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Basic idea of splitting

Given the initial value problem

x ′ = f (x), x0 = x(0) ∈ RD (1)

with f : RD −→ RD and solution ϕt (x0), suppose that

f =
m∑

i=1

f [i], f [i] : RD −→ RD

such that

x ′ = f [i](x), x0 = x(0) ∈ RD, i = 1, . . . ,m (2)

can be integrated exactly, with solutions x(h) = ϕ
[i]
h (x0) at t = h.

Then
ψh = ϕ

[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ
[1]
h (3)

verifies ψh(x0) = ϕh(x0) +O(h2). First order approximation
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Basic idea of splitting

Problem: how to increase the order of approximation?
Three steps in splitting:

1 choosing the set of functions f [i] such that f =
∑

i f [i]

2 solving either exactly or approximately each equation
x ′ = f [i](x)

3 combining these solutions to construct an approximation for
x ′ = f (x)

Obviously, equations x ′ = f [i](x) should be simpler to
integrate than the original system.
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Some advantages of splitting methods

Simple to implement.
They are, in general, explicit.
Their storage requirements are quite modest.
They preserve structural properties of the exact solution:
symplecticity, volume preservation, time-symmetry and
conservation of first integrals

Splitting methods constitute an important class of geometric
numerical integrators
Aim of geometric numerical integration: reproduce the
qualitative features of the solution of the differential equation
being discretised, in particular its geometric properties
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More on geometric integration

Properties of the system are built into the numerical
method.
This gives the method an improved qualitative behaviour,
but also allows for a significantly more accurate long-time
integration than with general-purpose methods
Important aspect: explanation of the relationship between
preservation of the geometric properties and the observed
favourable error propagation in long-time integration
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Example 1: symplectic Euler and leapfrog

Hamiltonian H(q,p) = T (p) + V (q).
Equations of motion: q′ = Tp(p), p′ = −Vq(q)

Euler method:

qn+1 = qn + hTp(pn)
pn+1 = pn − hVq(qn).

(4)

H is the sum of two Hamiltonians, the first one depending
only on p and the second only on q with equations

q′ = Tp(p)
p′ = 0

and
q′ = 0
p′ = −Vq(q)

(5)
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Example 1: symplectic Euler and leapfrog

Solution:

ϕ
[T ]
t :

q(t) = q0 + t Tp(p0)
p(t) = p0

(6)

ϕ
[V ]
t :

q(t) = 0
p(t) = p0 − t Vq(q0)

Composing the t = h flows gives the scheme

χh ≡ ϕ
[T ]
h ◦ ϕ

[V ]
h :

pn+1 = pn − h Vq(qn)
qn+1 = qn + h Tp(pn+1).

(7)

χh is a symplectic integrator, since it is the composition of
flows of two Hamiltonians: symplectic Euler method
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Example 1: symplectic Euler and leapfrog

By composing in the opposite order, ϕ[V ]
h ◦ ϕ[T ]

h , another
first order symplectic Euler scheme:

χ∗h ≡ ϕ
[V ]
h ◦ ϕ[T ]

h :
qn+1 = qn + h Tp(pn)
pn+1 = pn − h Vq(qn+1).

(8)

(8) is the adjoint of χh.
Another possibility: ‘symmetric’ version

S [2]
h ≡ ϕ

[V ]
h/2 ◦ ϕ

[T ]
h ◦ ϕ

[V ]
h/2, (9)

Strang splitting, leapfrog or Störmer–Verlet method

Observe that S [2]
h = χh/2 ◦ χ∗h/2 and it is also symplectic

and second order.
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Example 2: Simple harmonic oscillator

H(q,p) = 1
2(p2 + q2), where now q,p ∈ R.

Equations:

x ′ ≡
(

q′

p′

)
=
[( 0 1

0 0

)
︸ ︷︷ ︸

A

+

(
0 0
−1 0

)
︸ ︷︷ ︸

B

]( q
p

)
= (A+B) x .

