22, 23 y 24 de Octubre de 2008. El Escorial (Madrid)

Cuarta reunión de la red temática Dance

Odays 2008

Dance (Dinámica, Atractores y No Inealidad. Caos y Estabilidad) www.dance-net.org/dd2008 dd2008@dance-net.org

Complexity, branch points and sensitive dependence

D. Gómez-Ullate

Departmento de Física Teórica II, Universidad Complutense de Madrid

DDays - Red Dance El Escorial 22 October 2008

$$\dot{\mathbf{x}} = F(\mathbf{x}), \qquad \mathbf{x} = \mathbf{x}(t)$$

- **(1)** Las singularidades de $\mathbf{x}(t)$ en el plano *t* complejo son importantes.
- Un sistema puede ser integrable y tener dependencia sensitiva sobre condiciones iniciales.
- El estudio de la superficie de Riemann de x(t) proporciona mucha información sobre la dinámica (que resulta difícil de obtener por otros métodos)

周 ト イ ヨ ト イ ヨ

Ejemplo 1

Example 1: A system in \mathbb{C}^3

$$\begin{split} \dot{z}_1 &= -\mathrm{i}\,\omega\,z_1 + \frac{g_{12}}{z_1 - z_2} + \frac{g_{13}}{z_1 - z_3} \ ,\\ \dot{z}_2 &= -\mathrm{i}\,\omega\,z_2 + \frac{g_{21}}{z_2 - z_1} + \frac{g_{23}}{z_2 - z_3} \ ,\\ \dot{z}_3 &= -\mathrm{i}\,\omega\,z_3 + \frac{g_{31}}{z_3 - z_1} + \frac{g_{32}}{z_3 - z_2} \ . \end{split}$$

 $z_i = z_i(t), \quad z_i \in \mathbb{C}, \quad t \in \mathbb{R}$ Coupling constants $g_{ij} = g_{ji} \in \mathbb{R}$

$$\omega = 2\pi \Rightarrow T = 1$$

The complex ODEs

$$\begin{array}{rcl} \zeta_1' & = & \displaystyle \frac{g_{12}}{\zeta_1 - \zeta_2} + \frac{g_{13}}{\zeta_1 - \zeta_3} \ , \\ \zeta_2' & = & \displaystyle \frac{g_{12}}{\zeta_2 - \zeta_1} + \frac{g_{13}}{\zeta_2 - \zeta_3} \ , \\ \zeta_3' & = & \displaystyle \frac{g_{13}}{\zeta_3 - \zeta_1} + \frac{g_{23}}{\zeta_3 - \zeta_2} \ , \end{array}$$

Change of variables

$$\begin{aligned} \tau(t) &= \frac{1}{2i\omega} e^{2i\omega t} - 1 \\ z_n(t) &= e^{-i\omega t} \zeta_n(\tau) \end{aligned} \} \Rightarrow \begin{aligned} \dot{z}_1 &= -i\omega z_1 + \frac{g_{12}}{z_1 - z_2} + \frac{g_{13}}{z_1 - z_3} \\ \dot{z}_2 &= -i\omega z_2 + \frac{g_{21}}{z_2 - z_1} + \frac{g_{23}}{z_2 - z_3} \\ \dot{z}_3 &= -i\omega z_3 + \frac{g_{31}}{z_3 - z_1} + \frac{g_{32}}{z_3 - z_3} \end{aligned}$$

伺 ト イヨ ト イヨ ト

$$\begin{split} \zeta_1' &= \frac{g_{12}}{\zeta_1 - \zeta_2} + \frac{g_{13}}{\zeta_1 - \zeta_3} \;, \\ \zeta_2' &= \frac{g_{12}}{\zeta_2 - \zeta_1} + \frac{g_{13}}{\zeta_2 - \zeta_3} \;, \\ \zeta_3' &= \frac{g_{13}}{\zeta_3 - \zeta_1} + \frac{g_{23}}{\zeta_3 - \zeta_2} \;, \end{split}$$

