22, 23 y 24 de Octubre de 2008. El Escorial (Madrid)

Cuarta reunión de la red temática Dance

Ddays2008

Dance (Dinámica, Atractores y No linealidad. Caos y Estabilidad) www.dance-net.org/dd2008 dd2008@dance-net.org

Multistep cosine methods for second-order partial differential equations

Begoña Cano⁽¹⁾, María Jesús Moreta⁽²⁾
(1) Universidad de Valladolid
(2) Universidad Complutense de Madrid

AIM: Efficient numerical integration of PDEs of secondorder in time with qualitative properties to imitate

$$u_{tt}(x,t) = Au(x,t) + g(t,u(x,t)), x \in [a,b], 0 < t < T$$

$$u(x,0) = u_0(x)$$

$$u_t(x,0) = v_0(x)$$

periodic boundary conditions

 $Au = u_{xx} \rightarrow$ nonlinear wave equation

 $Au = -u_{xxxx} \rightarrow$ Euler-Bernoulli equation

Important assumption: Enough regularity of the solution

Literature

 Integration of highly oscillatory problems energy of the solution being bounded stiff part easy to integrate

Gautschi-type methods

Hochbruch&Lubich, Numer. Math (1999) Hairer & Lubich, SIAM J. Numer. (2000) Grimm & Hochbruch, J. Phys. A Math. Gen. (2006)

Mollified impulse methods

García-Archilla, Sanz-Serna, Skeel, SIAM J. Sci. Comp. (1998) Sanz-Serna, SIAM J. Numer. (2008)

second-order accurate

Literature

• Integration of parabolic PDEs with exponential integrators

stiff and linear part integrated exactly

 \longrightarrow explicit and stable methods of arbitrary high order

Norsett, Lecture Notes (1969) Cox & Matthews, JCP (2002) Hochbruch & Ostermann, APNUM (2005) Hochbruch & Ostermann, SIAM J. Num. Anal. (2005) Calvo & Palencia, Numer. Math. (2006)

no qualitative properties to imitate

We will use symmetric explicit multistep cosine methods

explicit multistep \implies 1 funct.eval./step cosine \implies stiff part integrated exactly symmetric \implies qualitative properties are conserved Literature on symmetric multistep methods for ODEs of second-order in time $\ddot{y} = f(y)$

$$\rho(E)y_n = h^2 \sigma(E) f(y_n), \quad \rho(x) = x^k \rho(\frac{1}{x}), \quad \sigma(x) = x^k \sigma(\frac{1}{x}).$$

If 1 is the only double root of $\rho \longrightarrow \begin{array}{c} \operatorname{good} \operatorname{qualitative} \\ \operatorname{behaviour} \end{array}$

In another case \longrightarrow exponential error growth with time in general

Cano & Sanz-Serna, IMA J. Numer. Anal. (1998) Hairer & Lubich, Numer. Math. (2004) Cano, Numer. Math. (2006) \rightarrow generalization to PDEs After pseudospectral discretization in space,

$$\ddot{Y}(t) = -\Omega^2 Y(t) + G(t, Y(t)), \quad \Omega \to \text{diagonal and real}$$

Construction of methods

$$Y(t_n+h) = \cos(h\Omega)Y(t_n) + h\operatorname{sinc}(h\Omega)\dot{Y}(t_n) + \int_0^h \Omega^{-1} \sin((h-s)\Omega)G(t_n+s,Y(t_n+s))ds$$
$$h \to -h \text{ and adding}$$

$$Y(t_n + h) - 2\cos(h\Omega)Y(t_n) + Y(t_n - h) \\ = \int_0^h \Omega^{-1}\sin((h - s)\Omega)[G(t_n + s, Y(t_n + s)) + G(t_n - s, Y(t_n - s))]ds.$$

