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Tres ideas

ẋ = F (x), x = x(t)

1 Las singularidades de x(t) en el plano t complejo son importantes.
2 Un sistema puede ser integrable y tener dependencia sensitiva sobre

condiciones iniciales.
3 El estudio de la superficie de Riemann de x(t) proporciona mucha

información sobre la dinámica (que resulta difícil de obtener por otros
métodos)
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Ejemplo 1

Example 1: A system in C3

ż1 = −iω z1 +
g12

z1 − z2
+

g13

z1 − z3
,

ż2 = −iω z2 +
g21

z2 − z1
+

g23

z2 − z3
,

ż3 = −iω z3 +
g31

z3 − z1
+

g32

z3 − z2
.

zi = zi (t), zi ∈ C, t ∈ R
Coupling constants gij = gji ∈ R

ω = 2π ⇒ T = 1
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The complex ODEs

ζ′1 =
g12

ζ1 − ζ2
+

g13

ζ1 − ζ3
,

ζ′2 =
g12

ζ2 − ζ1
+

g13

ζ2 − ζ3
,

ζ′3 =
g13

ζ3 − ζ1
+

g23

ζ3 − ζ2
,

Change of variables

τ(t) = 1
2iω e2iωt − 1

zn(t) = e−iωtζn(τ)

}
⇒

ż1 = −iωz1 + g12
z1−z2

+
g13

z1−z3
ż2 = −iωz2 + g21

z2−z1
+

g23
z2−z3

ż3 = −iωz3 +
g31

z3−z1
+

g32
z3−z2
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Reducing the general solution to quadratures

ζ′1 =
g12

ζ1 − ζ2
+

g13

ζ1 − ζ3
,

ζ′2 =
g12

ζ2 − ζ1
+

g13

ζ2 − ζ3
,

ζ′3 =
g13

ζ3 − ζ1
+

g23

ζ3 − ζ2
,

Translational invariance: CM motion is conserved.

Z (τ) =
1
3

(ζ1 + ζ2 + ζ3)⇒ Z ′ = 0 ⇒ Z (τ) = Z (0)

Another conserved quantity

ζ′1 ζ1 + ζ′2 ζ2 + ζ′3 ζ3 = g12 + g23 + g13
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Reducing the general solution to quadratures

ζ′1 =
g12

ζ1 − ζ2
+

g13

ζ1 − ζ3
,

ζ′2 =
g12

ζ2 − ζ1
+

g13

ζ2 − ζ3
,

ζ′3 =
g13

ζ3 − ζ1
+

g23

ζ3 − ζ2
,

Write (ζ1, ζ2, ζ3) in terms of (Z , ρ, θ):

ζ1(τ) = Z −
√

2
3
ρ cos

(
θ +

2π
3

)
,

ζ2(τ) = Z −
√

2
3
ρ cos

(
θ − 2π

3

)
,

ζ3(τ) = Z −
√

2
3
ρ cos θ,
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Reducing the general solution to quadratures

ζ1(τ) = Z −
√

2
3
ρ cos

(
θ +

2π
3

)
,

ζ2(τ) = Z −
√

2
3
ρ cos

(
θ − 2π

3

)
,

ζ3(τ) = Z −
√

2
3
ρ cos θ,

Using the previous conserved quantity and trigonometric identities

ζ2
1 + ζ2

2 + ζ2
3 = 3Z 2 + ρ2 ⇒

ρ2(τ) = 2(g12 + g13 + g23)(τ − τ1)
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Reducing the general solution to quadratures

ζ′1 =
g12

ζ1 − ζ2
+

g13

ζ1 − ζ3
,

ζ′2 =
g12

ζ2 − ζ1
+

g13

ζ2 − ζ3
,

ζ′3 =
g13

ζ3 − ζ1
+

g23

ζ3 − ζ2
,

The evolution of Z (τ) y ρ(τ) is integrated. Need only an equation for θ(τ):

ρ2 (cos θ)′
(

4 cos2 θ − 1
)

= (4 g12 + 4 g13 + g23) cos θ

−4 (g12 + g13 + g23) cos3 θ +
√

3 (g23 − g13) sin θ

Call u = cos θ and assume that g23 = g13 = g, g12 = f :

ρ2u′ =
(f + 8g)u − 4(f + 2g)u3

4u2 − 1
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Reducing the general solution to quadratures

