22, 23 y 24 de Octubre de 2008. El Escorial (Madrid)

Cuarta reunión de la red temática Dance

Odays 2008

Dance (Dinámica, Atractores y No Inealidad. Caos y Estabilidad) www.dance-net.org/dd2008 dd2008@dance-net.org

Splitting and composition methods in the numerical integration of differential equations

Fernando Casas

Fernando.Casas@mat.uji.es

Departament de Matemàtiques Universitat Jaume I Castellón, Spain

D-Days08, October 2008

イロト イヨト イヨト イ

... On a paper (to be published in the B. of the SEMA) in collaboration with

Ander Murua

Universidad del País Vasco San Sebastián, Spain

Sergio Blanes Universidad Politécnica de Valencia Valencia, Spain

< □ > < □ > < □ > < □ > <

Supported by MEC (Spain), project MTM2007-61572

- 2 Splitting and composition methods
 - Integrators and series of vector fields
 - Splitting and composition
- Order conditions of splitting and composition methods
- 4 Families of splitting methods
- Splitting methods for linear systems

Basic idea of splitting

Given the initial value problem

$$x'=f(x), \qquad x_0=x(0)\in\mathbb{R}^D$$
 (1)

with $f : \mathbb{R}^D \longrightarrow \mathbb{R}^D$ and solution $\varphi_t(x_0)$, suppose that

$$f = \sum_{i=1}^{m} f^{[i]}, \qquad f^{[i]} : \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$$

such that

$$x' = f^{[i]}(x), \qquad x_0 = x(0) \in \mathbb{R}^D, \qquad i = 1, \dots, m$$
 (2)

can be integrated exactly, with solutions $x(h) = \varphi_h^{[i]}(x_0)$ at t = h. Then

$$\psi_h = \varphi_h^{[m]} \circ \dots \circ \varphi_h^{[2]} \circ \varphi_h^{[1]}$$
(3)

verifies $\psi_h(x_0) = \varphi_h(x_0) + \mathcal{O}(h^2)$. First order approximation $\varphi_h(x_0) = \varphi_h(x_0) + \mathcal{O}(h^2)$.

Basic idea of splitting

Problem: how to increase the order of approximation?

- Three steps in splitting:
 - **)** choosing the set of functions $f^{[l]}$ such that $f = \sum_i f^{[l]}$
 - solving either exactly or approximately each equation x' = f^[i](x)
 - Combining these solutions to construct an approximation for x' = f(x)

イロト イヨト イヨト イ

• Obviously, equations $x' = f^{[i]}(x)$ should be simpler to integrate than the original system.

Basic idea of splitting

- Problem: how to increase the order of approximation?
- Three steps in splitting:
 - choosing the set of functions $f^{[i]}$ such that $f = \sum_{i} f^{[i]}$
 - solving either exactly or approximately each equation $x' = f^{[i]}(x)$
 - combining these solutions to construct an approximation for x' = f(x)
- Obviously, equations $x' = f^{[i]}(x)$ should be simpler to integrate than the original system.

Some advantages of splitting methods

- Simple to implement.
- They are, in general, explicit.
- Their storage requirements are quite modest.
- They preserve structural properties of the exact solution: symplecticity, volume preservation, time-symmetry and conservation of first integrals

Splitting methods constitute an important class of *geometric numerical integrators*

Aim of geometric numerical integration: reproduce the qualitative features of the solution of the differential equation being discretised, in particular its geometric properties

More on geometric integration

- Properties of the system are built into the numerical method.
- This gives the method an improved qualitative behaviour, but also allows for a significantly more accurate long-time integration than with general-purpose methods
- Important aspect: explanation of the relationship between preservation of the geometric properties and the observed favourable error propagation in long-time integration

Example 1: symplectic Euler and leapfrog

- Hamiltonian H(q, p) = T(p) + V(q).
- Equations of motion: $q' = T_p(p)$, $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$

 $p_{n+1} = p_n - hV_q(q_n).$
(4)

(日) (四) (日) (日) (日)

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$q' = T_p(p)$$
 and $q' = 0$
 $p' = 0$ $p' = -V_q(q)$ (5)

Example 1: symplectic Euler and leapfrog

- Hamiltonian H(q, p) = T(p) + V(q).
- Equations of motion: $q' = T_p(p)$, $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$

 $p_{n+1} = p_n - hV_q(q_n).$ (4)

(日) (四) (日) (日) (日)

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$q' = T_p(p)$$
 and $q' = 0$
 $p' = 0$ $p' = -V_q(q)$ (5)

Example 1: symplectic Euler and leapfrog

- Hamiltonian H(q, p) = T(p) + V(q).
- Equations of motion: $q' = T_p(p)$, $p' = -V_q(q)$
- Euler method:

$$q_{n+1} = q_n + hT_p(p_n)$$

 $p_{n+1} = p_n - hV_q(q_n).$ (4)

