Cuarta reunión de la red temática Dance

Dañice (Dinámica, Atractores y No liniealidad. Caos y Estabilidad) www.dance-het.org/dd2008 dd2008@dance-net.org

The role of hyperbolic invariant objects: From Arnold diffusion to biological clocks

Gemma Huguet
Advisors: Amadeu Delshams and Antoni Guillamon

Departament de Matemàtica Aplicada I
Universitat Politècnica de Catalunya

October, 2008

Outline

(1) Arnold diffusion for a priori unstable Hamiltonian Systems

- Arnold diffusion
- Main result
- Sketch of the Proof
(2) Fast numerical algorithms to compute invariant tori in Hamil. Systems
(3) A computational and geometric approach to PRC and PRS

Part I: Arnold diffusion for apriori unstable Hamiltonian Systems

Arnold diffusion

- Nearly-integrable Hamiltonian systems of n-degrees of freedom

$$
H(I, \varphi)=H_{0}(I)+\epsilon H_{1}(I, \varphi)
$$

where $(I, \varphi) \in \mathbb{R}^{n} \times \mathbb{T}^{n}$.

- For $\epsilon=0$ all the trajectories lie on an invariant tori $I=c t$. All trajectories are stable.
- KAM theorem. Under a suitable non-degeneracy condition the n-dimensional invariant tori $I=c t$ with Diophantine frequency $\omega(I)$ survive, with some deformation, for ϵ small enough. Provides stability for $n \leq 2$.
- Question: What happens for the trajectories which do not lie on the invariant tori, for $n>2$? Do there exist unstable orbits, that is, orbits whose action variable (slow variable) experiences a drift of order 1 ?

Main contributions in Arnold diffusion

- Arnold'64 (Example of a Hamiltonian of $2+1 / 2$ degrees of freedom with 2 parameters).
- A priori unstable case (the unperturbed Hamiltonian H_{0} presents hyperbolicity: integrable pendulum) without gaps (non-generic perturbation H_{1}): Chierchia and Gallavotti '94 '98, Berti, Biasco, Bolle '02 '03 (with time estimates).
- A priori unstable case overcoming the large gap problem: Cheng and Yan '04 (variational methods), Treschev '04 (separatrix map), Delshams, de la Llave and Seara '03 '06 (Geometric methods), de la Llave and Gidea '06 (Topological methods).

Goal: Generalize the result in [DLS06] for generic perturbations.
[DLS06] A. Delshams, R. de la Llave and T.M. Seara. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Mem. Amer. Math. Soc., 179 (844), 2006.

Instability for a priori unstable Hamiltonian systems

We consider a 2π-periodic in time perturbation of a pendulum and a rotor described by the non-autonomous Hamiltonian of $2+1 / 2$-dof,

$$
\begin{align*}
H_{\epsilon}(p, q, I, \varphi, t) & =H_{0}(p, q, I)+\epsilon h(p, q, I, \varphi, t ; \epsilon) \\
& =P_{ \pm}(p, q)+\frac{1}{2} I^{2}+\epsilon h(p, q, I, \varphi, t ; \epsilon) \tag{1}
\end{align*}
$$

where $(p, q, I, \varphi, t) \in(\mathbb{R} \times \mathbb{T})^{2} \times \mathbb{T}$ and

$$
\begin{equation*}
P_{ \pm}(p, q)= \pm\left(\frac{1}{2} p^{2}+V(q)\right) \tag{2}
\end{equation*}
$$

and $V(q)$ is a 2π-periodic function. We will refer to $P_{ \pm}(p, q)$ as the pendulum.

Main result

Theorem

Consider the Hamiltonian (1) and that V and h are uniformly \mathcal{C}^{r+2} for $r \geq r_{0}$, sufficiently large. Assume,

H1 The potential $V: \mathbb{T} \rightarrow \mathbb{R}$ has a unique global maximum at $q=0$ which is non-degenerate. Denote by $\left(q_{0}(t), p_{0}(t)\right)$ an orbit of the pendulum $P_{ \pm}(p, q)$ homoclinic to $(0,0)$.
H2 The Melnikov potential, associated to h (and to the homoclinic orbit $\left(p_{0}, q_{0}\right)$): satisfies concrete non-degeneracy conditions.
H3 The perturbation term h satisfies concrete non-degeneracy conditions.
Then, there is $\epsilon^{*}>0$ such that for $0<|\epsilon|<\epsilon^{*}$, and for any interval $\left[I_{-}^{*}, I_{+}^{*}\right] \in\left(I_{-}, I_{+}\right)$, there exists a trajectory $\widetilde{x}(t)$ of the system (1) such that for some $T>0$,

$$
I(\widetilde{x}(0)) \leq I_{-}^{*} ; \quad I(\widetilde{x}(T)) \geq I_{+}^{*} .
$$