Euler scheme:(
qn+1
pn+1

)
=

(
1 h
−h 1

) (
qn
pn

)
,

Symplectic Euler method:(
qn+1
pn+1

)
=

(
1 h
−h 1− h2

) (
qn
pn

)
= ehBehA

(
qn
pn

)
.
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Example 2: Simple harmonic oscillator

Both render first order approximations to the exact solution
x(t) = eh(A+B)x0, but there are important differences
Symplectic Euler is area preserving and

1
2

(p2
n+1 + hpn+1qn+1 + q2

n+1) =
1
2

(p2
n + hpnqn + q2

n).

Symplectic Euler is the exact solution at t = h of the
perturbed Hamiltonian system

H̃(q,p,h) = f̃ (h)
1
2

(p2 + hpq + q2) (10)

for a certain function f̃ .
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Example 2: Simple harmonic oscillator

How these features manifest in practice?

Initial conditions (q0,p0) = (4,0) and integrate with a time
step h = 0.1 (same computational cost) with Euler and
symplectic Euler
Two experiments:

1 Represent the first 5 numerical approximations
2 Represent the first 100 points in the trajectory
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Example 2: Simple harmonic oscillator
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(black circles) with initial condition (q0,p0) = (4,0) and h = 0.1.
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Example 3: The 2-body (Kepler) problem

Hamiltonian

H(q,p) = T (p)+V (q) =
1
2

(p2
1 +p2

2)−1
r
, r =

√
q2

1 + q2
2 .

Initial condition:

q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e
1− e

,

where 0 ≤ e < 1 is the eccentricity of the orbit.
Total energy is H = H0 = −1/2, the period of the solution
is 2π.
Two experiments with e = 0.6. We compare Euler and
symplectic Euler
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Example 3: The 2-body (Kepler) problem
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The left panel shows the results for h = 1
10 and the first 3

periods and the right panel shows the results for h = 1
2 and the

first 15 periods.
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Example 3: The 2-body (Kepler) problem

Next we check how the error in the preservation of energy
and the global error in position propagates with time.
Methods: Euler, symplectic Euler, Heun (RK2), leapfrog
(SI2)
Step size chosen so that all the methods require the same
number of force evaluations
e = 1/5 and integrate for 500 periods



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Families of splitting methods

Splitting methods for linear systems

Example 3: The 2-body (Kepler) problem
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Average error in energy does not grow for symplectic methods
and the error in positions grows only linearly with time, in
contrast with Euler and Heun schemes.
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More examples

Hamiltonian systems
Poisson systems
More general dynamical systems (Lorenz equations,
Lotka–Volterra, ABC-flow)
PDEs discretized in space (Schrödinger eq., Maxwell
equations)

coming from
Celestial Mechanics
Molecular dynamics
Quantum physics
Electromagnetism
Particle accelerators
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Integrators and series of vector fields
Splitting and composition

Integrators

Given the ODE x ′ = f (x) with vector field

F =
D∑

i=1

fi(x)
∂

∂xi
, (11)

a one-step numerical integrator for a time step h,
ψh : RD −→ RD, is said to be of order r if

ψh = ϕh +O(hr+1) (12)

as h→ 0, where ϕh is the h-flow of the ODE.
For each function g

g(ϕh(x)) = exp(hF )[g](x) = g(x)+
∑
k≥1

hk

k !
F k [g](x), x ∈ RD,

where F is the vector field (11).
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Integrators and series of vector fields
Splitting and composition

Series of vector fields

Assume that

g(ψh(x)) = g(x) + hΨ1[g](x) + h2Ψ2[g](x) + · · · ,

where each Ψk is a linear differential operator and

Ψh = I +
∑
k≥1

hk Ψk

so that formally g ◦ ψh = Ψh[g]

Alternatively, let us consider the series of vector fields
Ψh = exp(Fh) with

Fh =
∑
k≥1

hkFk , with Fk =
∑
m≥1

(−1)m+1

m

∑
j1+···+jm=k

Ψj1 · · ·Ψjm .

