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Arnold diffusion for a priori unstable Hamiltonian Systems

Part I: Arnold diffusion for apriori unstable Hamiltonian

Systems
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Arnold diffusion for a priori unstable Hamiltonian Systems Arnold diffusion

Arnold diffusion

Nearly-integrable Hamiltonian systems of n-degrees of freedom

H(I , ϕ) = H0(I ) + εH1(I , ϕ)

where (I , ϕ) ∈ R
n × T

n.

For ε = 0 all the trajectories lie on an invariant tori I = ct. All
trajectories are stable.

KAM theorem. Under a suitable non-degeneracy condition the
n-dimensional invariant tori I = ct with Diophantine frequency ω(I )
survive, with some deformation, for ε small enough. Provides stability
for n ≤ 2.

Question: What happens for the trajectories which do not lie on the
invariant tori, for n > 2? Do there exist unstable orbits, that is, orbits
whose action variable (slow variable) experiences a drift of order 1?
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Arnold diffusion for a priori unstable Hamiltonian Systems Arnold diffusion

Main contributions in Arnold diffusion

Arnold’64 (Example of a Hamiltonian of 2+1/2 degrees of freedom
with 2 parameters).

A priori unstable case (the unperturbed Hamiltonian H0 presents
hyperbolicity: integrable pendulum) without gaps (non-generic
perturbation H1): Chierchia and Gallavotti ’94 ’98, Berti, Biasco,
Bolle ’02 ’03 (with time estimates).

A priori unstable case overcoming the large gap problem: Cheng and
Yan ’04 (variational methods), Treschev ’04 (separatrix map),
Delshams, de la Llave and Seara ’03 ’06 (Geometric methods), de la
Llave and Gidea ’06 (Topological methods).

Goal: Generalize the result in [DLS06] for generic perturbations.

[DLS06] A. Delshams, R. de la Llave and T.M. Seara. A geometric mechanism for

diffusion in Hamiltonian systems overcoming the large gap problem: heuristics

and rigorous verification on a model. Mem. Amer. Math. Soc., 179 (844), 2006.
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Arnold diffusion for a priori unstable Hamiltonian Systems Main result

Instability for a priori unstable Hamiltonian systems

We consider a 2π-periodic in time perturbation of a pendulum and a rotor
described by the non-autonomous Hamiltonian of 2+1/2-dof,

Hε(p, q, I , ϕ, t) = H0(p, q, I ) + εh(p, q, I , ϕ, t; ε)
= P±(p, q) + 1

2 I 2 + εh(p, q, I , ϕ, t; ε)
(1)

where (p, q, I , ϕ, t) ∈ (R × T)2 × T and

P±(p, q) = ±
(

1

2
p2 + V (q)

)
(2)

and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the
pendulum.
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Arnold diffusion for a priori unstable Hamiltonian Systems Main result

Main result

Theorem

Consider the Hamiltonian (1) and that V and h are uniformly C r+2 for
r ≥ r0, sufficiently large. Assume,

H1 The potential V : T → R has a unique global maximum at q = 0
which is non-degenerate. Denote by (q0(t), p0(t)) an orbit of the
pendulum P±(p, q) homoclinic to (0, 0).

H2 The Melnikov potential, associated to h (and to the homoclinic orbit
(p0, q0)): satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.

Then, there is ε∗ > 0 such that for 0 < |ε| < ε∗, and for any interval
[I ∗−, I ∗+] ∈ (I−, I+), there exists a trajectory x̃(t) of the system (1) such
that for some T > 0,

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

ε = 0
PSfrag replacements

p

q

I

s
s

ϕ

Λ̃

(p0(τ), q0(τ))

Normally hyperbolic invariant manifold (3D)

Λ̃ = {(0, 0, I , ϕ, s) : (I , ϕ, s) ∈ R × T
2}

Invariant manifolds (4D):

W s Λ̃ = W uΛ̃ = {(p0(τ), q0(τ), I , ϕ, s) : τ ∈ R, I ∈ [I−, I+], (ϕ, s) ∈ T
2}

where (p0(t), q0(t)) is an orbit of P±(p, q) homoclinic to (0, 0).
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

0 < ε � 1
PSfrag replacements

p

q

I

s

s

ϕ

Λ̃ε

ε

εγ1

εγ2

εγ2

On [I−, I+], Λ̃ persists to Λ̃ε

W s Λ̃ε and W uΛ̃ε are ε-close to the unperturbed ones.

Using hypothesis H2’, W s Λ̃ε t W uΛ̃ε along Γε.
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

PSfrag replacementsεγ1

ε
1+η

ε
1+η

ε
1+η

εγ2

primary tori

secondary tori

Combine the inner and the outer dynamics to construct a transition
chain along Λ̃ε: sequence of whiskered tori with heteroclinic
intersections, i.e. {TIi}N

i=1, such that Wu(TIi ) t Ws(TIi+1
) and

|IN − I1| = O(1).

Use that
Sε(τi) t

Λ̃ε
τi+1 ⇒ W u

τi
t W s

τi+1

(conditions H2”, H3” and H3”’)

There is an orbit x̃(t) that shadows the transition chain.
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Fast numerical algorithms

Part II: Fast numerical algorithms for the computation of

invariant tori in Hamiltonian systems
(in collaboration with Rafael de la Llave and Yannick Sire)
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Fast numerical algorithms

Computation of Invariant tori

Invariant torus of dimension ` = quasi-periodic solution with `
independent frequencies (primary and secondary, maximal and
whiskered).
Importance. Together with their connections organize the long term
behavior of the system (celestial mechanics, chemistry, . . .)
Numerical computation. Contributions of people in the Dynamical
Systems group of Barcelona (de la Llave, Gómez, Haro, Jorba,
Mondelo, Simó, Villanueva, . . .).
Goal: Develop numerical algorithms following the theoretical results
of KAM Theorem without Action-Angle variables
([dlLGJV05],[FLS08]) and implement them numerically.

