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Tres ideas

X = F(x), x = x(1)

@ Las singularidades de x(t) en el plano t complejo son importantes.

@ Un sistema puede ser integrable y tener dependencia sensitiva sobre
condiciones iniciales.

@ El estudio de la superficie de Riemann de x(t) proporciona mucha

informacion sobre la dinamica (que resulta dificil de obtener por otros
métodos)
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Ejemplo 1

Example 1: A system in C3

2 : 912 913

i =—1wZ{ + — + —,
Zy — 2o Z1 — 23

2 : 921 923

Zp=—-1wZp + —— + ———,
Zp — Z4 Hp — 3

7= —iwzg + 931 4 G2
Z3 — Z4 Z3 — 2o

Zi = Z,'(t), zieC, teR
Coupling constants g; = g € R

w=2r=T=1
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The complex ODEs

J12 J13
CI - + I
! G—C ¢—GC
¢ = Ji2 J13
2 G—¢ -G’
g = 913 923
8 G- G-C'
Change of variables
2 = —iwzy + %2 _G13_

_ 1 2wt _ . 21 —2p Z1—23
(1) = 2w © 1 } = Zp = —iwz + 91 923

1w .
Zn(t) = ¢ !¢n() i

Z3—2 Z3—22

Z3 = —in3 +
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Reducing the general solution to quadratures

r_ G2 LG 913

C1 G -G
42 __9r 913 7

G@—G¢ -G
Cé _ _ 91 923 7

G—¢  G—C

@ Translational invariance: CM motion is conserved.
1
2 =5G+e+tq)= Z' =0 = Z(r) = Z(0)
@ Another conserved quantity

C1¢1+¢¢+ (3¢ = 012+ gez + 913
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Reducing the general solution to quadratures

Ji2 J13
=G -GG’
g12 913
C, =+ )
2T 6-0 GG
/ g13 923
= 2= 4 F=
TG0 GG

@ Write (¢1,¢2,¢3) interms of (Z, p, 0):

G =

2 2m
Gi(r)y = Z—\/ngOS<9+?>,
2 2m
G(r) = Z—\/ngOS(e—?),
2
G(r) = Z*\/gpcose,
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Reducing the general solution to quadratures

Z\/ipcos(9+ 2%),
Z—\/gpcos(af%»
2

G(r) = Z- \/gPC0397

¢i(7)

Ca(7)

@ Using the previous conserved quantity and trigonometric identities
G+E+E =32+~

P2(7) = 2(g12 + G13 + Go3) (T — 1)
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Reducing the general solution to quadratures

g12 913
-G -G’
= 912 913

2T -0 -G’

r_ 913 923

8 Cs—C1+C3—C2’

G =

@ The evolution of Z(7) y p(7) is integrated. Need only an equation for 6(7):
p° (cos 6)’ (4 cos? 0 — 1) = (4012 + 4 g13 + gog) COS O
—4 (12 + 913 + Gos) €0° 6 + V3 (G2s — 13) SiN 0
@ Call u = cos 6 and assume that gog = g13 = g, 912 = f:

5, (f+8g)u—4(f +2g)u°
pou =
4u2 —1
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Reducing the general solution to quadratures

2 _ (F+89)u— 4(f +2g)0?
pe= 402 — 1

Since p? is linear in T we have
/ dr B / du 4u? — 1
2g+1f)(r—m) (f+8g)u+ (4f +8g)u®
which can be integrated explicitly as

1\ H# T
u2e (uz——> =K(r —m),
4p

where K is the integration constant and

_f+2g
K= ¥isg
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Reducing the general solution to quadratures

One last change of variables

¢ = K(T4— 71)
m
w o= 4ul

transforms the equation

1\ #!
uze <u2 - 7> =K(r —m),
4u

into

_f+2g
= ¥ eg
Now work everything back to the original variables...

(w—rTw =g,
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General solution

. /2 '
Z1(t) — Ze—iwt _ % (f;rSg> (1 +7}e—21wt)1/2 {W(t)1/2 4 (12‘“_ 3W(t))1/2]
1w
: /2 ,
Zg(t) — Ze—iwt _ % <f;ng> (1 + 7]672“‘”)1/2 {W(t)1/2 _ (12# _ 3\7V(t))1/2]
1w
1/2
Z3(t) — Ze—lwt _ 1 <f+89> / (1 + n672iw1)1/2 W(t)1/2
2 6Giw

(w1t wn = ¢

i) = wie { Sy ' e

@ The complex constants Z, n, Ry ¢ are fixed by the initial data (only 3 of them are
independent).

@ f,g,w and p are parameters of the problem.