$\epsilon=0$

- Normally hyperbolic invariant manifold (3D)

$$
\tilde{\Lambda}=\left\{(0,0, I, \varphi, s):(I, \varphi, s) \in \mathbb{R} \times \mathbb{T}^{2}\right\}
$$

- Invariant manifolds (4D):

$$
W^{s} \tilde{\Lambda}=W^{u} \tilde{\Lambda}=\left\{\left(p_{0}(\tau), q_{0}(\tau), I, \varphi, s\right): \tau \in \mathbb{R}, I \in\left[I_{-}, I_{+}\right],(\varphi, s) \in \mathbb{T}^{2}\right\}
$$

where $\left(p_{0}(t), q_{0}(t)\right)$ is an orbit of $P_{ \pm}(p, q)$ homoclinic to $(0,0)$.
$0<\epsilon \ll 1$

- On $\left[I_{-}, I_{+}\right], \widetilde{\Lambda}$ persists to $\widetilde{\Lambda}_{\epsilon}$
- $W^{s} \widetilde{\Lambda}_{\epsilon}$ and $W^{u} \widetilde{\Lambda}_{\epsilon}$ are ϵ-close to the unperturbed ones.
- Using hypothesis $\mathbf{H} \mathbf{2}^{\prime}, W^{s} \widetilde{\Lambda}_{\epsilon} \pitchfork W^{u} \widetilde{\Lambda}_{\epsilon}$ along Γ_{ϵ}.

- Combine the inner and the outer dynamics to construct a transition chain along $\widetilde{\Lambda}_{\epsilon}$: sequence of whiskered tori with heteroclinic intersections, i.e. $\left\{\mathcal{T}_{l_{i}}\right\}_{i=1}^{N}$, such that $\mathcal{W}^{u}\left(\mathcal{T}_{l_{i}}\right) \pitchfork \mathcal{W}^{s}\left(\mathcal{T}_{l_{i+1}}\right)$ and $\left|I_{N}-I_{1}\right|=\mathcal{O}(1)$.
- Use that

$$
S_{\epsilon}\left(\tau_{i}\right) \pitchfork_{\tilde{\Lambda}_{\epsilon}} \tau_{i+1} \Rightarrow W_{\tau_{i}}^{u} \pitchfork W_{\tau_{i+1}}^{s}
$$

(conditions H2", H3" and H3"')

- There is an orbit $\widetilde{x}(t)$ that shadows the transition chain.

Part II: Fast numerical algorithms for the computation of invariant tori in Hamiltonian systems (in collaboration with Rafael de la Llave and Yannick Sire)

Computation of Invariant tori

- Invariant torus of dimension $\ell=$ quasi-periodic solution with ℓ independent frequencies (primary and secondary, maximal and whiskered).
- Importance. Together with their connections organize the long term behavior of the system (celestial mechanics, chemistry, ...)
- Numerical computation. Contributions of people in the Dynamical Systems group of Barcelona (de la Llave, Gómez, Haro, Jorba, Mondelo, Simó, Villanueva, ...).
- Goal: Develop numerical algorithms following the theoretical results of KAM Theorem without Action-Angle variables ([dILGJV05],[FLS08]) and implement them numerically.
[dILGJV05] R. de la Llave, A. González, A. Jorba and J. Villanueva. KAM theory without action-angle variables, Nonlinearity,18(2):855-895,2005.
[FLS08] E. Fontich, R. de la Llave and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. Preprint, 2008.

The invariance equation

- Consider a map F exact symplectic defined on $\left(U \subset \mathbb{R}^{d}\right) \times \mathbb{T}^{d}$.
- Assume that $\omega \in \mathbb{R}^{\ell}$ is fixed and Diophantine, i.e. for some $\nu, \tau>0$,

$$
|\omega \cdot k-n|^{-1} \leq \nu|k|^{\tau} \forall k \in \mathbb{Z}^{\ell}-\{0\}, n \in \mathbb{Z}
$$

- We seek for an embedding $K: \mathbb{T}^{\ell} \rightarrow \mathbb{R}^{d} \times \mathbb{T}^{d}$ that satisfies the invariance equation

$$
F \circ K-K \circ T_{\omega}=0
$$

where $T_{\omega}(\theta)=\theta+\omega$.

- The dynamics of F restricted on the invariant torus (range of K) is conjugated to a rigid rotation of frequency ω.
- Develop a Newton method to compute K.