When $G(t_n + s, Y(t_n + s)) \approx G(t_n, Y_n) \longrightarrow$ Gautschi method $Y_{n+2} - 2\cos(h\Omega)Y_{n+1} + Y_n = h^2\gamma_1(h\Omega)G_{n+1}, \quad \gamma_1(\epsilon) = 2\epsilon^{-2}(1 - \cos(\epsilon)),$ If $G(t_n+s, Y(t_n+s)) \approx \sum_{l=0}^{k-1} G(t_{n-l}, Y_{n-l}) L_{-l,h}(s) \rightarrow$ higher order method

$$L_{-l,h}$$
: Lagrange polynomial $\{0, -h, \dots, -\stackrel{\gamma}{lh}, \dots, -(k-1)h\}$

k = 3 MC3

 $Y_{n+3} - 2\cos(h\Omega)Y_{n+2} + Y_{n+1} = h^{2}[\gamma_{2}(h\Omega)G_{n+2} + \gamma_{1}(h\Omega)G_{n+1} + \gamma_{0}(h\Omega)G_{n}]$ $\gamma_{0}(\epsilon) = \epsilon^{-2}[1 - 2\epsilon^{-2} + 2\epsilon^{-2}\cos(\epsilon)].$ $\gamma_{1}(\epsilon) = \epsilon^{-2}[-2 + 4\epsilon^{-2} - 4\epsilon^{-2}\cos(\epsilon)],$ $\gamma_{2}(\epsilon) = \epsilon^{-2}[3 - 2\cos(\epsilon) - 2\epsilon^{-2} + 2\epsilon^{-2}\cos(\epsilon)].$

 $\Omega \rightarrow 0$: 3rd-order explicit Störmer multistep method, not symmetric

SMC4 $Y(t_n + 2h) - \delta(h\Omega)Y(t_n + h) - 2(\cos(2h\Omega) - \delta(h\Omega)\cos(h\Omega))Y(t_n) - \delta(h\Omega)Y(t_n - h) + Y(t_n - 2h)$ $= \int_0^{2h} \Omega^{-1}\sin((2h - s)\Omega)[G(t_n + s, Y(t_n + s)) + G(t_n - s, Y(t_n - s))]ds$ $-\delta(h\Omega) \int_0^h \Omega^{-1}\sin((h - s)\Omega)[G(t_n + s, Y(t_n + s)) + G(t_n - s, Y(t_n - s))]ds.$

Interpolation in $\{-h, 0, h\} \rightarrow$ symmetry

$$\delta(\epsilon) = \cos(\epsilon) \left\{ \begin{array}{l} \rho_0(x) = x^4 - x^3 - x + 1 = (x - 1)^2 (x^2 + x + 1) \\ \text{stability} \to \text{roots of } \rho_\epsilon(x) \text{ of unit modulus} \end{array} \right.$$

$$x_1(\epsilon) = \frac{-\cos(\epsilon) + i\sqrt{4 - \cos^2(\epsilon)}}{2}, \quad x_2(\epsilon) = \frac{-\cos(\epsilon) - i\sqrt{4 - \cos^2(\epsilon)}}{2},$$

$$x_3(\epsilon) = \cos(\epsilon) + i\sin(\epsilon), \quad x_4(\epsilon) = \cos(\epsilon) - i\sin(\epsilon).$$

 $Y_{n+4} - \cos(h\Omega)Y_{n+3} + (-2\cos(2h\Omega) + 2\cos(h\Omega)^2)Y_{n+2} - \cos(h\Omega)Y_{n+1} + Y_n$ = $h^2[\gamma_1(h\Omega)G_{n+3} + \gamma_2(h\Omega)G_{n+2} + \gamma_1(h\Omega)G_{n+1}],$

$$\gamma_1(\epsilon) = \epsilon^{-2}(4 - \cos(\epsilon)) + 2\epsilon^{-4}[\cos(2\epsilon) - 1 + \cos(\epsilon)(1 - \cos(\epsilon))]$$

$$\gamma_2(\epsilon) = 2\epsilon^{-2}(-3 - \cos(2\epsilon) + \cos^2(\epsilon)) + 4\epsilon^{-4}(1 - \cos(2\epsilon) - \cos(\epsilon)(1 - \cos(\epsilon)))$$

Local truncation error (d_n) By using error of interpolation Gautschi $\rightarrow q = 2$ MC3 $\rightarrow q = 3$ SMC4 $\rightarrow q = 4$