ρ2u′ =
(f + 8g)u − 4(f + 2g)u3

4u2 − 1
Since ρ2 is linear in τ we have

∫
dτ

2(2g + f )(τ − τ1)
=

∫
du

4u2 − 1
(f + 8g)u + (4f + 8g)u3

which can be integrated explicitly as

u−2µ
(

u2 − 1
4µ

)µ−1
= K (τ − τ1),

where K is the integration constant and

µ =
f + 2g
f + 8g
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Reducing the general solution to quadratures

One last change of variables

ξ =
K (τ − τ1)

4µ

w = 4µ u2

transforms the equation

u−2µ
(

u2 − 1
4µ

)µ−1
= K (τ − τ1),

into

(w − 1)µ−1 w−µ = ξ, µ =
f + 2g
f + 8g

Now work everything back to the original variables...
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General solution

z1(t) = Ze−iωt − 1
2

(
f + 8g

6iω

)1/2
(1 + ηe−2iωt )1/2

[
w̌(t)1/2 + (12µ− 3w̌(t))1/2

]

z2(t) = Ze−iωt − 1
2

(
f + 8g

6iω

)1/2
(1 + ηe−2iωt )1/2

[
w̌(t)1/2 − (12µ− 3w̌(t))1/2

]

z3(t) = Ze−iωt − 1
2

(
f + 8g

6iω

)1/2
(1 + ηe−2iωt )1/2 w̌(t)1/2

w̌(t) = w [ξ(t)]

{
(w − 1)µ−1 w−µ = ξ

ξ(t) = ξ + R e2iωt

The complex constants Z , η, R y ξ are fixed by the initial data (only 3 of them are
independent).

f , g, ω and µ are parameters of the problem.

The function w̌(t) has all the “juicy” part of the dynamics: we need to follow by
continuity one of the many solutions of (w − 1)µ−1 w−µ = ξ(t) as t evolves.
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General solution

Constants Z , η, R y ξ are fixed by initial data :

Z =
z1(0) + z2(0) + z3(0)

3
,

R =
3 (f + 8 g)

2 iω [2 z3(0)− z1(0)− z2(0)] 2

[
1− 1

w̌(0)

]µ−1
,

η =
iω
{

[z1(0)− z2(0)] 2 + [z2(0)− z3(0)] 2 + [z3(0)− z1(0)] 2
}

3 (f + 2 g)
− 1 ,

w̌(0) =
2µ [2 z3(0)− z1(0)− z2(0)] 2

[z1(0)− z2(0)] 2 + [z2(0)− z3(0)] 2 + [z3(0)− z1(0)] 2 ,

ξ = R η .

(note only 3 of them are independent)
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Riemann surface of the solution

We must study the Riemann surface of the function w(ξ) defined implicitly by

Γ = {(ξ,w) | (w − 1)µ−1 w−µ = ξ}

µ = p/q rational

Γ is a finitely-sheeted covering of the extended ξ-plane C ∪∞.

Almost all solutions are periodic, stable and isochronous.

A set of null measure of singular orbits (collision manifolds).

Closed formulas for the period can be written (using mostly combinatorial
arguments).

µ irrational

Γ is an infinitely-sheeted covering of the extended ξ-plane C ∪∞.

Some orbits are periodic, some are aperiodic.

Collision manifolds are dense (but null measure) on an open set of phase space.

Sensitive dependence on initial data.
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Description of the Riemann surface

µ = p/q, p, q,∈ Z coprimes

The RS is different in the two cases 0 < µ < 1 and µ > 1.

Case µ > 1: Γ has p + q sheets, with ramification points:

O is a branch point order p − q.

There are q branch points (ξ
(j)
b , µ) of order 2 at

ξ
(j)
b = rb exp

[
i
2πjp

q

]
, j = 1, 2, ..., q

p = 11, q = 8
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Description of the Riemann surface

infty

1

ξ −  plane

8

7

6

5

4

3

2

ξ(2)
bξ (3)

ξ
b

0

(p−q)−sheets

q−sheets

b

(4)

p=8, q=5

ξ (1)
b

ξ (5)

b

q SRBPs connecting sheets of type q and (p− q).
(0,1) rational BP connecting the sheets of type (p− q).
(∞,0) rational BP connecting all the sheets.

