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Arnold diffusion for a priori unstable Hamiltonian Systems

Part I: Arnold diffusion for apriori unstable Hamiltonian
Systems
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Arnold diffusion for a priori unstable Hamiltonian Systems Arnold diffusion

Arnold diffusion

@ Nearly-integrable Hamiltonian systems of n-degrees of freedom

H(/7()0) = HO(I) + 6Hl(l7()0)

where (/, ) € R” x T".

@ For € = 0 all the trajectories lie on an invariant tori [ = ct. All
trajectories are stable.

@ KAM theorem. Under a suitable non-degeneracy condition the
n-dimensional invariant tori / = ct with Diophantine frequency w(/)
survive, with some deformation, for € small enough. Provides stability
for n < 2.

@ Question: What happens for the trajectories which do not lie on the
invariant tori, for n > 27 Do there exist unstable orbits, that is, orbits
whose action variable (slow variable) experiences a drift of order 17
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Arnold diffusion for a priori unstable Hamiltonian Systems Arnold diffusion

Main contributions in Arnold diffusion

@ Arnold'64 (Example of a Hamiltonian of 2+1/2 degrees of freedom
with 2 parameters).

@ A priori unstable case (the unperturbed Hamiltonian Hy presents
hyperbolicity: integrable pendulum) without gaps (non-generic
perturbation Hp): Chierchia and Gallavotti '94 '98, Berti, Biasco,
Bolle '02 '03 (with time estimates).

@ A priori unstable case overcoming the large gap problem: Cheng and
Yan '04 (variational methods), Treschev '04 (separatrix map),
Delshams, de la Llave and Seara '03 '06 (Geometric methods), de la
Llave and Gidea '06 (Topological methods).

Goal: Generalize the result in [DLS06] for generic perturbations.

[DLS06] A. Delshams, R. de la Llave and T.M. Seara. A geometric mechanism for
diffusion in Hamiltonian systems overcoming the large gap problem: heuristics
and rigorous verification on a model. Mem. Amer. Math. Soc., 179 (844), 2006.
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Arnold diffusion for a priori unstable Hamiltonian Systems Main result

Instability for a priori unstable Hamiltonian systems

We consider a 2m-periodic in time perturbation of a pendulum and a rotor
described by the non-autonomous Hamiltonian of 2+1/2-dof,

He(p,a;1,0,t) = Ho(p,q,1) + eh(p,q,1, ¢, t:€) (1)
= Pi(p,q)+3/% +eh(p.q. 1,0 t;¢)

where (p,q,1,¢,t) € (R x T)2 x T and

Pi(p,q) ==+ sz - V(q)> (2)

and V/(q) is a 2m-periodic function. We will refer to P4 (p, q) as the
pendulum.
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Arnold diffusion for a priori unstable Hamiltonian Systems Main result

Main result

Theorem

Consider the Hamiltonian (1) and that V' and h are uniformly C"+2 for
r > ry, sufficiently large. Assume,

H1 The potential V : T — R has a unique global maximum at g =0
which is non-degenerate. Denote by (qo(t), po(t)) an orbit of the
pendulum Py (p, q) homoclinic to (0,0).

H2 The Melnikov potential, associated to h (and to the homoclinic orbit
(po, qo)): satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.

Then, there is €* > 0 such that for 0 < |e¢| < €*, and for any interval
[IX,15] € (I-, 1), there exists a trajectory X(t) of the system (1) such
that for some T > 0,

Ix(0) <1z I(x(T)) = I3

-
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

E =

(Po(7), q0(7))

@ Normally hyperbolic invariant manifold (3D)
A=1{(0,0,1,¢,5): (I,p,5) € R x T?}
@ Invariant manifolds (4D):
WA = WA = {(po(7), qo(7), |, 0, 5) : T € R, 1 € [I_, 1], (¢, 5) € T2}
where (po(t), go(t)) is an orbit of Py (p, g) homoclinic to (0, 0).
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

O<exk1

@ On [I_, 1], A persists to A,
o WSKE and W”KE are e-close to the unperturbed ones.
o Using hypothesis H2', WA, th WYA, along T.
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Arnold diffusion for a priori unstable Hamiltonian Systems Sketch of the Proof

|~ [Z=.primary tori

ﬂ/\ “secondary tori
‘ .

@ Combine the inner and the outer dynamics to construct a transition
chain along A.: sequence of whiskered tori with heteroclinic
intersections, i.e. {7;}" , such that W*(7;)) h W*(7,,,) and
[In — h| = O(1).

@ Use that

56(7',') rh/~\€ Tit1 = WTLIJ M W7§i+1
(conditions H2”, H3” and H3"’")

@ There is an orbit x(t) that shadows the transition chain.
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Fast numerical algorithms

Part Il: Fast numerical algorithms for the computation of

invariant tori in Hamiltonian systems
(in collaboration with Rafael de la Llave and Yannick Sire)
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Computation of Invariant tori

@ Invariant torus of dimension ¢ = quasi-periodic solution with ¢
independent frequencies (primary and secondary, maximal and
whiskered).