• If
$$\frac{d^q}{dt^q}G(t,Y(t))$$
 exists and $\left|\left(\frac{d^q}{dt^q}G(t,Y(t))\right)_{\lambda}\right| \leq K_{\lambda,q}$
 $|d_{n,\lambda}| \leq C_q K_{\lambda,q} h^{q+2}$, $C_2 = 1$, $C_3 = (1+2\sqrt{3}/5)/2$, $C_4 = (4+\frac{\sqrt{3}}{54})$

• Under any of the following assumptions of regularity

(i) $\frac{d^q}{dt^q}g(t, u(t, x))$ can be extended to a holomorphic function on a complex band $|\text{Im}(z)| \leq \hat{B}$ for $0 \leq t \leq T$, and there $|\frac{d^q}{dt^q}g(t, u(t, z))| \leq \hat{C}$,

(ii) $\frac{d^q}{dt^q}g(t, u(t, x))$ admits $m \ge 0$ continuous and periodic derivatives with respect to x and $\frac{d^{m+1}}{dx^{m+1}}\frac{d^q}{dt^q}g(t, u(t, x))$ exists and is piecewise C^1 in [a, b].

$$\|d_n\| = O(h^{q+2})$$

Global error

$$\bar{Y}_n = [Y_{n+k-1}, \dots, Y_n]^T, \quad \bar{G}(\bar{Y}_n) = [G(Y_{n+k-1}), \dots, G(Y_n)]^T$$

$$\bar{Y}_{n+1} = R(h\Omega)\bar{Y}_n + h^2 B(h\Omega)\bar{G}(\bar{Y}_n), \quad B(\epsilon) = \begin{pmatrix} \gamma_{k-1}(\epsilon) & \dots & \gamma_1(\epsilon) & 0\\ 0 & 0 & \dots & 0\\ \vdots & & \ddots & \vdots\\ 0 & \dots & \dots & 0 \end{pmatrix},$$

$$\text{Gautschi} \to R(\epsilon) = \begin{pmatrix} 2\cos(\epsilon) & -1\\ 1 & 0 \end{pmatrix}, \text{MC3} \to R(\epsilon) = \begin{pmatrix} 2\cos(\epsilon) & -1& 0\\ 1 & 0 & 0\\ 0 & 1& 0 \end{pmatrix}$$

$$\mathsf{SMC4} \to R(\epsilon) = \begin{pmatrix} \cos(\epsilon) & 2\cos(2\epsilon) - 2\cos(\epsilon)^2 & \cos(\epsilon) & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 $\|B(h\Omega)\| \leq \sup_{\lambda \in \sigma(\Omega)} \|B(h\lambda)\|$

Stability $||R^{j}(\epsilon)|| \leq \overline{C}j, \quad \epsilon \in \mathbb{R}$

Eigenvalues of
$$R(\epsilon)$$
 { of modulus ≤ 1
those of unit modulus } $\rightarrow \frac{\text{Schur}}{\text{decomposition}}$

Gautschi $\epsilon = 2m\pi, \pi + 2m\pi, \rightarrow x_{1,2} = e^{\pm i\epsilon} = +1, -1$

		$\epsilon = 2m\pi$	$\epsilon = \frac{\pi}{2} + 2m\pi$	$\epsilon = 3\frac{\pi}{2} + 2m\pi$	$\epsilon = \pi + 2m\pi$
SMC4	x_1	$\frac{-1+i\sqrt{3}}{2}$	i	i	$\frac{1+i\sqrt{3}}{2}$
	x_2	$\frac{-1-i\sqrt{3}}{2}$	-i	-i	$\frac{1-i\sqrt{3}}{2}$
	x3	1	i	-i	-1
-	<i>x</i> 4	1	-i	i	-1

• Under the mentioned assumptions of regularity, whenever $Y(t_{\nu})-Y_{\nu} = O(h^{q+1}), \nu = 0, 1, ..., k-1, Y(t_n)-Y_n = O(h^q), 0 \le nh \le T.$

Growth of error with time for the nonlinear wave equation

Pseudospectral discretization in space (M = 250)

$$\Omega = \operatorname{diag}(\lambda_k)_{k=-M}^M = \operatorname{diag}(\frac{2\pi k}{b-a})_{k=-M}^M = \operatorname{diag}(\frac{2\pi k}{100})_{k=-M}^M$$

 $h = 1/10, 1/20, \qquad |\lambda_k h| \le 5\pi h \le \pi/2$

Resonances

h = 1/10, 1/20, M = 500

 $h = 1/10, \lambda_M h = \pi \rightarrow$ leads to double root of $\rho_{\epsilon}(x)$

 $h = 1/20, |\lambda_k h| \le \pi/2$

Explanation for resonances

Simplified problem $\ddot{y}(t) = -\lambda^2 y(t) - y(t)$

Numerical solution for stepsize h, $Y_n = \sum_{j=1}^k \delta_j [x_j(\lambda h, h)]^n$ $x_j(\epsilon, h) \to \text{roots of } r_{\epsilon,h}(x) \equiv \rho_\epsilon(x) + h^2 \sigma_\epsilon(x)$ $\rho_\epsilon(x) = \alpha_k(\epsilon) x^k + \dots + \alpha_0(\epsilon), \quad \sigma_\epsilon(x) = \gamma_{k-1}(\epsilon) x^{k-1} + \dots + \gamma_1(\epsilon),$ Symmetric methods $\begin{cases} \alpha_j(\epsilon) = \alpha_{k-j}(\epsilon), & \gamma_j(\epsilon) = \gamma_{k-j}(\epsilon), \\ \rho_\epsilon(x) = x^k \rho_\epsilon(1/x), & \sigma_\epsilon(x) = x^k \sigma_\epsilon(1/x), \end{cases}$

$$x_j(\epsilon,h) \text{ root of } r_{\epsilon,h}(x) \Longrightarrow \left\{ \begin{array}{l} \overline{x_j(\epsilon,h)} \\ 1/x_j(\epsilon,h) \end{array} \right\} \text{ also roots of } r_{\epsilon,h}(x)$$

Stable methods \longrightarrow roots of unit modulus of $r_{\epsilon,0}(x)$ at most double

Gautschi small h

• If ϵ for from $m\pi$ $(m \in \mathbb{Z})$, $|x_j(\epsilon, h)| = 1$, j = 1, 2.

• If
$$\epsilon$$
 near $m\pi$ $(m \in \mathbb{Z})$,
 $|x_j(\epsilon, h)| = 1, \quad j = 1, 2.$
or
 $x_1(\epsilon, h)$ real and $|x_1(\epsilon, h)| > 1,$
 $x_2(\epsilon, h) = 1/x_1((\epsilon, h))$ \Rightarrow resonance

By using Taylor series expansion of $r_{\epsilon,h}(x)$ around $\epsilon = \epsilon_l$, h = 0, $x = x_l$ with x_l double root of $r_{\epsilon_l,0}$, $\epsilon = \epsilon_l + \eta$, $x = x_l + r$

 $\epsilon_l = m\pi \begin{cases} \text{even } m \Longrightarrow r \text{ purely imaginary in first approximation} \\ \text{odd } m \Longrightarrow r \text{ real} \Longrightarrow \text{resonance} \end{cases}$

SMC4

small h

• If ϵ for from $m\pi, \pi/2 + m\pi$ ($m \in \mathbb{Z}$), $|x_j(\epsilon, h)| = 1$.