• Translational invariance: CM motion is conserved.

$$Z(\tau) = \frac{1}{3}(\zeta_1 + \zeta_2 + \zeta_3) \Rightarrow Z' = 0 \Rightarrow Z(\tau) = Z(0)$$

Another conserved quantity

$$\zeta_1' \, \zeta_1 + \zeta_2' \, \zeta_2 + \zeta_3' \, \zeta_3 = g_{12} + g_{23} + g_{13}$$

$$\begin{split} \zeta_1' &= \frac{g_{12}}{\zeta_1 - \zeta_2} + \frac{g_{13}}{\zeta_1 - \zeta_3} \;, \\ \zeta_2' &= \frac{g_{12}}{\zeta_2 - \zeta_1} + \frac{g_{13}}{\zeta_2 - \zeta_3} \;, \\ \zeta_3' &= \frac{g_{13}}{\zeta_3 - \zeta_1} + \frac{g_{23}}{\zeta_3 - \zeta_2} \;, \end{split}$$

• Write $(\zeta_1, \zeta_2, \zeta_3)$ in terms of (Z, ρ, θ) :

$$\begin{split} \zeta_1(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\left(\theta + \frac{2\pi}{3}\right), \\ \zeta_2(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\left(\theta - \frac{2\pi}{3}\right), \\ \zeta_3(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\theta, \end{split}$$

$$\begin{split} \zeta_1(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\left(\theta + \frac{2\pi}{3}\right), \\ \zeta_2(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\left(\theta - \frac{2\pi}{3}\right), \\ \zeta_3(\tau) &= Z - \sqrt{\frac{2}{3}} \rho \cos\theta, \end{split}$$

Using the previous conserved quantity and trigonometric identities

$$\begin{aligned} \zeta_1^2 + \zeta_2^2 + \zeta_3^2 &= 3Z^2 + \rho^2 \Rightarrow \\ \rho^2(\tau) &= 2(g_{12} + g_{13} + g_{23})(\tau - \tau_1) \end{aligned}$$

$$\begin{split} \zeta_1' &= \frac{g_{12}}{\zeta_1 - \zeta_2} + \frac{g_{13}}{\zeta_1 - \zeta_3} \;, \\ \zeta_2' &= \frac{g_{12}}{\zeta_2 - \zeta_1} + \frac{g_{13}}{\zeta_2 - \zeta_3} \;, \\ \zeta_3' &= \frac{g_{13}}{\zeta_3 - \zeta_1} + \frac{g_{23}}{\zeta_3 - \zeta_2} \;, \end{split}$$

• The evolution of $Z(\tau)$ y $\rho(\tau)$ is integrated. Need only an equation for $\theta(\tau)$:

$$\rho^2 (\cos \theta)' (4 \cos^2 \theta - 1) = (4 g_{12} + 4 g_{13} + g_{23}) \cos \theta$$
$$-4 (g_{12} + g_{13} + g_{23}) \cos^3 \theta + \sqrt{3} (g_{23} - g_{13}) \sin \theta$$

• Call $u = \cos \theta$ and assume that $g_{23} = g_{13} = g$, $g_{12} = f$:

$$\rho^2 u' = \frac{(f+8g)u - 4(f+2g)u^2}{4u^2 - 1}$$

$$\rho^2 u' = \frac{(f+8g)u - 4(f+2g)u^3}{4u^2 - 1}$$

Since ρ^2 is linear in τ we have

$$\int \frac{d\tau}{2(2g+f)(\tau-\tau_1)} = \int du \frac{4u^2 - 1}{(f+8g)u + (4f+8g)u^3}$$

which can be integrated explicitly as

$$u^{-2\mu}\left(u^2-\frac{1}{4\mu}\right)^{\mu-1}=K(\tau-\tau_1),$$

where K is the integration constant and

$$\mu = \frac{f+2g}{f+8g}$$

One last change of variables

$$\xi = \frac{K(\tau - \tau_1)}{4\mu}$$
$$w = 4\mu u^2$$

transforms the equation

$$u^{-2\mu}\left(u^2-\frac{1}{4\mu}\right)^{\mu-1}=K(\tau-\tau_1),$$

into

$$(w-1)^{\mu-1} w^{-\mu} = \xi, \qquad \mu = \frac{f+2g}{f+8g}$$

Now work everything back to the original variables...