イロト イポト イヨト イヨト

• *H* is the sum of two Hamiltonians, the first one depending only on *p* and the second only on *q* with equations

$$\begin{array}{rcl}
q' &=& T_{\rho}(\rho) \\
p' &=& 0 \\
\end{array}$$
 and $\begin{array}{rcl}
q' &=& 0 \\
p' &=& -V_q(q) \\
\end{array}$ (5)

Example 1: symplectic Euler and leapfrog

Solution:

$$\varphi_{t}^{[T]}: \begin{array}{l} q(t) = q_{0} + t T_{p}(p_{0}) \\ p(t) = p_{0} \end{array} \tag{6}$$

$$\varphi_{t}^{[V]}: \begin{array}{l} q(t) = 0 \\ p(t) = p_{0} - t V_{q}(q_{0}) \end{array}$$

• Composing the *t* = *h* flows gives the scheme

$$\chi_{h} \equiv \varphi_{h}^{[T]} \circ \varphi_{h}^{[V]} : \begin{array}{cc} p_{n+1} &=& p_{n} - h \, V_{q}(q_{n}) \\ q_{n+1} &=& q_{n} + h \, T_{p}(p_{n+1}). \end{array}$$
(7)

イロト イポト イヨト イヨト

χ_h is a symplectic integrator, since it is the composition of flows of two Hamiltonians: symplectic Euler method

Example 1: symplectic Euler and leapfrog

By composing in the opposite order, φ_h^[V] ∘ φ_h^[T], another first order symplectic Euler scheme:

$$\chi_{h}^{*} \equiv \varphi_{h}^{[V]} \circ \varphi_{h}^{[T]}: \quad \begin{array}{l} q_{n+1} = q_{n} + h T_{p}(p_{n}) \\ p_{n+1} = p_{n} - h V_{q}(q_{n+1}). \end{array}$$
(8)

(8) is the *adjoint* of χ_h .

• Another possibility: 'symmetric' version

$$\mathcal{S}_{h}^{[2]} \equiv \varphi_{h/2}^{[V]} \circ \varphi_{h}^{[T]} \circ \varphi_{h/2}^{[V]}, \tag{9}$$

Strang splitting, leapfrog or Störmer-Verlet method

• Observe that $S_h^{[2]} = \chi_{h/2} \circ \chi_{h/2}^*$ and it is also symplectic and second order.

Example 2: Simple harmonic oscillator

- $H(q,p) = \frac{1}{2}(p^2 + q^2)$, where now $q, p \in \mathbb{R}$.
- Equations:

$$x' \equiv \begin{pmatrix} q' \\ p' \end{pmatrix} = \left[\underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{A} + \underbrace{\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}}_{B} \right] \begin{pmatrix} q \\ p \end{pmatrix} = (A+B) x.$$

Euler scheme:

$$\left(egin{array}{c} q_{n+1} \ p_{n+1} \end{array}
ight) = \left(egin{array}{c} 1 & h \ -h & 1 \end{array}
ight) \left(egin{array}{c} q_n \ p_n \end{array}
ight),$$

• Symplectic Euler method:

$$\begin{pmatrix} q_{n+1} \\ p_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & h \\ -h & 1-h^2 \end{pmatrix} \begin{pmatrix} q_n \\ p_n \end{pmatrix} = e^{hB}e^{hA} \begin{pmatrix} q_n \\ p_n \end{pmatrix}.$$

Example 2: Simple harmonic oscillator

- Both render first order approximations to the exact solution $x(t) = e^{h(A+B)}x_0$, but there are important differences
- Symplectic Euler is area preserving and

$$\frac{1}{2}(p_{n+1}^2+hp_{n+1}q_{n+1}+q_{n+1}^2)=\frac{1}{2}(p_n^2+hp_nq_n+q_n^2).$$

• Symplectic Euler *is* the exact solution at *t* = *h* of the *perturbed* Hamiltonian system

$$\tilde{H}(q,p,h) = \tilde{f}(h)\frac{1}{2}(p^2 + hpq + q^2)$$
 (10)

A B > 4
 B > 4
 B

for a certain function \tilde{f} .

Example 2: Simple harmonic oscillator

How these features manifest in practice?