ξ(j)b connects the sheets Fj and Fϕ(j):
ϕ(j) = j + q − (p− q)

⌊
j−1
p−q

⌋

If the BP (0,1) is inside the E-circle, ALL the SRBPs
inside the E-circle are active and T = b+ (p− q),
where b is the number of SRBPs included in the evolu-
tionary circle.

µ = 8/5
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Description of the Riemann surface

1
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ξ

ξ
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b

ξ
b

ξ
bξξ

ξ

ξ

bb
b

b (12)

(11)(10)(9)
(8)

(7)

(6)
ξ

ξ ξ
ξ

(5)
(4) (3)

(2)

b

b
b b

b

Infinity

p=5, q=12

− plane

ξ

The E-circle contains the adjacent SRBPs
ξ(1)b , .., ξ(5)b : w.r.t. the main sheet 1, ξ(2)b , .., ξ(5)b are inac-
tive, connecting sheets that cannot be accessed travel-
ing on E and starting from F1; then: 1,8,1, ⇒ T = 2.

If the E-circle contains also ξ(6)b , instead:
1,6,8,1, ⇒ T = 3.

µ = 5/12
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Ferrers diagrams

w

w
2

w3

w4

w
5

1

ξ

w=w( ξ)

The real time evolution generates, via ξ(t) = R(η+e2iωt),
a circular trajectory in the ξ-plane. After one turn:
ξ → ξe2πi, the polynomial goes back to itself. Then
the set of roots is unchanged, but they may exchange
their positions...
In the figure:
the pairs of roots {w1, w2} and {w3, w4} exchange their
positions ⇒ T(w1, w2, w3, w4) = 2.
The root w5 goes back to its original position⇒ T(w5) =
1.
The dynamics of the roots is described by the sequences:
1− 2− 1, 3− 4− 3, 5− 5.
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Branch point configuration  (p=5, q=12)
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Usefull description in terms of Ferrer diagrams (Young
diagrams without numbers)
q blank boxes distributed in rows and columns:
number of boxes in a colums = length of the cycle of
the corresponding permutation
As the number of adjacent BPs included in the evo-
lutionary circle increases, the Ferrer diagram changes
according to the bumping rule:
move the left column of the far right group of columns
to the far left column of the intermediate group of
columns
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Bumping algorithm

2− 9

3− 10

4− 11
5− 12

6− 1

7− 2

8− 3

9− 4 11− 6

12− 7

1− 8

10− 5

Branch point configuration  (p=5, q=12)
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Usefull description in terms of Ferrer diagrams (Young
diagrams without numbers)
q blank boxes distributed in rows and columns:
number of boxes in a colums = length of the cycle of
the corresponding permutation
As the number of adjacent BPs included in the evo-
lutionary circle increases, the Ferrer diagram changes
according to the bumping rule:
move the left column of the far right group of columns
to the far left column of the intermediate group of
columns
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Branch point configuration  (p=5, q=12)
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Usefull description in terms of Ferrer diagrams (Young
diagrams without numbers)
q blank boxes distributed in rows and columns:
number of boxes in a colums = length of the cycle of
the corresponding permutation
As the number of adjacent BPs included in the evo-
lutionary circle increases, the Ferrer diagram changes
according to the bumping rule:
move the left column of the far right group of columns
to the far left column of the intermediate group of
columns
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Closed formulas for the period can be given after some combinatorics and
modular arithmetic.

In some cases, the formulas depend on the coefficients of the continued fraction
expansion of µ.
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Motions for µ = 11/8

f = 12, g = −0.5⇒ µ = 11/8

Initial data: z1(0) = (0, 0), z2(0) = (−0.5, 1), z3(0) = (1, 1)
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Motions for µ = 11/8

f = 12, g = −0.5⇒ µ = 11/8

Initial data: z1(0) = (0, 0), z2(0) = (0.4, 1), z3(0) = (1, 1)
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Motions for µ = 11/8

f = 12, g = −0.5⇒ µ = 11/8

Initial data: z1(0) = (0, 0), z2(0) = (0.7, 1), z3(0) = (1, 1)
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Motions for µ = 11/8

f = 12, g = −0.5⇒ µ = 11/8

Initial data: z1(0) = (0, 0), z2(0) = (1, 1), z3(0) = (1, 1)
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Motions for µ = 11/8

Dependence of the period on initial data
z1(0) = (0, 0), z2(0) = (x , y), z3(0) = (1, 1)
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Sensitive dependence

µ = 11/8
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Sensitive dependence

µ = 37/27
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Sensitive dependence

µ = 56/41
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Sensitive dependence

µ = 227/167
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The origin of instability
Branch points and almost collisions

Two nearby trajectories that pass on different sides of a BP separate (path jumps
to different sheets of the RS). In the physical variables an almost collision occurs.

C

�b

zn( )t

z
m
( )t

zn( )t

z
m
( )t

C

�( )t

�( )t

�b

� - plane z - plane

c.f. analogy with polygonal billiards
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Example 2

Example 2

d2ζ

dτ2
= P(ζ) = −d V (ζ)

dζ
, τ, ζ ∈ C. P(ζ),V (ζ) are polynomials in ζ

Circular motion: τ(t) = τ0 + 1
iω

(
eiωt − 1

)

Rectilinear motion: τ(t) = at + b, a, b ∈ C

First integral E =
1
2

(ζ′)2 + V (ζ)

Solution is formally obtained by inverting

τ − τ0 =

∫ ζ

ζ0

dη√
2(E − V (η))

, ζ0 = ζ(τ0)

deg V ≤ 4⇒ ζ(τ) is meromorphic (single-valued)

deg V > 4⇒ ζ(τ) is (in general) infinitely multiple-valued
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Inverting hyper-elliptic integrals

Γ = {(η, µ)|µ2 = P5(η)},

V1 =

∮

a1

dη√
2µ

, V2 =

∮

a2

dη√
2µ

, V3 =

∮

b1

dη√
2µ

, V4 =

∮

b2

dη√
2µ

.

W00W01 W0-1

W10 W1-1W11

�( )

V1

V3

V4

V2�(Q )1

�(Q )1

�(Q )3
W01 W

01

�
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Dynamical systems on hyper-elliptic Riemann surfaces

Rectilinear motion τ(t) = t

z̈ = −(k + 1)zk , z = z(t) ∈ C, t ∈ R

k < 4⇒ quasi-periodic motion k ≥ 4⇒ sensitive dependence
(c.f. irrational covering of T2) (c.f. polygonal billiard)
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Dynamical systems on hyper-elliptic Riemann surfaces

Circular motion τ(t) = τ0 + 1
iω

(
eiωt − 1

)

z̈ + i
(

3 + k
1− k

)
ωż − 2 + 2k

(1− k)2
ω2z = −(k + 1)zk , k ∈ Z

k < 4 k = 4 k = 5
elliptic hyperelliptic “hyperelliptic”

periodic T = 1 periodic T unbounded periodic T = 1, 2
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Surfaces of higher genus

Consider the Riemann Surface corresponding to the curve

Γ2n = {(η, µ)|µ2 = E − η2n}

We can view this surface as the result of identifying the opposite sides of a regular
n-gon (genus is n − 1).

n even: n = 2k > 0 and the factorized Riemann surface
It is convenient to focus our attention on the motion
on the factorized Riemann surface Γ̃, obtained from the
RS µ2 = 1− w|n| by the factorization:

Γ̃ : w → −w, µ→ −µ (39)

Γ̃ can be naturally treated as the result of gluing the
opposite sides of a single regular n-gone.

Example (n = 8):

Γ

C1

C2

C3

C4

a

b

c

d

a−1

b−1

c−1

d−1

n=8
~

Is it a too drastic semplification?

i) If the motion on Γ̃ is periodic, then the motion on Γ is
also periodic, and the two periods either coincide or the
period on Γ is twice bigger, depending on whether the
number of intersections with the sides is even or odd.
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The center map

The center map is a discrete 2-dim map depending on two parameters that
captures the essential dynamics of the differential equation.

THE CENTER MAP

The continuous dynamics is conveniently represented by
the discrete motion of the center ξc of the cycle, for any
fixed radius R (The center map). Its dynamical rule is
the following:
any time the circle crosses a side sj of the n-gone, the
center is shifted by the corresponding basic period:

ξc → ξc − 2he
2πi

n
(j−1) (40)

Ck

C
k+1

m k =[t   ]k

m k

R

t

t=0
0

k

tk+1

m=0

The center map for the n − gon

The center map for the regular polygon of n sidesD. Gómez-Ullate Complexity, branch points and sensitive dependence



The center map n = 12

Results for n = 12 and R = 1.8
Regions colored by a single color are the set of initial
points of the center map giving rise to a periodic motion
characterized by the same period

n = 12, R = 1.8 > l/2 = 0.414
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The center map n = 12