General solution

$$z_{1}(t) = \mathbf{Z}e^{-i\omega t} - \frac{1}{2} \left(\frac{f+8g}{6i\omega}\right)^{1/2} (1+\eta e^{-2i\omega t})^{1/2} \left[\check{w}(t)^{1/2} + (12\mu - 3\check{w}(t))^{1/2}\right]$$
$$z_{2}(t) = \mathbf{Z}e^{-i\omega t} - \frac{1}{2} \left(\frac{f+8g}{6i\omega}\right)^{1/2} (1+\eta e^{-2i\omega t})^{1/2} \left[\check{w}(t)^{1/2} - (12\mu - 3\check{w}(t))^{1/2}\right]$$
$$z_{3}(t) = \mathbf{Z}e^{-i\omega t} - \frac{1}{2} \left(\frac{f+8g}{6i\omega}\right)^{1/2} (1+\eta e^{-2i\omega t})^{1/2} \check{w}(t)^{1/2}$$

$$\check{w}(t) = w[\xi(t)] \quad \begin{cases} (w-1)^{\mu-1} w^{-\mu} = \xi \\ \xi(t) = \overline{\xi} + R e^{2i\omega t} \end{cases}$$

- The complex constants Z, η , R y $\overline{\xi}$ are fixed by the initial data (only 3 of them are independent).
- f, g, ω and μ are parameters of the problem.
- The function $\check{w}(t)$ has all the "juicy" part of the dynamics: we need to follow by continuity one of the many solutions of $(w 1)^{\mu 1} w^{-\mu} = \xi(t)$ as t evolves.

General solution

Constants Z, η , R y $\overline{\xi}$ are fixed by initial data :

$$Z = \frac{z_1(0) + z_2(0) + z_3(0)}{3},$$

$$R = \frac{3(f+8g)}{2i\omega [2z_3(0) - z_1(0) - z_2(0)]^2} \left[1 - \frac{1}{\dot{W}(0)}\right]^{\mu-1},$$

$$\eta = \frac{i\omega \left\{ [z_1(0) - z_2(0)]^2 + [z_2(0) - z_3(0)]^2 + [z_3(0) - z_1(0)]^2 \right\}}{3(f+2g)} - 1,$$

$$\dot{W}(0) = \frac{2\mu [2z_3(0) - z_1(0) - z_2(0)]^2}{[z_1(0) - z_2(0)]^2 + [z_2(0) - z_3(0)]^2 + [z_3(0) - z_1(0)]^2},$$

$$\overline{\xi} = R \eta$$
.

(note only 3 of them are independent)

イロト イヨト イヨト イヨト

Riemann surface of the solution

We must study the Riemann surface of the function $w(\xi)$ defined implicitly by

 $\Gamma = \{(\xi, w) \,|\, (w-1)^{\mu-1} \,w^{-\mu} = \xi\}$

 $\mu = p/q$ rational

- Γ is a finitely-sheeted covering of the extended ξ -plane $\mathbb{C} \cup \infty$.
- Almost all solutions are periodic, stable and isochronous.
- A set of null measure of singular orbits (collision manifolds).
- Closed formulas for the period can be written (using mostly combinatorial arguments).