 Initial conditions (q₀, p₀) = (4, 0) and integrate with a time step h = 0.1 (same computational cost) with Euler and symplectic Euler

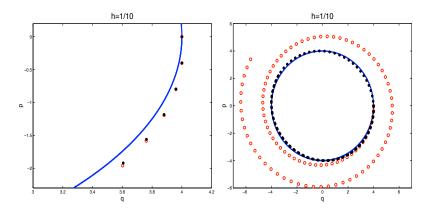
< ロ > < 同 > < 三 >

- Two experiments:
 - Represent the first 5 numerical approximations
 - Provide the second s

Introduction with examples

Splitting and composition methods Order conditions of splitting and composition methods Families of splitting methods Splitting methods for linear systems

Example 2: Simple harmonic oscillator



Euler method (white circles) and the symplectic Euler method (black circles) with initial condition $(q_0, p_0) = (4, 0)$ and h = 0.1.

Example 3: The 2-body (Kepler) problem

Hamiltonian

$$H(q,p) = T(p) + V(q) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{r}, \qquad r = \sqrt{q_1^2 + q_2^2}.$$

Initial condition:

$$q_1(0) = 1 - e, \quad q_2(0) = 0, \quad p_1(0) = 0, \quad p_2(0) = \sqrt{\frac{1 + e}{1 - e}},$$

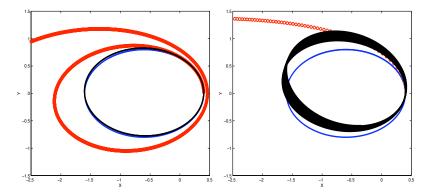
where $0 \le e < 1$ is the eccentricity of the orbit.

- Total energy is $H = H_0 = -1/2$, the period of the solution is 2π .
- Two experiments with *e* = 0.6. We compare Euler and symplectic Euler

Introduction with examples

Splitting and composition methods Order conditions of splitting and composition methods Families of splitting methods Splitting methods for linear systems

Example 3: The 2-body (Kepler) problem



The left panel shows the results for $h = \frac{1}{10}$ and the first 3 periods and the right panel shows the results for $h = \frac{1}{2}$ and the first 15 periods.

Example 3: The 2-body (Kepler) problem

- Next we check how the error in the preservation of energy and the global error in position propagates with time.
- Methods: Euler, symplectic Euler, Heun (RK2), leapfrog (SI2)
- Step size chosen so that all the methods require the same number of force evaluations

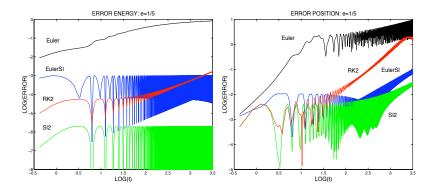
< □ > < □ > < □ > < □ > <

• e = 1/5 and integrate for 500 periods

Introduction with examples

Splitting and composition methods Order conditions of splitting and composition methods Families of splitting methods Splitting methods for linear systems

Example 3: The 2-body (Kepler) problem



Average error in energy does not grow for symplectic methods and the error in positions grows only linearly with time, in contrast with Euler and Heun schemes.

More examples

- Hamiltonian systems
- Poisson systems
- More general dynamical systems (Lorenz equations, Lotka–Volterra, ABC-flow)
- PDEs discretized in space (Schrödinger eq., Maxwell equations)

ヘロト ヘアト ヘヨト ヘ

coming from

- Celestial Mechanics
- Molecular dynamics
- Quantum physics
- Electromagnetism
- Particle accelerators

Integrators and series of vector fields Splitting and composition

Integrators

• Given the ODE x' = f(x) with vector field

$$F = \sum_{i=1}^{D} f_i(x) \frac{\partial}{\partial x_i}, \qquad (11)$$

a one-step numerical integrator for a time step *h*, $\psi_h : \mathbb{R}^D \longrightarrow \mathbb{R}^D$, is said to be of order *r* if

$$\psi_h = \varphi_h + \mathcal{O}(h^{r+1}) \tag{12}$$

as $h \rightarrow 0$, where φ_h is the *h*-flow of the ODE.

For each function g

$$g(\varphi_h(x)) = \exp(hF)[g](x) = g(x) + \sum_{k\geq 1} \frac{h^k}{k!} F^k[g](x), \qquad x \in \mathbb{R}^D,$$

where *F* is the vector field (11).

