects Q3 in the
first turn around the
center.

Case 3. u1 does not
intersect Q2 in the
first turn around the
center.
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Proof of the Theorem about the periodic orbit on the sphere
Proof (cont).

Claim 2: There exists a periodic solution crossing the equator. We may
assume that u1 intersects Q4 in the first turn.

If u1 does not intersect the equator before Q4 :

Case 1: if s4 intersects Q1 in a
point c4.

Case 2: if s4 does not intersect Q1
in a point. Then u2 must intersect
Q4 in a point c2.

If u1 intersects Q at one point previous to Q4, it must be at Q2, but in
order to intersect Q4 afterwards, it must intersect Q3 as well. We can
argue as before.
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Limit cycles in the sphere

Proposition

There are systems inside family (5) having at least 3 periodic orbits in the
sphere.

Proof.
If we compactify system (?), we get that there is at least one limit cycle in
each one of both hemispheres. We prove that for this system
D = a2

2 − 4a1a3 < 0. Hence, only two cusps appear on the equator.
Applying the first theorem on periodic orbits, another periodic orbit exists in
the sphere. If this periodic orbit is isolated, then it will be a limit cycle.
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Invariant straight lines

Proposition

The vector field (5) has an invariant straight line if and only if

4a1a3 − a2
2 = 0, 4a2a3b1b2

2 + 8a2
3b3

2 + a3
2 = 0.

In this case, the invariant straight line is

−a2b2x + 2a3b2y + a2 = 0.,

and it is a heteroclinic connection joining two degenerate infinite critical
points.
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Open questions

x′ = −y + x(b1x + b2y + a1x3
+ a2x2y + a3xy2

),

y′ = x + y(b1x + b2y + a1x3
+ a2x2y + a3xy2

).

(4)
Open question 1

Is one the maximum number of limit
cycles of system (4)?



z′1 = z3
(
−z2z3 + b1z2

1z2
3 + b2z1z2z2

3 + a1z4
1 + a2z3

1z2 + a3z2
1z2

2
)
,

z′2 = z3
(

z1z3 + b1z1z2z2
3 + b2z2

2z2
3 + a1z3

1z2 + a2z2
1z2

2 + a3z1z3
2
)
,

z′3 =
(

z2
3 − 1

) (
b1z1z2

3 + b2z2z2
3 + a1z3

1 + a2z2
1z2 + a3z1z2

2
)
.

(5)

Open question 2

If system (5) has an annulus or periodic orbits, is it a global center?

Open question 3

Which is the maximum number of limit cycles that system (5) can have?
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More open questions

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.

(5)

Open question 4

Does system (5) have always a periodic orbit that intersects the equator?

Open question 5

Do the systems inside family (5) having heteroclinic connections constitute a
zero measure set in the set of parameters?

Open question 6

Can the periodic orbit of system (5) that crosses the equator be algebraic?
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