μ irrational

- Γ is an infinitely-sheeted covering of the extended ξ-plane C ∪ ∞.
- Some orbits are periodic, some are aperiodic.
- Collision manifolds are dense (but null measure) on an open set of phase space.
- Sensitive dependence on initial data.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Description of the Riemann surface

 $\mu = p/q, \quad p,q, \in \mathbb{Z} \text{ coprimes}$

The RS is different in the two cases $0 < \mu < 1$ and $\mu > 1$.

Case $\mu > 1$: Γ has p + q sheets, with ramification points:

- O is a branch point order p q.
- There are q branch points $(\xi_b^{(j)}, \mu)$ of order 2 at

$$\xi_b^{(j)} = r_b \exp\left[irac{2\pi j p}{q}
ight], \quad j=1,2,...,q$$

Description of the Riemann surface

 $\mu = 8/5$

→ ∃ → < ∃</p>

Description of the Riemann surface

 $\mu = 5/12$

A (10) A (10) A (10)

Ferrers diagrams

イロト イ団ト イヨト イヨト

Bumping algorithm

- Closed formulas for the period can be given after some combinatorics and modular arithmetic.
- In some cases, the formulas depend on the coefficients of the continued fraction expansion of μ.

э.

< ロ > < 同 > < 三 > < 三 > -

Dependence of the period on initial data $z_1(0) = (0,0), \quad z_2(0) = (x,y), \quad z_3(0) = (1,1)$

 $\mu = 11/8$

D. Gómez-Ullate Complexity, branch points and sensitive dependence

 $\mu = 37/27$

 $\mu = 56/41$

 $\mu = 227/167$

 Two nearby trajectories that pass on different sides of a BP separate (path jumps to different sheets of the RS). In the physical variables an almost collision occurs.

• c.f. analogy with polygonal billiards

A (10) A (10) A (10)

Example 2

$$\frac{d^2\zeta}{d\tau^2} = P(\zeta) = -\frac{d V(\zeta)}{d\zeta}, \qquad \tau, \zeta \in \mathbb{C}. \qquad P(\zeta), V(\zeta) \text{ are polynomials in } \zeta$$

• Circular motion:
$$\tau(t) = \tau_0 + \frac{1}{i\omega} \left(e^{i\omega t} - 1 \right)$$

• Rectilinear motion: $\tau(t) = at + b$, $a, b \in \mathbb{C}$

First integral
$$E = \frac{1}{2}(\zeta')^2 + V(\zeta)$$

Solution is formally obtained by inverting

$$\tau - \tau_0 = \int_{\zeta_0}^{\zeta} \frac{d\eta}{\sqrt{2(E - V(\eta))}}, \qquad \zeta_0 = \zeta(\tau_0)$$

• deg $V \leq 4 \Rightarrow \zeta(\tau)$ is meromorphic (single-valued)

• deg $V > 4 \Rightarrow \zeta(\tau)$ is (in general) infinitely multiple-valued

Inverting hyper-elliptic integrals

Dynamical systems on hyper-elliptic Riemann surfaces

Rectilinear motion $\tau(t) = t$

$$\ddot{z} = -(k+1)z^k, \qquad z = z(t) \in \mathbb{C}, \ t \in \mathbb{R}$$

 $k < 4 \Rightarrow$ quasi-periodic motion (c.f. irrational covering of \mathbb{T}^2)

 $k \ge 4 \Rightarrow$ sensitive dependence (c.f. polygonal billiard)

Dynamical systems on hyper-elliptic Riemann surfaces

Circular motion $\tau(t) = \tau_0 + \frac{1}{i\omega} \left(e^{i\omega t} - 1 \right)$

Surfaces of higher genus

• Consider the Riemann Surface corresponding to the curve

$$\Gamma_{2n} = \{(\eta, \mu) | \mu^2 = E - \eta^{2n} \}$$

We can view this surface as the result of identifying the opposite sides of a regular n-gon (genus is n - 1).

The center map

• The center map is a discrete 2-dim map depending on two parameters that captures the essential dynamics of the differential equation.