(13)
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Integrators and series of vector fields
Splitting and composition

Series of vector fields

The integrator ψh can be formally interpreted as the exact
1-flow of the modified vector field Fh.
Integrator ψh is of order r iff

F1 = F , Fk = 0 for 2 ≤ k ≤ r . (14)

These are the order conditions to be verified by ψh

Lie algebra structure inherited from the he Lie algebra
structure of the set of vector fields
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Composition methods

Closely related to splitting integrators are composition
methods.
Idea: given a numerical integrator ψh (explicit or implicit) of
order q, consider a new method ψ̃h of the form

ψ̃h = ψαsh ◦ ψαs−1h ◦ · · · ◦ ψα1h, (15)

with coefficients αi such that ψ̃h has a higher order of
accuracy.
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Integrators and series of vector fields
Splitting and composition

Example: Yoshida–Suzuki technique

ψh is a symmetric method of order 2k > 0. Then

ψp
α1h ◦ ψα0h ◦ ψp

α1h (16)

is a symmetric method of order 2k + 2 if

α1 =
1

2p − (2p)1/(2k+1)
, α0 = 1− 2pα1. (17)

If S [2]
h : RD −→ RD is the Störmer–Verlet integrator, then

S [2]
α1h◦S

[2]
α0h◦S

[2]
α1h, with α1 =

1
2− 21/3 , α0 = 1−2α1< 0

is a 4th-order method with 3 evaluations of S [2]
h . With p = 2

−→ method of order 6 with 9 S [2]
h , and so on.

Methods of arbitrary order, but with large truncation errors
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Integrators and series of vector fields
Splitting and composition

More general compositions

How to build more efficient schemes by composition?
By composing

χh = ϕ
[m]
h ◦ · · · ◦ ϕ[2]

h ◦ ϕ
[1]
h (18)

with its adjoint

χ∗h = χ−1
−h = ϕ

[1]
h ◦ ϕ

[2]
h ◦ · · · ◦ ϕ

[m]
h ,

one gets a second order method ψh = χh/2 ◦ χ∗h/2

Idea: find appropriate coefficients (α1, . . . , α2s) ∈ R2s such
that

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h (19)

is of a prescribed order r .
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Associated vector field

For χh one has g(χh(x)) = eYh [g](x) with Yh =
∑

k≥1 hkYk ,
so that for ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

Ψh = exp(−Y−hα1) exp(Yhα2) · · · exp(−Y−hα2s−1) exp(Yhα2s ),

hkFk ∈ Lk for each k ≥ 1 and L =
⊕

k≥1 Lk is the graded
Lie algebra generated by the vector fields
{hY1,h2Y2,h3Y3, . . .}
If Ψh is of order r when f = f [1] + f [2], then it is also of order
r when f is arbitrarily split as f = f [1] + · · ·+ f [m] with m > 2.
Ψh is also of order r for arbitrary integrators χh consistent
with the ODE
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Splitting and composition

When the ODE is split in two parts (that is, m = 2), ψh can
be rewritten as

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h (20)

where b1 = α1 and for j = 1, . . . , s,

aj = α2j−1 + α2j , bj+1 = α2j + α2j+1 (21)

(with α2s+1 = 0).
Conversely, any integrator of the form (20) satisfying that∑s

i=1 ai =
∑s+1

i=1 bi can be expressed in the form (19) with
χh = ϕ

[2]
h ◦ ϕ

[1]
h .
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Order conditions

Polynomial equations whose solutions provide the
coefficients in ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h

Several procedures to obtain them (rooted trees, BCH
formula)
BCH:

Z = log(eX eY ) = X + Y +
∞∑

m=2

Zm, (22)
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Procedure

1 Consider Ψh, expressed as a product of exponentials of
vector fields

2 Apply repeatedly the BCH formula to get the exponential of
the modified vector field Fh

3 Impose conditions F1 = F , Fk = 0 for 2 ≤ k ≤ r .

In particular,

Ψh = exp
(
hf1,1Y1 + h2f2,1Y2 + h3f3,1Y3 + h3f3,2[Y1,Y2] +O(h4)

)
(23)

f1,1 =
2s∑

i=1

αi , f2,1 =
2s∑

i=1

(−1)i+1α2
i , f3,1 =

2s∑
i=1

α3
i , etc.

(24)
order conditions are f1,1 = 1, fk ,j = 0, k = 2, . . . , r .
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Order conditions

These order conditions are also valid for the composition

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

Simplifications occur for systems with additional structure,
e.g.

H(q,p) = T (p) + V (q)
H(q,p) = 1

2 pT Mp + V (q)

H(q,p) = 1
2 pT Mp + 1

2 qT Nq
x ′ = f [1](x) + εf [2](x), with |ε| � 1



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Families of splitting methods

Splitting methods for linear systems

Different families

In consequence, different classes of integrators:
Near-integrable systems: x ′ = f [1](x) + εf [2](x). Since
ε� h, one only cancels error terms with small powers of ε
and not all the coefficients at an order hk (Mclachlan,
Laskar-Robutel)
Runge–Kutta–Nyström like methods. Appropriate for
y ′′ = g(y) and H(q,p) = 1

2pT Mp + V (q). In this case
[F [2], [F [2], [F [2],F [1]]]] = 0, which leads to additional
simplifications. Reduced number of evaluations
(Blanes-Moan)
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Different families

Methods with modified potentials.
When [F [2], [F [2], [F [2],F [1]]]] = 0, in addition to F [1] and
F [2], there are other vector fields whose flow is
computable, e.g.,

F3,1 ≡ [F [2], [F [1],F [2]]] = 2
l∑

i,j=1

gi
∂gj

∂yi

∂

∂vj
≡ g(3)(y) · ∇v

with flow ϕ
[3,1]
t : x(t) = (y0, v0 + tg(3)(y0))

More:

F5,1 ≡ [F [2],F [2],F [1],F [1],F [2]],

F7,1 ≡ [F [2],F [1],F [2],F [2],F [1],F [1],F [2]]

F7,2 ≡ [F [2],F [2],F [2],F [1],F [1],F [1],F [2]].
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Different families

Idea: to include the flow of

Cb,c,d ,e,f ≡ bFb+h2c F3,1+h4d F5,1+h6(eF7,1+fF7,2), (25)

instead of ϕ[2]
bi h

in the scheme

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

In this way the number of evaluations is much reduced
=⇒ more efficient methods
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Processing

Idea: to enhance and integrator ψh (the kernel) with
πh : RD −→ RD (the post-processor) as

ψ̂h = πh ◦ ψh ◦ π−1
h .

Application of n steps leads to

ψ̂n
h = πh ◦ ψn

h ◦ π
−1
h ,

Advantageous if ψ̂h is more accurate than ψh and the cost
of πh is negligible, since it provides the accuracy of ψ̂h at
the cost of (the least accurate) ψh.



Introduction with examples
Splitting and composition methods

Order conditions of splitting and composition methods
Families of splitting methods

Splitting methods for linear systems

Example

Störmer–Verlet method

ψh,2 = ϕ
[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2 = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h ◦ ϕ

[1]
−h ◦ ϕ

[1]
h/2

= ϕ
[1]
h/2 ◦ ψh,1 ◦ ϕ

[1]
−h/2 = πh ◦ ψh,1 ◦ π−1

h

with πh = ϕ
[1]
h/2.