Results for n = 12 and R = 1.8: 10× magnification

n = 12, R = 1.8, a detail of the previous picture, mag-
nified 10 times; at this magnification all regions have
smooth boundaries)

All regions have smooth boundaries and finite area⇒ Local isochronocity
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.22: 100× magnificationphace space in periodic regimes

n = 16, R = 0.22, center (0.93,0), magnification 100
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.225: 100× magnification

n = 16, R = 0.225, center (0.93,0), magnification 100
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.228: 300× magnification

n = 16, R = 0.228, center (0.93,0), magnification 300
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.228: 3000× magnification

n = 16, R = 0.228, center (0.93,0), magnification 3000

n = 16, R = 0.228, center (0.93,0), magnification 3000
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The center map n = 14: Chaotic regime

Results for n = 14 and R = 0.358, initial center C0 = (1.1610,−0.4037), 2 · 109

iterations

In the second series of experiments we increase the ra-
dius R. For a sufficiently small change of radius the
fractal changes, but keeping all the principal features.
Choosing, instead, a sufficiently different radius, we ob-
tain completely different fractal pictures. If R = 0.6, we
obtain the richer picture:
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The center map

A region of the previous plot, magnified 10 timesA detail of this fractal, magnified 10 times, containing
a part of the initial circle:
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The center map

A region of the previous plot, magnified 4 times more
A detail of the previous detail, magnified 4 times more.
All these magnifications make evident the extremely rich
fractal nature of the center map.
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Understanding the numerics

For n ≤ 12 and any radius
all orbits are periodic
period can become arbitrarily large (grows exponentially with R/l)
Periods of order 108 have been observed for R/l ∼ 20

For n ≥ 14 two different behaviours:
1 For R < Rc , periodic behaviour (same as above).
2 For R > Rc aperiodic and irregular fractal behaviour

Question

Why is there a critical genus between n = 12 and n = 14 ?

A similar situation is observed in the theory of pattern formation. . .
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The ergodic hypothesis

The total shift of the center after N iterations of the map is given by

CN = C0 +
N∑

i=1

mjVj

Vj : the possible shifts along the sides of the polygon (period vectors)
mj : net number of shifts along direction Vj .

For aperiodic trajectories, the numerical behaviour for large N of CN is

CN ∼ Nλ~v(N), λ = 1/2

~v(N): a random vector of order 1.

λ = 1/2 can be interpreted as an algebraic Lyapunov exponent
The motion is a random walk on an effective lattice.
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The effective lattice

Not all shifts are independent over the integers

Abel covering and effective dimension
We consider the trajectories on the Abelian covering,
whose points are represented by the initial point of poly-
gone + the total shift due to the cycles:

T =
k∑

j=1

mjCj (47)

where mj is the number of crossings of the trajectory
with the side sj minus the number of crossings with the
opposite side sj+k. ⇒ the motion takes place on the
lattice described by the vector

~m = (m1, ..,mk) ∈ Zk (48)

What is the effective dimension of this lattice?

A) Not all the k shifts are independent:
i) if k is odd, the alternated sum of the cycles is zero
(there is a relation among them):

n=6 n=10

so the dimension of the effective lattice is lower than k for a regular
polygon of 2k sides.

If n = 2k with k odd: the alternated sum of the periods is zero.
If n = 4k with k odd, the symmetry of the polygon implies extra
relations
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Dimension of the effective lattice

With this in mind, the effective dimension of the lattice as a function of
the number of sides of the polygon for the first few cases is:

n num. indep. shifts Eff. lattice dim.
8 4 2
10 4 2
12 4 2
14 6 4
16 8 6

1 A random walk on a 2-dim lattice comes back to the initial point
with probability 1 (i.e. with probability 1 the orbit will be periodic)

2 A random walk on a lattice of dimension d > 2 there is a non-zero
probability of not returning to the initial point (i.e. there will be
aperiodic orbits).
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Summary and outlook

The solutions of many systems of ODEs are infinitely valued functions of
time.

Information on their Riemann Surface is relevant to understanding the
dynamics.

Sensitive dependence can be understood in terms of clustering of
branch points.

Singularities on the complex time plane play a role even if time travels
on the real axis.

Outlook:

Understand how this new notion of chaos relates to existing theories

In particular, introduce Lyapunov exponents related to this theory.

Elaborate on Universality of this mechanism, built on the understanding
of these examples.
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