Some remarks on the algorithms

- Algorithms are efficient in the following sense: If we discretize K using N Fourier coefficients, the algorithm requires storage of $\mathcal{O}(N)$ and the Newton step takes $\mathcal{O}(N \log N)$ operations using FFT.
- The method does not require the system to be written in Action-Angle variables (it can deal in a unified way with both primary and secondary KAM tori).
- The system is not required to be close to the integrable case.

KAM tori for the Standard Map

2 D exact symplectic map defined on the cylinder $\mathbb{R} \times \mathbb{T}$.

$$
\begin{aligned}
& \bar{p}=p+\varepsilon /(2 \pi) \sin (2 \pi q) \\
& \bar{q}=q+\bar{p} \quad(\bmod 1)
\end{aligned}
$$

Figure: (Left) Primary tori of frequency $\omega_{g}=(\sqrt{5}-1) / 2$ (golden mean) for values of $\epsilon=0.1,0.5,0.7,0.9,0.96$. They are shifted to have 0 offset. We used $N=2^{11}$ Fourier modes. It takes 0.03 sec to perform one step of the continuation method. (Right) Secondary tori of frequency $3 / 40 \omega_{\mathrm{g}}$ for values of $\epsilon=0.1,0.2,0.3,0.35,0.401$. We used $N=2^{9}$ Fourier modes. It takes 0.01 sec to perform one step of the continuation method.

Part III: A computational and geometric approach to Phase Resetting Curves and Surfaces

Biological motivation: circadian rhythms

Biological clocks \approx Presence of limit cycles/oscillators

Consider an autonomous system

$$
\dot{x}=X(x), \quad x \in \mathbb{R}^{d}, d \geq 2
$$

with a periodic orbit γ of period T
Definition
A point $q \in \Omega \subset \mathbb{R}^{d}, \Omega$ open domain containing the limit cycle γ, is in asymptotic phase with a point $p \in \gamma$ if

$$
\lim _{t \rightarrow \infty}\left|\Phi_{t}(q)-\Phi_{t}(p)\right|=0
$$

where Φ_{t} is the flow associated to the vector field X.

The set of points having the same asymptotic phase is called isochron. γ is isochronous if every point in Ω is in phase with a point on γ.
[Guck75] If γ is a stable limit cycle, then γ is isochronous. The isocrhons are the leaves of the stable manifold $W_{\gamma(\theta)}^{s}$.

Generalization of the phase in a neighborhood of the limit

 cycleIn a neighborhood Ω of the limit cycle γ there exists a unique scalar function

$$
\begin{array}{rll}
\vartheta: \Omega \subset \mathbb{R}^{d} & \rightarrow \mathbb{T}=[0,1) \\
x & \mapsto \vartheta(x)
\end{array}
$$

such that

$$
\lim _{t \rightarrow \infty}\left|\Phi_{t}(x)-\gamma(\vartheta(x)+t / T)\right|=0
$$

The value $\vartheta(x)$ is the asymptotic phase of x. The isocrhons are the level sets of the function $\vartheta(x)$.

Phase Resetting Curves

Consider

$$
\dot{x}=X(x)+\epsilon \delta\left(t\left(1-\theta_{s}\right)\right)
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)$, then

$$
P R C(\theta)=\theta_{\text {new }}-\theta .
$$

For weak perturbations, $|\epsilon| \ll 1$, the infinitesimal PRC

$$
\operatorname{PRC}(\vartheta(x))=\epsilon \cdot \nabla \vartheta(x) .
$$

PRC: $x \in \gamma$.
PRS: Generalization for $x \in \Omega$.
Biological relevance of PRS

Phase Resetting Curves

Consider

$$
\dot{x}=X(x)+\epsilon \delta\left(t\left(1-\theta_{s}\right)\right)
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)$, then

$$
P R C(\theta)=\theta_{\text {new }}-\theta .
$$

For weak perturbations,
 $|\epsilon| \ll 1$, the infinitesimal PRC

$$
\operatorname{PRC}(\vartheta(x))=\epsilon \cdot \nabla \vartheta(x) .
$$

PRC: $x \in \gamma$.
PRS: Generalization for $x \in \Omega$.
Biological relevance of PRS

Conclusions

- We proved the existence of diffusing orbits for a priori unstable Hamiltonian systems with a generic perturbation h assuming that it is regular enough.
- We developed fast numerical algorithms to compute invariant to tori (primary and secondary, maximal and hyperbolic).
- We implemented them and we applied them to compute primary and secondary maximal tori of the standard map and primary maximal and whiskered tori of the Froeshclé map.
- We extend the Phase Resetting Curves to a neighborhood of the limit cycle, obtaining what we call the Phase Resetting Surface and we computed them numerically.