Applying the first order method ψh,1 = ϕ
[2]
h ◦ ϕ

[1]
h with

processing yields a 2nd order of approximation.
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Processing

Very useful in geometric numerical integration
ψh is of effective order p if a post-processor πh exists for
which ψ̂h is of (conventional) order p, that is,

πh ◦ ψh ◦ π−1
h = ϕh +O(hp+1).

The analysis of order conditions of ψ̂h shows that many of
them can be satisfied by πh, so that ψh must fulfill a much
reduced set of restrictions
If

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

the number and complexity of the conditions to be verified
by ai , bi is reduced
Highly efficient processed methods
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Methods in the literature

Next we review the literature and collect specific methods
of different families
Number of stages
Order
Authors and year
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ψh = S [2]
αk h ◦ · · · ◦ S

[2]
α1h ◦ S

[2]
α1h
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Composition method-adjoint / generic splitting

ψh = χα2sh ◦ χ∗α2s−1h ◦ · · · ◦ χα2h ◦ χ∗α1h
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ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

with [F [2], [F [2], [F [2],F [1]]]] = 0
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Splitting for linear systems

ψh = ϕ
[2]
bs+1h ◦ ϕ

[1]
ash ◦ ϕ

[2]
bsh ◦ · · · ◦ ϕ

[2]
b2h ◦ ϕ

[1]
a1h ◦ ϕ

[2]
b1h

with [F [2], [F [2], [F [2],F [1]]]] = [F [1], [F [1], [F [1],F [2]]]] = 0
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Specific problem

Numerical solution of the time-dependent Schrödinger eq.:

i
∂

∂t
Ψ(x , t) =

(
− 1

2m
∇2 + V (x , t)

)
Ψ(x , t) (26)

One-dimensional problem x ∈ [x0, xN ]
(ψ(x0, t) = ψ(xN , t) = 0
Space discretization of ψ(x , t): [x0, xN ] is split in N parts of
length ∆x = (xN − x0)/N and u = (u0, . . . ,uN−1)T ∈ CN is
formed, with un = ψ(xn, t)
One ends with

i
d
dt

u(t) = H u(t), u(0) = u0 ∈ CN ,
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Schrödinger equation

i
d
dt

u(t) = H u(t), u(0) = u0 ∈ CN ,

H ∈ RN×N

Solution: u(t) = e−itHu0

Exponential is very expensive for large N
e−itH is not only unitary, but also symplectic with q = Re(u)
and p = Im(u)

Equivalent equations: q′ = H p, p′ = −H q
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Schrödinger equation

i
d
dt

u(t) = H u(t), u(0) = u0 ∈ CN ,

H ∈ RN×N

Solution: u(t) = e−itHu0

Exponential is very expensive for large N
e−itH is not only unitary, but also symplectic with q = Re(u)
and p = Im(u)

Equivalent equations: q′ = H p, p′ = −H q
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Schrödinger equation

We may write

d
dt

{
q
p

}
=

(
0 H
−H 0

){
q
p

}
= (A + B)

{
q
p

}
,

with

A ≡
(

0 H
0 0

)
, B ≡

(
0 0
−H 0

)
.

Observe that

eA =

(
I H
0 I

)
, eB =

(
I 0
−H I

)
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Schrödinger equation

Spliltting methods of the form

On(h) = ehbs+1B ehasA · · · ehb2B eha1A ehb1B. (27)

Processed methods S(h) = P(h) K(h) P−1(h) with K(h) of
type (27) and enlarged stability intervals
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Example: Morse potential

V (x) = D(1− e−αx )2

m = 1745, D = 0.2251, α = 1.1741
ψ0(x , t) = ρexp(−β(x − x̄)2), β =

√
Dmα2/2, x̄ = −0.1, ρ:

const.
t ∈ [0,20T ], T = 2π/(α

√
2D/m)

x ∈ [−0.8,4.32], split into N = 128 parts
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Gaussian wave fuction in a Morse
 potential 
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Gaussian wave fuction in a Morse
 potential 
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