B 5

The center map n = 12

Results for n = 12 and R = 1.8

The center map n = 12

Results for n = 12 and R = 1.8: $10 \times$ magnification

All regions have smooth boundaries and finite area \Rightarrow Local isochronocity

Results for n = 14 and R = 0.22: $100 \times$ magnification

Results for n = 14 and R = 0.225: 100× magnification

Results for n = 14 and R = 0.228: $300 \times$ magnification

Results for n = 14 and R = 0.228: $3000 \times$ magnification

Legenda - 🗆 🗙								
0	64	128	192	256	320	384	448	
512	576	640	704	768	832	896	960	
1024	1088	1152	1216	1280	1344	1408	1472	
1536	1600	1664	1728	1792	1856	1920	1984	
2048	2112	2176	2240	2304	2368	2432	2496	
2560	2624	2688	2752	2816	2880	2944	3008	
3072	3136	3200	3264	3328	3392	3456	3520	
3584	3648	3712	3776	3840	3904	3968	4032	
4096	4160	4224	4288	4352	4416	4480	4544	
4608	4672	4736	4800	4864	4928	4992		

The center map n = 14: Chaotic regime

Results for n = 14 and R = 0.358, initial center $C_0 = (1.1610, -0.4037), 2 \cdot 10^9$ iterations

The center map

A region of the previous plot, magnified 10 times

The center map

A region of the previous plot, magnified 4 times more

Understanding the numerics

- For $n \leq 12$ and any radius
 - all orbits are periodic
 - period can become arbitrarily large (grows exponentially with R/I)
 - Periods of order 10^8 have been observed for $R/I \sim 20$
- For $n \ge 14$ two different behaviours:
 - For $R < R_c$, periodic behaviour (same as above).
 - 2 For $R > R_c$ aperiodic and irregular fractal behaviour

Question

Why is there a critical genus between n = 12 and n = 14 ?

A similar situation is observed in the theory of pattern formation...

The ergodic hypothesis

• The total shift of the center after N iterations of the map is given by

$$C_N = C_0 + \sum_{i=1}^N m_i V_i$$

 V_j : the possible shifts along the sides of the polygon (period vectors) m_j : net number of shifts along direction V_j .

• For aperiodic trajectories, the numerical behaviour for large N of C_N is

$$C_N \sim N^\lambda \vec{v}(N), \qquad \lambda = 1/2$$

 $\vec{v}(N)$: a random vector of order 1.

• $\lambda = 1/2$ can be interpreted as an algebraic Lyapunov exponent The motion is a random walk on an effective lattice.

The effective lattice

• Not all shifts are independent over the integers

so the dimension of the effective lattice is lower than k for a regular polygon of 2k sides.

- If n = 2k with k odd: the alternated sum of the periods is zero.
- If n = 4k with k odd, the symmetry of the polygon implies extra relations

Dimension of the effective lattice

 With this in mind, the effective dimension of the lattice as a function of the number of sides of the polygon for the first few cases is:

n	num. indep. shifts	Eff. lattice dim.		
8	4	2		
10	4	2		
12	4	2		
14	6	4		
16	8	6		

- A random walk on a 2-dim lattice comes back to the initial point with probability 1 (i.e. with probability 1 the orbit will be periodic)
- A random walk on a lattice of dimension d > 2 there is a non-zero probability of not returning to the initial point (i.e. there will be aperiodic orbits).

Summary and outlook

- The solutions of many systems of ODEs are infinitely valued functions of time.
- Information on their Riemann Surface is relevant to understanding the dynamics.
- Sensitive dependence can be understood in terms of clustering of branch points.
- Singularities on the complex time plane play a role even if time travels on the real axis.

Outlook:

- Understand how this new notion of chaos relates to existing theories
- In particular, introduce Lyapunov exponents related to this theory.
- Elaborate on Universality of this mechanism, built on the understanding of these examples.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >