22, 23 y 24 de Octubre de 2008. El Escorial (Madrid)

Cuarta reunión de la red temática Dance

Odays 2008

Dance (Dinámica, Atractores y No Inealidad. Caos y Estabilidad) www.dance-net.org/dd2008 dd2008@dance-net.org The role of hyperbolic invariant objects: From Arnold diffusion to biological clocks

Gemma Huguet Advisors: Amadeu Delshams and Antoni Guillamon

> Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya

> > October, 2008

G. Huguet (MA1-UPC)

The role of hyperbolic invariant objects

October, 2008

Arnold diffusion for a priori unstable Hamiltonian Systems

- Arnold diffusion
- Main result
- Sketch of the Proof

2 Fast numerical algorithms to compute invariant tori in Hamil. Systems

3 A computational and geometric approach to PRC and PRS

Part I: Arnold diffusion for apriori unstable Hamiltonian Systems

Arnold diffusion

• Nearly-integrable Hamiltonian systems of *n*-degrees of freedom

$$H(I,\varphi) = H_0(I) + \epsilon H_1(I,\varphi)$$

where $(I, \varphi) \in \mathbb{R}^n \times \mathbb{T}^n$.

- For ε = 0 all the trajectories lie on an invariant tori *I* = *ct*. All trajectories are stable.
- KAM theorem. Under a suitable non-degeneracy condition the *n*-dimensional invariant tori I = ct with Diophantine frequency $\omega(I)$ survive, with some deformation, for ϵ small enough. Provides stability for $n \leq 2$.
- Question: What happens for the trajectories which do not lie on the invariant tori, for n > 2? Do there exist unstable orbits, that is, orbits whose action variable (slow variable) experiences a drift of order 1?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main contributions in Arnold diffusion

- Arnold'64 (Example of a Hamiltonian of 2+1/2 degrees of freedom with 2 parameters).
- A priori unstable case (the unperturbed Hamiltonian H₀ presents hyperbolicity: integrable pendulum) without gaps (non-generic perturbation H₁): Chierchia and Gallavotti '94 '98, Berti, Biasco, Bolle '02 '03 (with time estimates).
- A priori unstable case overcoming the large gap problem: Cheng and Yan '04 (variational methods), Treschev '04 (separatrix map), Delshams, de la Llave and Seara '03 '06 (Geometric methods), de la Llave and Gidea '06 (Topological methods).

Goal: Generalize the result in [DLS06] for generic perturbations.

[DLS06] A. Delshams, R. de la Llave and T.M. Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. *Mem. Amer. Math. Soc.*, 179 (844), 2006.

Main result

Instability for a priori unstable Hamiltonian systems

We consider a 2π -periodic in time perturbation of a pendulum and a rotor described by the non-autonomous Hamiltonian of 2+1/2-dof,

$$\begin{array}{rcl} H_{\epsilon}(p,q,l,\varphi,t) &=& H_{0}(p,q,l) + \epsilon h(p,q,l,\varphi,t;\epsilon) \\ &=& P_{\pm}(p,q) + \frac{1}{2}l^{2} + \epsilon h(p,q,l,\varphi,t;\epsilon) \end{array}$$
(1)

where $(p,q,l,arphi,t)\in (\mathbb{R} imes\mathbb{T})^2 imes\mathbb{T}$ and

$$P_{\pm}(p,q) = \pm \left(\frac{1}{2}p^2 + V(q)\right)$$
(2)

and V(q) is a 2π -periodic function. We will refer to $P_{\pm}(p,q)$ as the *pendulum*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQの

Main result

Theorem

Consider the Hamiltonian (1) and that V and h are uniformly C^{r+2} for $r \ge r_0$, sufficiently large. Assume,

- **H1** The potential $V : \mathbb{T} \to \mathbb{R}$ has a unique global maximum at q = 0 which is non-degenerate. Denote by $(q_0(t), p_0(t))$ an orbit of the pendulum $P_{\pm}(p, q)$ homoclinic to (0, 0).
- **H2** The Melnikov potential, associated to h (and to the homoclinic orbit (p_0, q_0)): satisfies concrete non-degeneracy conditions.
- H3 The perturbation term h satisfies concrete non-degeneracy conditions.