@ Importance. Together with their connections organize the long term
behavior of the system (celestial mechanics, chemistry, .. .)

@ Numerical computation. Contributions of people in the Dynamical
Systems group of Barcelona (de la Llave, Gdmez, Haro, Jorba,
Mondelo, Simé, Villanueva, . ..).

@ Goal: Develop numerical algorithms following the theoretical results
of KAM Theorem without Action-Angle variables
([dILGJV05],[FLS08]) and implement them numerically.

[dILGJVO5] R. de la Llave, A. Gonzélez, A. Jorba and J. Villanueva. KAM theory
without action-angle variables, Nonlinearity,18(2):855-895,2005.

[FLSO08] E. Fontich, R. de la Llave and Y. Sire. Construction of invariant
whiskered tori by a parametrization method. Part |: Maps and flows in finite
dimensions. Preprint, 2008.
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The invariance equation

o Consider a map F exact symplectic defined on (U C RY) x T,

o Assume that w € R is fixed and Diophantine, i.e. for some v,7 > 0,
lw-k—n|"L<v|k|"VkeZ'—{0}, ncZ

@ We seek for an embedding K : T¢ — R? x T9 that satisfies the
invariance equation
FoK—KoT,=0
where T,(0) = 0 4+ w.

@ The dynamics of F restricted on the invariant torus (range of K) is
conjugated to a rigid rotation of frequency w.

@ Develop a Newton method to compute K.
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Some remarks on the algorithms

@ Algorithms are efficient in the following sense: If we discretize K
using N Fourier coefficients, the algorithm requires storage of O(N)
and the Newton step takes O(N log N) operations using FFT.

@ The method does not require the system to be written in
Action-Angle variables (it can deal in a unified way with both primary
and secondary KAM tori).

@ The system is not required to be close to the integrable case.
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KAM tori for the Standard Map
2D exact symplectic map defined on the cylinder R x T.

p=p+¢e/(2m)sin(27q)
Gg=q+p  (mod1l)

Figure: (Left) Primary tori of frequency w, = (v/5 — 1)/2 (golden mean) for
values of € =0.1,0.5,0.7,0.9,0.96. They are shifted to have 0 offset. We used

N = 211 Fourier modes. It takes 0.03 sec to perform one step of the continuation
method. (Right) Secondary tori of frequency 3/40w, for values of
€=0.1,0.2,0.3,0.35,0.401. We used N = 2° Fourier modes. It takes 0.01 sec to

perform one step of the continuation method.
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Computation of PRC and PRS

Part Ill: A computational and geometric approach to
Phase Resetting Curves and Surfaces
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Biological motivation: circadian rhythms

Biological clocks = Presence of limit cycles/oscillators

s

"
s )
]
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Computation of PRC and PRS

Consider an autonomous system
x=X(x), xeRYd>2
with a periodic orbit v of period T

Definition
A point g € Q C R, Q open domain
containing the limit cycle ~, is in asymptotic
phase with a point p € v if

tan;o |®:(q) — ®:(p)| =0,

where ®; is the flow associated to the vector
field X.

The set of points having the same asymptotic
phase is called isochron. = is isochronous if

every point in € is in phase with a point on 7.

[Guck75] If «y is a stable limit cycle, then = is isochronous. The isocrhons
are the leaves of the stable manifold Wi(e)'
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Computation of PRC and PRS

Generalization of the phase in a neighborhood of the limit
cycle

In a neighborhood Q of the limit cycle « there exists a unique scalar
function

9: QcRY —T=][0,1)
X — Y(x)

such that
Jim [4(x) ~1(9() + £/ T)| =0.

The value ¥(x) is the asymptotic phase of x. The isocrhons are the level
sets of the function ¥(x).
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Computation of PRC and PRS

Phase Resetting Curves

Consider
x = X(x)+€d(t(1 —6s))
where € = (€1,...,€4), then
PRC(0) = Opew — 0.

For weak perturbations,
le| < 1, the infinitesimal PRC

PRC(Y(x)) = € - VI(x).

PRC: x € 7.
PRS: Generalization for x € Q.
Biological relevance of PRS

02 =
o o1 0 o8 o
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Computation of PRC and PRS

Phase Resetting Curves

Consider
x = X(x)+€d(t(1 —6s))
where € = (€1,...,€4), then
PRC(0) = Opew — 0.

For weak perturbations,
le| < 1, the infinitesimal PRC

PRC(Y(x)) = € - VI(x).

PRC: x € 7.
PRS: Generalization for x € Q.
Biological relevance of PRS
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Computation of PRC and PRS

Conclusions

@ We proved the existence of diffusing orbits for a priori unstable
Hamiltonian systems with a generic perturbation h assuming that it is
regular enough.

@ We developed fast numerical algorithms to compute invariant to tori
(primary and secondary, maximal and hyperbolic).

@ We implemented them and we applied them to compute primary and
secondary maximal tori of the standard map and primary maximal and
whiskered tori of the Froeshclé map.

@ We extend the Phase Resetting Curves to a neighborhood of the limit
cycle, obtaining what we call the Phase Resetting Surface and we
computed them numerically.
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