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ・ の � �

Integrators and series of vector fields Splitting and composition

Series of vector fields

Assume that

$$g(\psi_h(x)) = g(x) + h\Psi_1[g](x) + h^2\Psi_2[g](x) + \cdots,$$

where each Ψ_k is a linear differential operator and

$$\Psi_h = I + \sum_{k \ge 1} h^k \Psi_k$$

so that formally $\boldsymbol{g} \circ \psi_{\boldsymbol{h}} = \Psi_{\boldsymbol{h}}[\boldsymbol{g}]$

Alternatively, let us consider the series of vector fields
 Ψ_h = exp(F_h) with

$$F_h = \sum_{k \ge 1} h^k F_k, \quad \text{with} \quad F_k = \sum_{m \ge 1} \frac{(-1)^{m+1}}{m} \sum_{j_1 + \dots + j_m = k} \Psi_{j_1} \dots \Psi_{j_m}.$$

Integrators and series of vector fields Splitting and composition

Series of vector fields

- The integrator ψ_h can be formally interpreted as the exact 1-flow of the modified vector field F_h.
- Integrator ψ_h is of order *r* iff

$$F_1 = F$$
, $F_k = 0$ for $2 \le k \le r$. (14)

- These are the order conditions to be verified by ψ_h
- Lie algebra structure inherited from the he Lie algebra structure of the set of vector fields

Integrators and series of vector fields Splitting and composition

Composition methods

- Closely related to splitting integrators are composition methods.
- Idea: given a numerical integrator ψ_h (explicit or implicit) of order q, consider a new method ψ_h of the form

$$\tilde{\psi}_{h} = \psi_{\alpha_{s}h} \circ \psi_{\alpha_{s-1}h} \circ \dots \circ \psi_{\alpha_{1}h}, \tag{15}$$

with coefficients α_i such that $\tilde{\psi}_h$ has a higher order of accuracy.

Integrators and series of vector fields Splitting and composition

Example: Yoshida–Suzuki technique

• ψ_h is a symmetric method of order 2k > 0. Then

$$\psi^{\mathbf{p}}_{\alpha_1 \mathbf{h}} \circ \psi_{\alpha_0 \mathbf{h}} \circ \psi^{\mathbf{p}}_{\alpha_1 \mathbf{h}} \tag{16}$$

is a symmetric method of order 2k + 2 if

$$\alpha_1 = \frac{1}{2p - (2p)^{1/(2k+1)}}, \qquad \alpha_0 = 1 - 2p\alpha_1.$$
 (17)

• If $\mathcal{S}_h^{[2]} : \mathbb{R}^D \longrightarrow \mathbb{R}^D$ is the Störmer–Verlet integrator, then

$$S_{\alpha_1 h}^{[2]} \circ S_{\alpha_0 h}^{[2]} \circ S_{\alpha_1 h}^{[2]}, \quad \text{with} \quad \alpha_1 = \frac{1}{2 - 2^{1/3}}, \quad \alpha_0 = 1 - 2\alpha_1 < 0$$

is a 4th-order method with 3 evaluations of $S_h^{[2]}$. With p = 2 \longrightarrow method of order 6 with 9 $S_h^{[2]}$, and so on.

Methods of arbitrary order, but with large truncation errors

Integrators and series of vector fields Splitting and composition

Example: Yoshida–Suzuki technique

• ψ_h is a symmetric method of order 2k > 0. Then

$$\psi^{\mathbf{p}}_{\alpha_1 \mathbf{h}} \circ \psi_{\alpha_0 \mathbf{h}} \circ \psi^{\mathbf{p}}_{\alpha_1 \mathbf{h}} \tag{16}$$

is a symmetric method of order 2k + 2 if

$$\alpha_1 = \frac{1}{2p - (2p)^{1/(2k+1)}}, \qquad \alpha_0 = 1 - 2p\alpha_1.$$
 (17)

• If $\mathcal{S}_h^{[2]} : \mathbb{R}^D \longrightarrow \mathbb{R}^D$ is the Störmer–Verlet integrator, then

$$S_{\alpha_1 h}^{[2]} \circ S_{\alpha_0 h}^{[2]} \circ S_{\alpha_1 h}^{[2]}, \quad \text{with} \quad \alpha_1 = \frac{1}{2 - 2^{1/3}}, \quad \alpha_0 = 1 - 2\alpha_1 < 0$$

is a 4th-order method with 3 evaluations of $S_h^{[2]}$. With p = 2 \longrightarrow method of order 6 with 9 $S_h^{[2]}$, and so on.

Methods of arbitrary order, but with large truncation errors

Integrators and series of vector fields Splitting and composition

More general compositions

- How to build more efficient schemes by composition?
- By composing

$$\chi_h = \varphi_h^{[m]} \circ \dots \circ \varphi_h^{[2]} \circ \varphi_h^{[1]}$$
(18)

with its adjoint

$$\chi_h^* = \chi_{-h}^{-1} = \varphi_h^{[1]} \circ \varphi_h^{[2]} \circ \cdots \circ \varphi_h^{[m]},$$

one gets a second order method $\psi_h = \chi_{h/2} \circ \chi^*_{h/2}$

Idea: find appropriate coefficients (α₁,..., α_{2s}) ∈ ℝ^{2s} such that

$$\psi_{h} = \chi_{\alpha_{2s}h} \circ \chi^{*}_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_{2}h} \circ \chi^{*}_{\alpha_{1}h}$$
(19)

イロト イポト イヨト イヨト

is of a prescribed order r.