Then, there is $\epsilon^* > 0$ such that for $0 < |\epsilon| < \epsilon^*$, and for any interval $[I_-^*, I_+^*] \in (I_-, I_+)$, there exists a trajectory $\widetilde{x}(t)$ of the system (1) such that for some T > 0,

$$I(\widetilde{x}(0)) \leq I_{-}^{*}; \qquad I(\widetilde{x}(T)) \geq I_{+}^{*}.$$

• Normally hyperbolic invariant manifold (3D)

$$ilde{\Lambda} = \{(0,0, \textit{I}, arphi, \pmb{s}): (\textit{I}, arphi, \pmb{s}) \in \mathbb{R} imes \mathbb{T}^2\}$$

• Invariant manifolds (4D):

$$W^{s}\widetilde{\Lambda} = W^{u}\widetilde{\Lambda} = \{(p_{0}(\tau), q_{0}(\tau), I, \varphi, s) : \tau \in \mathbb{R}, I \in [I_{-}, I_{+}], (\varphi, s) \in \mathbb{T}^{2}\}$$

where $(p_0(t), q_0(t))$ is an orbit of $P_{\pm}(p, q)$ homoclinic to (0, 0).

$0 < \epsilon \ll 1$

- On $[I_-, I_+]$, $\widetilde{\Lambda}$ persists to $\widetilde{\Lambda}_\epsilon$
- $W^{s}\widetilde{\Lambda}_{\epsilon}$ and $W^{u}\widetilde{\Lambda}_{\epsilon}$ are ϵ -close to the unperturbed ones.
- Using hypothesis **H2'**, $W^s \widetilde{\Lambda}_{\epsilon} \pitchfork W^u \widetilde{\Lambda}_{\epsilon}$ along Γ_{ϵ} .

- Combine the inner and the outer dynamics to construct a transition chain along Λ_ε: sequence of whiskered tori with heteroclinic intersections, i.e. {T_{li}}^N_{i=1}, such that W^u(T_{li}) ∩ W^s(T_{li+1}) and |I_N I₁| = O(1).
- Use that

$$S_{\epsilon}(\tau_i) \pitchfork_{\widetilde{\Lambda}_{\epsilon}} \tau_{i+1} \Rightarrow W^u_{\tau_i} \pitchfork W^s_{\tau_{i+1}}$$

(conditions H2", H3" and H3"')

• There is an orbit $\tilde{x}(t)$ that shadows the transition chain.

Part II: Fast numerical algorithms for the computation of invariant tori in Hamiltonian systems (in collaboration with Rafael de la Llave and Yannick Sire)

Computation of Invariant tori

- Invariant torus of dimension $\ell =$ quasi-periodic solution with ℓ independent frequencies (primary and secondary, maximal and whiskered).
- Importance. Together with their connections organize the long term behavior of the system (celestial mechanics, chemistry, ...)
- Numerical computation. Contributions of people in the Dynamical Systems group of Barcelona (de la Llave, Gómez, Haro, Jorba, Mondelo, Simó, Villanueva, ...).
- Goal: Develop numerical algorithms following the theoretical results of KAM Theorem without Action-Angle variables ([dILGJV05],[FLS08]) and implement them numerically.

[dlLGJV05] R. de la Llave, A. González, A. Jorba and J. Villanueva. KAM theory without action-angle variables, *Nonlinearity*,18(2):855–895,2005. [FLS08] E. Fontich, R. de la Llave and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. Preprint, 2008.

G. Huguet (MA1-UPC)

The invariance equation

- Consider a map F exact symplectic defined on $(U \subset \mathbb{R}^d) \times \mathbb{T}^d$.
- Assume that $\omega \in \mathbb{R}^{\ell}$ is fixed and Diophantine, i.e. for some $\nu, \tau > 0$,

$$|\omega \cdot k - n|^{-1} \leq
u |k|^{ au} \, orall \, k \in \mathbb{Z}^{\ell} - \{0\}, \,\, n \in \mathbb{Z}$$

• We seek for an embedding $K : \mathbb{T}^{\ell} \to \mathbb{R}^d \times \mathbb{T}^d$ that satisfies the invariance equation

$$\mathsf{F} \circ \mathsf{K} - \mathsf{K} \circ \mathsf{T}_\omega = \mathsf{0}$$

where $T_{\omega}(\theta) = \theta + \omega$.

- The dynamics of F restricted on the invariant torus (range of K) is conjugated to a rigid rotation of frequency ω.
- Develop a Newton method to compute K.

Some remarks on the algorithms

- Algorithms are efficient in the following sense: If we discretize K using N Fourier coefficients, the algorithm requires storage of $\mathcal{O}(N)$ and the Newton step takes $\mathcal{O}(N \log N)$ operations using FFT.
- The method does not require the system to be written in Action-Angle variables (it can deal in a unified way with both primary and secondary KAM tori).
- The system is not required to be close to the integrable case.

KAM tori for the Standard Map

2D exact symplectic map defined on the cylinder $\mathbb{R}\times\mathbb{T}.$

$$ar{p} = p + arepsilon/(2\pi) \sin(2\pi q) \ ar{q} = q + ar{p} \pmod{1}$$

Figure: (Left) Primary tori of frequency $\omega_g = (\sqrt{5} - 1)/2$ (golden mean) for values of $\epsilon = 0.1, 0.5, 0.7, 0.9, 0.96$. They are shifted to have 0 offset. We used $N = 2^{11}$ Fourier modes. It takes 0.03 sec to perform one step of the continuation method. (Right) Secondary tori of frequency $3/40\omega_g$ for values of $\epsilon = 0.1, 0.2, 0.3, 0.35, 0.401$. We used $N = 2^9$ Fourier modes. It takes 0.01 sec to perform one step of the continuation method.

Part III: A computational and geometric approach to Phase Resetting Curves and Surfaces

G. Huguet (MA1-UPC)

The role of hyperbolic invariant objects

October, 2008

Biological motivation: circadian rhythms

Biological clocks \approx Presence of limit cycles/oscillators

The role of hyperbolic invariant objects

Consider an autonomous system

$$\dot{x} = X(x), \quad x \in \mathbb{R}^d, d \ge 2$$

with a periodic orbit γ of period ${\it T}$

Definition

A point $q \in \Omega \subset \mathbb{R}^d$, Ω open domain containing the limit cycle γ , is in asymptotic phase with a point $p \in \gamma$ if

$$\lim_{t\to\infty} |\Phi_t(q) - \Phi_t(p)| = 0,$$

where Φ_t is the flow associated to the vector field *X*.

The set of points having the same asymptotic phase is called isochron. γ is isochronous if every point in Ω is in phase with a point on γ .

[Guck75] If γ is a stable limit cycle, then γ is isochronous. The isocrhons are the leaves of the stable manifold $W^s_{\gamma(\theta)}$.

G. Huguet (MA1-UPC)

October, 2008 18 / 22

Generalization of the phase in a neighborhood of the limit cycle

In a neighborhood Ω of the limit cycle γ there exists a unique scalar function

$$egin{array}{rcl} artheta & \colon & \Omega \subset \mathbb{R}^d & o \mathbb{T} = [0,1) \ & & & \mapsto artheta(x) \end{array}$$

such that

$$\lim_{t\to\infty} |\Phi_t(x) - \gamma(\vartheta(x) + t/T)| = 0.$$

The value $\vartheta(x)$ is the asymptotic phase of x. The isocrhons are the level sets of the function $\vartheta(x)$.

October, 2008 1

Phase Resetting Curves

Consider

$$\dot{x} = X(x) + \epsilon \, \delta(t(1 - \theta_s))$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_d)$, then
 $PRC(\theta) = \theta \frac{PSfrag \text{ replacements}}{new - \theta}$.

For weak perturbations, $|\epsilon| \ll 1$, the infinitesimal PRC

 $PRC(\vartheta(x)) = \epsilon \cdot \nabla \vartheta(x).$

PRC: $x \in \gamma$. PRS: Generalization for $x \in \Omega$. Biological relevance of PRS

The role of hyperbolic invariant objects

0.05

-0.05

-0.1

0.2 0.3

0.4 0.5 0.6 0.7

October, 2008 20 / 22

Phase Resetting Curves

Consider

$$\dot{x} = X(x) + \epsilon \, \delta(t(1 - \theta_s))$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_d)$, then
 $PRC(\theta) = \theta \frac{\mathsf{PSfrag replacements}}{\mathsf{replacements}}$

For weak perturbations, $|\epsilon| \ll 1$, the infinitesimal PRC

 $PRC(\vartheta(x)) = \epsilon \cdot \nabla \vartheta(x).$

PRC: $x \in \gamma$. PRS: Generalization for $x \in \Omega$. Biological relevance of PRS

The role of hyperbolic invariant objects

Conclusions

- We proved the existence of diffusing orbits for a priori unstable Hamiltonian systems with a generic perturbation *h* assuming that it is regular enough.
- We developed fast numerical algorithms to compute invariant to tori (primary and secondary, maximal and hyperbolic).
- We implemented them and we applied them to compute primary and secondary maximal tori of the standard map and primary maximal and whiskered tori of the Froeshclé map.
- We extend the Phase Resetting Curves to a neighborhood of the limit cycle, obtaining what we call the Phase Resetting Surface and we computed them numerically.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