@ The function w(t) has all the “juicy” part of the dynamics: we need to follow by
continuity one of the many solutions of (w — 1)#~1 w—# = £(t) as t evolves.
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General solution

Constants Z, , Ry ¢ are fixed by initial data :
21(0) + 2(0) + z3(0)

V4
3
B 3(f+89) R
T T G 2a0) - 20 - 2O {1 W(O)]
iw {121(0) = 22(0)]2 + [22(0) — z5(0)]? + [25(0) — 21(0))?}
"= 3(fr29) -
y 24 [223(0) — z1(0) — 2(0)]?
w(0) = 2 2 2
[21(0) — 22(0)]% + [22(0) — 23(0)]2 + [23(0) — 21(0)]
£ = Ryn.

(note only 3 of them are independent)
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Riemann surface of the solution

We must study the Riemann surface of the function w(¢) defined implicitly by ’

F={Ew)|(w-1"TwH=¢

w = p/q rational

@ T is afinitely-sheeted covering of the extended &-plane C U co.
@ Almost all solutions are periodic, stable and isochronous.
@ A set of null measure of singular orbits (collision manifolds).

@ Closed formulas for the period can be written (using mostly combinatorial
arguments).

w irrational

@ T is an infinitely-sheeted covering of the extended ¢-plane C U cc.

@ Some orbits are periodic, some are aperiodic.

@ Collision manifolds are dense (but null measure) on an open set of phase space.
@ Sensitive dependence on initial data.
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Description of the Riemann surface

w=p/q, P,Qq;€ Zcoprimes
The RS is different in the two cases 0 < < 1 and p > 1.

Case i > 1: T has p + g sheets, with ramification points:
@ Ois a branch point order p — q.

@ There are g branch points (53), ) of order 2 at

. 2 il
§g) = Ip €Xp |:1 ij:| ) j: 1727“'7q
q
* 6-3
*7-1 * 5-2
*82 *O 4-1
*os &
*10—1
p=11,9=38
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Description of the Riemann surface

p=8, g=5

] (p—q)-sheet

g-sheets

PN W R OO N

3 2)
E(b) éb {f,l)
o infty

®
£ - plane &

uw=28/5
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Description of the Riemann surface

p=5, =12
T T 12
1 [ "
I T o
T T s
T o g T 7
T L T 6
IR .
IR M
\wl:‘:p\:\ 3
[ R ! 2
—H am 8

Lg

e e Infinity
® 14
=l € 59 .0 (11)&
plane / 3 \E b b

nw=>5/12
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w=w(§&)

5

13/.
7
.
8-9 ®1-7 2
9% o us .\
10-5
Branch point configuration (p=5, q=12) 9

D. Gémez-Ullate

T
‘w,
(Ws )
10
-\.3
8 1]2]3|a|ls|7
8|9 |10|11]12
1
6
6
o« %11
4
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Bumping algorithm

1 2 3‘4‘5‘ 1 2 4"5‘
i
8 9 l})‘ll‘ 12‘ 8 9 1[&‘12‘
6 7 “‘ 6 7 “‘
_ T/
10 ~ 3 [/
s [l
/ R 10
12
8 1 2‘3‘4‘5‘7‘
7 8 9‘10‘11‘12‘
L] 1
6
2
\ 6
Y o« 11

@ Closed formulas for the period can be given after some combinatorics and
modular arithmetic.

@ In some cases, the formulas depend on the coefficients of the continued fraction
expansion of u.
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Motions for = 11/8

f=12,g=-05=p=11/8
Initial data: z;(0) = (0,0), z(0) =(—0.5,1), z3(0)=(1,1)
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Motions for = 11/8

f=12,g=-05=p=11/8
Initial data: z; (0) = (0,0), 2(0) = (0.4,1), z3(0) = (1,1)

T=2
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Motions for = 11/8

f=12,g=-05=p=11/8
Initial data: z1(0) = (0,0), 2z(0) =(0.7,1), z3(0)=(1,1)

T=7
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Motions for = 11/8

f=12,g=-05=p=11/8
Initial data: z1(0) = (0,0), z(0)=(1,1), z3(0)=(1,1)
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Motions for = 11/8

Dependence of the period on initial data
z1(0) = (0,0), 2(0) = (x,y), z(0)=(1,1)
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Sensitive dependence

uw=11/8

15
1 T=7

12

10 05

8 0

6
05

4
-1

2
45

0.4 0.6 0.8 1.2 1.4 A5 4 05 0 05 1 45

D. Gémez-Ullate Complexity, branch points and sensitive dependence



Sensitive dependence

15
4 T=23
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Sensitive dependence

1= 56/41
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Sensitive dependence

= 227/167

15
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20, 05
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The origin of instability

Branch points and almost collisions

@ Two nearby trajectories that pass on different sides of a BP separate (path jumps
to different sheets of the RS). In the physical variables an almost collision occurs.

r - plane z - plane

@ c.f. analogy with polygonal billiards
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Example 2

d?¢ _dV(©) o
P P(¢) = T 7,¢ € C. P(¢), V(<) are polynomials in ¢

@ Circular motion: () = 7o + = (el“! — 1)