Integrators and series of vector fields Splitting and composition

Associated vector field

• For χ_h one has $g(\chi_h(x)) = e^{Y_h}[g](x)$ with $Y_h = \sum_{k \ge 1} h^k Y_k$, so that for $\psi_h = \chi_{\alpha_{2s}h} \circ \chi^*_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_2h} \circ \chi^*_{\alpha_1h}$

$$\Psi_{h} = \exp(-Y_{-h\alpha_{1}})\exp(Y_{h\alpha_{2}})\cdots\exp(-Y_{-h\alpha_{2s-1}})\exp(Y_{h\alpha_{2s}}),$$

 $h^k F_k \in \mathcal{L}_k$ for each $k \ge 1$ and $\mathcal{L} = \bigoplus_{k \ge 1} \mathcal{L}_k$ is the graded Lie algebra generated by the vector fields $\{hY_1, h^2Y_2, h^3Y_3, \ldots\}$

- If Ψ_h is of order *r* when $f = f^{[1]} + f^{[2]}$, then it is also of order *r* when *f* is arbitrarily split as $f = f^{[1]} + \cdots + f^{[m]}$ with m > 2.
- Ψ_h is also of order *r* for arbitrary integrators χ_h consistent with the ODE

Integrators and series of vector fields Splitting and composition

Splitting and composition

 When the ODE is split in two parts (that is, *m* = 2), ψ_h can be rewritten as

$$\psi_{h} = \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_{s}h}^{[1]} \circ \varphi_{b_{s}h}^{[2]} \circ \cdots \circ \varphi_{b_{2}h}^{[2]} \circ \varphi_{a_{1}h}^{[1]} \circ \varphi_{b_{1}h}^{[2]}$$
(20)

where $b_1 = \alpha_1$ and for $j = 1, \ldots, s$,

$$a_j = \alpha_{2j-1} + \alpha_{2j}, \qquad b_{j+1} = \alpha_{2j} + \alpha_{2j+1}$$
 (21)

イロト イポト イヨト イヨト

(with $\alpha_{2s+1} = 0$).

• Conversely, any integrator of the form (20) satisfying that $\sum_{i=1}^{s} a_i = \sum_{i=1}^{s+1} b_i$ can be expressed in the form (19) with $\chi_h = \varphi_h^{[2]} \circ \varphi_h^{[1]}$.

Order conditions

- Polynomial equations whose solutions provide the coefficients in ψ_h = χ_{α2sh} ∘ χ^{*}_{α2s-1h} ∘ · · · ∘ χ_{α2h} ∘ χ^{*}_{α1h}
- Several procedures to obtain them (rooted trees, BCH formula)
- BCH:

$$Z = \log(e^{X} e^{Y}) = X + Y + \sum_{m=2}^{\infty} Z_{m},$$
 (22)

 ∞

イロト イポト イヨト イヨト

Procedure

- Consider Ψ_h, expressed as a product of exponentials of vector fields
- Apply repeatedly the BCH formula to get the exponential of the modified vector field F_h
- Impose conditions $F_1 = F$, $F_k = 0$ for $2 \le k \le r$.

In particular,

$$\Psi_{h} = \exp\left(hf_{1,1}Y_{1} + h^{2}f_{2,1}Y_{2} + h^{3}f_{3,1}Y_{3} + h^{3}f_{3,2}[Y_{1}, Y_{2}] + \mathcal{O}(h^{4})\right)$$
(23)

$$f_{1,1} = \sum_{i=1}^{2s} \alpha_i, \qquad f_{2,1} = \sum_{i=1}^{2s} (-1)^{i+1} \alpha_i^2, \qquad f_{3,1} = \sum_{i=1}^{2s} \alpha_i^3, \qquad \text{etc.}$$
(24)

order conditions are $f_{1,1} = 1$, $f_{k,j} = 0$, $k = 2, \dots, r_{d}$

Order conditions

These order conditions are also valid for the composition

$$\psi_{h} = \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_{s}h}^{[1]} \circ \varphi_{b_{s}h}^{[2]} \circ \cdots \circ \varphi_{b_{2}h}^{[2]} \circ \varphi_{a_{1}h}^{[1]} \circ \varphi_{b_{1}h}^{[2]}$$

< ロ > < 同 > < 回 > < 回 > <</p>

 Simplifications occur for systems with additional structure, e.g.