[dlLGJV05] R. de la Llave, A. González, A. Jorba and J. Villanueva. KAM theory
without action-angle variables, Nonlinearity,18(2):855–895,2005.
[FLS08] E. Fontich, R. de la Llave and Y. Sire. Construction of invariant
whiskered tori by a parametrization method. Part I: Maps and flows in finite
dimensions. Preprint, 2008.
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Fast numerical algorithms

The invariance equation

Consider a map F exact symplectic defined on (U ⊂ R
d ) × T

d .

Assume that ω ∈ R
` is fixed and Diophantine, i.e. for some ν, τ > 0,

|ω · k − n|−1 ≤ ν|k |τ ∀ k ∈ Z
` − {0}, n ∈ Z

We seek for an embedding K : T
` → R

d × T
d that satisfies the

invariance equation
F ◦ K − K ◦ Tω = 0

where Tω(θ) = θ + ω.

The dynamics of F restricted on the invariant torus (range of K ) is
conjugated to a rigid rotation of frequency ω.

Develop a Newton method to compute K .
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Fast numerical algorithms

Some remarks on the algorithms

Algorithms are efficient in the following sense: If we discretize K
using N Fourier coefficients, the algorithm requires storage of O(N)
and the Newton step takes O(N log N) operations using FFT.

The method does not require the system to be written in
Action-Angle variables (it can deal in a unified way with both primary
and secondary KAM tori).

The system is not required to be close to the integrable case.
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Fast numerical algorithms

KAM tori for the Standard Map

2D exact symplectic map defined on the cylinder R × T.

p̄ = p + ε/(2π) sin(2πq)

q̄ = q + p̄ (mod 1)
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Figure: (Left) Primary tori of frequency ωg = (
√

5 − 1)/2 (golden mean) for
values of ε = 0.1, 0.5, 0.7, 0.9, 0.96. They are shifted to have 0 offset. We used
N = 211 Fourier modes. It takes 0.03 sec to perform one step of the continuation
method. (Right) Secondary tori of frequency 3/40ωg for values of
ε = 0.1, 0.2, 0.3, 0.35, 0.401. We used N = 29 Fourier modes. It takes 0.01 sec to
perform one step of the continuation method.

G. Huguet (MA1-UPC ) The role of hyperbolic invariant objects October, 2008 15 / 22



Computation of PRC and PRS

Part III: A computational and geometric approach to
Phase Resetting Curves and Surfaces
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Computation of PRC and PRS

Biological motivation: circadian rhythms

Biological clocks ≈ Presence of limit cycles/oscillators
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Computation of PRC and PRS

Consider an autonomous system

ẋ = X (x), x ∈ R
d , d ≥ 2

with a periodic orbit γ of period T

Definition
A point q ∈ Ω ⊂ R

d , Ω open domain
containing the limit cycle γ, is in asymptotic
phase with a point p ∈ γ if

lim
t→∞

|Φt(q) − Φt(p)| = 0,

where Φt is the flow associated to the vector
field X .

The set of points having the same asymptotic

phase is called isochron. γ is isochronous if

every point in Ω is in phase with a point on γ.

[Guck75] If γ is a stable limit cycle, then γ is isochronous. The isocrhons
are the leaves of the stable manifold W s

γ(θ).
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Computation of PRC and PRS

Generalization of the phase in a neighborhood of the limit

cycle

In a neighborhood Ω of the limit cycle γ there exists a unique scalar
function

ϑ : Ω ⊂ R
d → T = [0, 1)

x 7→ ϑ(x)

such that
lim

t→∞
|Φt(x) − γ(ϑ(x) + t/T )| = 0.

The value ϑ(x) is the asymptotic phase of x . The isocrhons are the level
sets of the function ϑ(x).
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Computation of PRC and PRS

Phase Resetting Curves

Consider

ẋ = X (x) + ε δ(t(1 − θs))

where ε = (ε1, . . . , εd ), then

PRC (θ) = θnew − θ.

For weak perturbations,
|ε| � 1, the infinitesimal PRC

PRC (ϑ(x)) = ε · ∇ϑ(x).

PRC: x ∈ γ.
PRS: Generalization for x ∈ Ω.
Biological relevance of PRS
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Computation of PRC and PRS

Phase Resetting Curves

Consider

ẋ = X (x) + ε δ(t(1 − θs))

where ε = (ε1, . . . , εd ), then

PRC (θ) = θnew − θ.

For weak perturbations,
|ε| � 1, the infinitesimal PRC

PRC (ϑ(x)) = ε · ∇ϑ(x).

PRC: x ∈ γ.
PRS: Generalization for x ∈ Ω.
Biological relevance of PRS
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Computation of PRC and PRS

Conclusions

We proved the existence of diffusing orbits for a priori unstable
Hamiltonian systems with a generic perturbation h assuming that it is
regular enough.

We developed fast numerical algorithms to compute invariant to tori
(primary and secondary, maximal and hyperbolic).

We implemented them and we applied them to compute primary and
secondary maximal tori of the standard map and primary maximal and
whiskered tori of the Froeshclé map.

We extend the Phase Resetting Curves to a neighborhood of the limit
cycle, obtaining what we call the Phase Resetting Surface and we
computed them numerically.
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