@ Rectilinear motion: 7(t) = at+ b, a,beC

First integral E = %(g’)z + V(¢)

Solution is formally obtained by inverting

_ [ dn —
T—TO_'/CO JAE=VG)) ¢o = ¢(70)

@ deg V < 4 = ((r) is meromorphic (single-valued)
@ deg V > 4 = ((r) is (in general) infinitely multiple-valued
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Inverting hyper-elliptic integrals

M= {(n,u)|u? = Ps(n)},

dn dn dn dn
R -l - - vt
a V2p a V2p by V2u by V2u
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Dynamical systems on hyper-elliptic Riemann surfaces

Rectilinear motion 7(t) = ¢

7=—(k+1)2ZK, z=2z(t)eC, teR

k < 4 = quasi-periodic motion  k > 4 = sensitive dependence
(c.f. irrational covering of T2) (c.f. polygonal billiard)
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Dynamical systems on hyper-elliptic Riemann surfaces

Circular motion 7(t) = 7o + = (el«! — 1)

. k . 2+ 2k
z+i(%> wz—“—tikywzz:—(k—&-ﬂzk, kezZ

k<4
elliptic hyperelliptic “hyperelliptic”
periodic T =1 periodic T unbounded periodic T =1,2
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Surfaces of higher genus

@ Consider the Riemann Surface corresponding to the curve
Fan = {(n, W)l = E ="}

We can view this surface as the result of identifying the opposite sides of a regular
n-gon (genusis n — 1).

r n=¢8

G
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The center map

@ The center map is a discrete 2-dim map depending on two parameters that
captures the essential dynamics of the differential equation.
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The center map n =12

Results forn=12and R = 1.8
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The center map n=1

Results for n = 12 and R = 1.8: 10x magnification

All regions have smooth boundaries and finite area = Local isochronocity
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.22: 100x magnification
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.225: 100x magnification
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.228: 300x magnification
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The center map n = 14: Periodic regime

Results for n = 14 and R = 0.228: 3000 x magpnification
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The center map n = 14: Chaotic regime

Results for n = 14 and R = 0.358, initial center Cy = (1.1610, —0.4037), 2 - 10°
iterations

D. Gémez-Ullate Complexity, branch points and sensitive dependence



The center map

A region of the previous plot, magnified 10 times
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The

nter map

A region of the previous plot, magnified 4 times more
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Understanding the numerics

@ For n < 12 and any radius

o all orbits are periodic
e period can become arbitrarily large (grows exponentially with R//)
e Periods of order 10 have been observed for R// ~ 20

@ For n > 14 two different behaviours:

@ For R < R, periodic behaviour (same as above).
@ For R > R aperiodic and irregular fractal behaviour

Why is there a critical genus between n=12and n= 14 ?

A similar situation is observed in the theory of pattern formation. . .
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The ergodic hypothesis

@ The total shift of the center after N iterations of the map is given by

N
CNICo-i-ijVj

i=1

V; : the possible shifts along the sides of the polygon (period vectors)
m; . net number of shifts along direction V;.

@ For aperiodic trajectories, the numerical behaviour for large N of Cy is
Cv~ NYW(N), x=1)2

V(N): a random vector of order 1.

@ )\ = 1/2 can be interpreted as an algebraic Lyapunov exponent
The motion is a random walk on an effective lattice.
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The effective lattice

@ Not all shifts are independent over the integers

n=6 n=10

so the dimension of the effective lattice is lower than k for a regular
polygon of 2k sides.
o If n = 2k with k odd: the alternated sum of the periods is zero.
o If n = 4k with k odd, the symmetry of the polygon implies extra
relations

D. Gémez-Ullate Complexity, branch points and sensitive dependence



Dimension of the effective lattice

@ With this in mind, the effective dimension of the lattice as a function of
the number of sides of the polygon for the first few cases is:

n | num. indep. shifts | Eff. lattice dim.
8 4 2
10 4 2
12 4 2
14 6 4
16 8 6

@ A random walk on a 2-dim lattice comes back to the initial point
with probability 1 (i.e. with probability 1 the orbit will be periodic)

@ A random walk on a lattice of dimension d > 2 there is a hon-zero
probability of not returning to the initial point (i.e. there will be
aperiodic orbits).
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Summary and outlook

@ The solutions of many systems of ODEs are infinitely valued functions of
time.

@ Information on their Riemann Surface is relevant to understanding the
dynamics.

@ Sensitive dependence can be understood in terms of clustering of
branch points.

@ Singularities on the complex time plane play a role even if time travels
on the real axis.

Outlook:
@ Understand how this new notion of chaos relates to existing theories
@ In particular, introduce Lyapunov exponents related to this theory.

@ Elaborate on Universality of this mechanism, built on the understanding
of these examples.
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