•
$$H(q, p) = T(p) + V(q)$$

• $H(q, p) = \frac{1}{2}p^{T}Mp + V(q)$
• $H(q, p) = \frac{1}{2}p^{T}Mp + \frac{1}{2}q^{T}Nq$
• $x' = f^{[1]}(x) + \varepsilon f^{[2]}(x)$, with $|\varepsilon| \ll 1$

Different families

In consequence, different classes of integrators:

- Near-integrable systems: x' = f^[1](x) + εf^[2](x). Since ε ≪ h, one only cancels error terms with small powers of ε and not all the coefficients at an order h^k (Mclachlan, Laskar-Robutel)
- Runge–Kutta–Nyström like methods. Appropriate for y'' = g(y) and $H(q, p) = \frac{1}{2}p^T M p + V(q)$. In this case $[F^{[2]}, [F^{[2]}, [F^{[2]}, F^{[1]}]] = 0$, which leads to additional simplifications. Reduced number of evaluations (Blanes-Moan)

Different families

Methods with modified potentials.
 When [*F*^[2], [*F*^[2], [*F*^[2], *F*^[1]]]] = 0, in addition to *F*^[1] and *F*^[2], there are other vector fields whose flow is computable, e.g.,

$$F_{3,1} \equiv [F^{[2]}, [F^{[1]}, F^{[2]}]] = 2\sum_{i,j=1}^{l} g_i \frac{\partial g_j}{\partial y_i} \frac{\partial}{\partial v_j} \equiv g^{(3)}(y) \cdot \nabla_{v}$$

with flow
$$\varphi_t^{[3,1]}$$
: $x(t) = (y_0, v_0 + tg^{(3)}(y_0))$
More:

More:

Different families

Idea: to include the flow of

$$C_{b,c,d,e,f} \equiv bF_b + h^2 c F_{3,1} + h^4 d F_{5,1} + h^6 (eF_{7,1} + fF_{7,2}), \quad (25)$$

instead of $\varphi_{b_ih}^{[2]}$ in the scheme

$$\psi_{h} = \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_{s}h}^{[1]} \circ \varphi_{b_{s}h}^{[2]} \circ \cdots \circ \varphi_{b_{2}h}^{[2]} \circ \varphi_{a_{1}h}^{[1]} \circ \varphi_{b_{1}h}^{[2]}$$

 In this way the number of evaluations is much reduced more efficient methods

Processing

• Idea: to enhance and integrator ψ_h (the *kernel*) with $\pi_h : \mathbb{R}^D \longrightarrow \mathbb{R}^D$ (the *post-processor*) as

$$\hat{\psi}_h = \pi_h \circ \psi_h \circ \pi_h^{-1}.$$

• Application of *n* steps leads to

$$\hat{\psi}_h^n = \pi_h \circ \psi_h^n \circ \pi_h^{-1},$$

Advantageous if ψ̂_h is more accurate than ψ_h and the cost of π_h is negligible, since it provides the accuracy of ψ̂_h at the cost of (the least accurate) ψ_h.

Störmer–Verlet method

$$\psi_{h,2} = \varphi_{h/2}^{[1]} \circ \varphi_{h}^{[2]} \circ \varphi_{h/2}^{[1]} = \varphi_{h/2}^{[1]} \circ \varphi_{h}^{[2]} \circ \varphi_{h}^{[1]} \circ \varphi_{-h}^{[1]} \circ \varphi_{h/2}^{[1]}$$

$$= \varphi_{h/2}^{[1]} \circ \psi_{h,1} \circ \varphi_{-h/2}^{[1]} = \pi_{h} \circ \psi_{h,1} \circ \pi_{h}^{-1}$$

イロト イポト イヨト イヨト

with
$$\pi_h = \varphi_{h/2}^{[1]}$$
.

• Applying the first order method $\psi_{h,1} = \varphi_h^{[2]} \circ \varphi_h^{[1]}$ with processing yields a 2nd order of approximation.

Processing

- Very useful in geometric numerical integration
- ψ_h is of *effective order p* if a post-processor π_h exists for which ψ̂_h is of (conventional) order p, that is,

$$\pi_h \circ \psi_h \circ \pi_h^{-1} = \varphi_h + \mathcal{O}(h^{p+1}).$$

• The analysis of order conditions of $\hat{\psi}_h$ shows that many of them can be satisfied by π_h , so that ψ_h must fulfill a much reduced set of restrictions

If

$$\psi_{h} = \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_{s}h}^{[1]} \circ \varphi_{b_{s}h}^{[2]} \circ \cdots \circ \varphi_{b_{2}h}^{[2]} \circ \varphi_{a_{1}h}^{[1]} \circ \varphi_{b_{1}h}^{[2]}$$

the number and complexity of the conditions to be verified by a_i , b_i is reduced

・ロト ・ 同ト ・ ヨト ・ ヨト

Highly efficient processed methods

Methods in the literature

 Next we review the literature and collect specific methods of different families

ъ

- Number of stages
- Order
- Authors and year

$$\psi_h = \mathcal{S}_{\alpha_k h}^{[2]} \circ \cdots \circ \mathcal{S}_{\alpha_1 h}^{[2]} \circ \mathcal{S}_{\alpha_1 h}^{[2]}$$

Order	· 4	6	8	10	
	3- For-Ru(89)	7-Yoshida(90)	15-Yoshida(90)	31 -Suz-Um(93)	
	Yos(90),etc.	9-McL(95)	Suz-Um(93)	31-33 -Ka-Li(97) 33 -Tsitouras(00)	
	5-Suz(90)	Kahan-Li(97)	15-17-McL(95)		
McL(95) -Wanner(02)		11-13 -Sof-Spa(05) Kaha		an-Li(97) 31-35	
	19-21 -Sof-Spa(05) 31-35 -Sof-Spa(
Proce	essed				

P3-17-McL(02) P5-15 P9-19 P15-25 B-Casas-Murua(06)

Composition method-adjoint / generic splitting

$$\psi_h = \chi_{\alpha_{2s}h} \circ \chi^*_{\alpha_{2s-1}h} \circ \cdots \circ \chi_{\alpha_2h} \circ \chi^*_{\alpha_1h}$$

Order	• 3	4	6		8		
	3- Ru(84)	3-Ru-Yos,etc 4,5-McL(95) 6-B-Moan(02)	9-Forest(91) 10-B-Moan(02)	27- ??			
Processed							
		P 2-7	P5-10	P 14- ??			
	B-Casas-Murua(06)						

イロト イポト イヨト イヨト

Order conditions of splitting and composition methods Families of splitting methods Splitting methods for linear systems

$$\begin{split} \psi_h &= \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_sh}^{[1]} \circ \varphi_{b_sh}^{[2]} \circ \dots \circ \varphi_{b_2h}^{[2]} \circ \varphi_{a_1h}^{[1]} \circ \varphi_{b_1h}^{[2]} \\ \text{with } [F^{[2]}, [F^{[2]}, [F^{[2]}, F^{[1]}]]] = 0 \end{split}$$

Order		4	5	6	8 16saba/bab-?	
	3s-Ru-Yos,etc		5Naba-Oku-Seel(94)	7saba- For(91)		
	4нав-	McL-At(92)	6Nab-McL-At(92)	Oku-Skeel(94)) 17sава- Ok - Lu(94)	
	4 Nbab	-Cal-SS(93)	6Nвав-Chou-Sha(99)	7 ѕвав-For(91)	24ss-Ca-SS(93)	
	4,5 Sава-McL(95)					
5 Sвав-B-Moan(01)) 1)		
	6Saba	ивав-В-Moan	(02)			
Proc	cesse	ed				

P3.4 P4-7 P9-11 B-Casas-Ros(01)

Splitting for linear systems

$$\psi_h = \varphi_{b_{s+1}h}^{[2]} \circ \varphi_{a_sh}^{[1]} \circ \varphi_{b_sh}^{[2]} \circ \dots \circ \varphi_{b_2h}^{[2]} \circ \varphi_{a_1h}^{[1]} \circ \varphi_{b_1h}^{[2]}$$

with $[F^{[2]}, [F^{[2]}, [F^{[2]}, F^{[1]}]]] = [F^{[1]}, [F^{[1]}, [F^{[1]}, F^{[2]}]]] = 0$

Order	4	6		8	10		12	
	4,6	6	8	10		12		
	Gray-Manolopoulos(96)							
Proces	sed							
	P3,4	P3,4	P4-5	McL-G	Gray(97)			
	P 2-40		orders: 2	2-20	B-Cas	as-Murua	a(06)	

ヘロン 人間 とくほど くほとう

3

Specific problem

Numerical solution of the time-dependent Schrödinger eq.:

$$i\frac{\partial}{\partial t}\Psi(x,t) = \left(-\frac{1}{2m}\nabla^2 + V(x,t)\right)\Psi(x,t)$$
(26)

- One-dimensional problem $x \in [x_0, x_N]$ $(\psi(x_0, t) = \psi(x_N, t) = 0$
- Space discretization of ψ(x, t): [x₀, x_N] is split in N parts of length Δx = (x_N x₀)/N and **u** = (u₀,..., u_{N-1})^T ∈ C^N is formed, with u_n = ψ(x_n, t)
- One ends with

$$i \frac{d}{dt} \mathbf{u}(t) = \mathbf{H} \, \mathbf{u}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{C}^N,$$

イロト イポト イヨト イヨト

Schrödinger equation

$$i \frac{d}{dt} \mathbf{u}(t) = \mathbf{H} \, \mathbf{u}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{C}^N,$$

- $\mathbf{H} \in \mathbb{R}^{N \times N}$
- Solution: $\mathbf{u}(t) = e^{-it\mathbf{H}}\mathbf{u}_0$
- Exponential is very expensive for large N
- e^{-itH} is not only unitary, but also symplectic with q = Re(u) and p = Im(u)
- Equivalent equations: $\mathbf{q}' = \mathbf{H} \mathbf{p}$, $\mathbf{p}' = -\mathbf{H} \mathbf{q}$

Schrödinger equation

$$i \frac{d}{dt} \mathbf{u}(t) = \mathbf{H} \, \mathbf{u}(t), \qquad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{C}^N,$$

- $\mathbf{H} \in \mathbb{R}^{N \times N}$
- Solution: $\mathbf{u}(t) = e^{-it\mathbf{H}}\mathbf{u}_0$
- Exponential is very expensive for large N
- e^{-itH} is not only unitary, but also symplectic with q = Re(u) and p = Im(u)
- Equivalent equations: $\mathbf{q}' = \mathbf{H} \mathbf{p}, \quad \mathbf{p}' = -\mathbf{H} \mathbf{q}$

Schrödinger equation

We may write

$$\frac{d}{dt} \left\{ \begin{array}{c} \mathbf{q} \\ \mathbf{p} \end{array} \right\} = \left(\begin{array}{c} \mathbf{0} & \mathbf{H} \\ -\mathbf{H} & \mathbf{0} \end{array} \right) \left\{ \begin{array}{c} \mathbf{q} \\ \mathbf{p} \end{array} \right\} = (\mathbf{A} + \mathbf{B}) \left\{ \begin{array}{c} \mathbf{q} \\ \mathbf{p} \end{array} \right\},$$
with

$$\mathbf{A} \equiv \left(\begin{array}{cc} \mathbf{0} & \mathbf{H} \\ \mathbf{0} & \mathbf{0} \end{array} \right), \qquad \qquad \mathbf{B} \equiv \left(\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ -\mathbf{H} & \mathbf{0} \end{array} \right)$$

Observe that

$$e^{\textbf{A}} = \left(\begin{array}{cc} \textbf{I} & \textbf{H} \\ \textbf{0} & \textbf{I} \end{array} \right),$$

$$e^{\textbf{B}} = \left(\begin{array}{cc} \textbf{I} & \textbf{0} \\ -\textbf{H} & \textbf{I} \end{array} \right)$$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

.

Schrödinger equation

Splitting methods of the form

$$\mathbf{O}_{n}(h) = \mathrm{e}^{hb_{s+1}\mathbf{B}} \mathrm{e}^{ha_{s}\mathbf{A}} \cdots \mathrm{e}^{hb_{2}\mathbf{B}} \mathrm{e}^{ha_{1}\mathbf{A}} \mathrm{e}^{hb_{1}\mathbf{B}}.$$
 (27)

 Processed methods S(h) = P(h) K(h) P⁻¹(h) with K(h) of type (27) and enlarged stability intervals

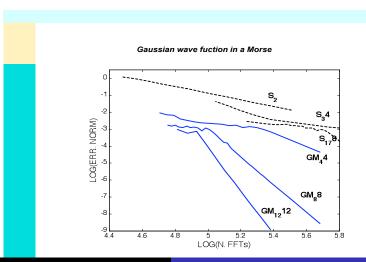
Example: Morse potential

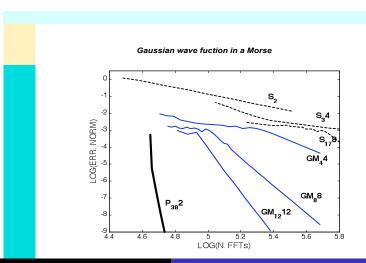
•
$$V(x) = D(1 - e^{-\alpha x})^2$$

• $\psi_0(x,t) = \rho \exp(-\beta(x-\bar{x})^2), \ \beta = \sqrt{Dm\alpha^2/2}, \ \bar{x} = -0.1, \ \rho$: const.

イロト イポト イヨト イヨト

- $t \in [0, 20T], T = 2\pi/(\alpha \sqrt{2D/m})$
- $x \in [-0.8, 4.32]$, split into N = 128 parts





Basic references

- E. Hairer, C. Lubich, and G. Wanner, *Geometric Numerical* Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition), Springer Series in Computational Mathematics **31**, Springer-Verlag, (2006).
- B. Leimkuhler and S. Reich, *Simulating Hamiltonian Dynamics*, Cambridge University Press, Cambridge (2004).
- R.I. McLachlan and R. Quispel, Splitting methods, Acta Numerica 11 (2002), pp. 341-434.