• If
$$\epsilon$$
 near $m\pi$, $|x_j(\epsilon, h)| = 1$, or
 $x_1(\epsilon, h)$ real and $|x_1(\epsilon, h)| > 1$,
 $x_2(\epsilon, h) = 1/x_1((\epsilon, h))$ \Rightarrow resonance

By Taylor expansion around $\epsilon = \epsilon_l$, h = 0, $x = x_l$, $\epsilon = \epsilon_l + \eta$, $x = x_l + r$,

even
$$m \Longrightarrow r$$
 purely imaginary \Longrightarrow no resonance
odd $m \Longrightarrow r$ real \Longrightarrow resonance

• If $\epsilon \operatorname{near} \pi/2 + m\pi$, by Taylor expansion,

$$\begin{split} r &= (-1)^m \frac{2\eta \pm \sqrt{4\eta^2 + 16(ch^2 + 2\eta^2)}}{8}, \ c > 0 \end{split}$$

$$\begin{aligned} real \left\{ \begin{array}{l} \text{positive} \\ \text{negative} \end{array} \Longrightarrow |x_j(\epsilon, h)| = 1 \Longrightarrow \text{no resonance} \end{array} \right. \end{split}$$

,,0

Filters to avoid resonances

Annihilating components → resonant frequencies

$$\ddot{Y}(t) = -\Omega^2 Y(t) + G(t, Y(t)), \qquad \Omega = \operatorname{diag}(\lambda_r),$$

If $|\lambda_r h - \epsilon_l| < \eta_0(\epsilon_l)$ then $Y_r = 0$ ϵ_l one of the values which leads to resonance $\eta_0(\epsilon_l)$ deduced from Taylor expansion before

Under our assumptions of regularity, convergence conserved

• Standard filters: filter function ϕ

$$\sum_{l=0}^{k} \alpha_l(h\Omega) Y_{n+l} = h^2 \sum_{l=0}^{k} \gamma_l(h\Omega) G(\phi(h\Omega) Y_{n+l}), n \ge 0$$

When applied to linear problem $\ddot{y}(t) = -\lambda^2 y(t) - y(t)$, control of roots of $\tilde{r}_{\epsilon,h}(x) = \rho_{\epsilon}(x) + h^2 \tilde{\sigma}_{\epsilon}(x)$, $\tilde{\sigma}_{\epsilon}(x) = \phi(\epsilon) \sigma_{\epsilon}(x)$.

Gautschi method

• To avoid resonance in simplified problem,

$$\begin{split} \phi(0) &\geq 0, \\ \phi(\pi + 2m\pi) &\leq 0, \quad m \in \mathbb{Z}, \\ \text{If } \phi(\pi + 2m\pi) &= 0 \text{ then } \phi'(\pi + 2m\pi) = 0. \end{split} \tag{Taylor expansion}$$

• To conserve consistency of order 2 for the more general problem, with the assumptions of regularity, g Lipschitz in L^2 -norm on its second variable and $||Au||_2$ bounded,

 $\frac{\phi(\epsilon)-1}{\epsilon^2}$ bounded for real ϵ (local truncation error revisited)

Possible filter functions: $(\frac{\sin(\epsilon)}{\epsilon})^2$, $(\frac{\sin(\epsilon)}{\epsilon})^2(1 + \frac{1 - \cos(\epsilon)}{2})$

Hochbruch & Lubich (1999)

SMC4 method

• To avoid resonance in simplified problem,

$$\begin{array}{l} \phi(0) > 0, \\ \phi(\frac{\pi}{2} + 2m\pi) > 0, \\ \phi(\pi + 2m\pi) \le 0, \quad m \in \mathbb{Z}, \\ \text{If } \phi(\pi + 2m\pi) = 0 \text{ then } \phi'(\pi + 2m\pi) = 0. \end{array}$$

• To conserve consistency of order 4 for the more general problem, with the assumptions of regularity, g Lipschitz in L^2 -norm on its second variable and $||A^2u||_2$ bounded,

 $\frac{\phi(\epsilon)-1}{\epsilon^4}$ bounded for real ϵ

Possible filter function: $\left(\frac{\sin(\epsilon)}{\epsilon}\right)^2 \left[1 + \frac{2}{3}(1 - \cos(\epsilon))\right]$

Numerical comparison

Growth of error with time for the nonlinear wave equation

Gautschi (h = 1/10, 1/20), pseudospectral (M = 500)

Annihilating frequencies

filter function $\phi(\epsilon) = \left(\frac{\sin(\epsilon)}{\epsilon}\right)^2 \left(1 + \frac{1 - \cos(\epsilon)}{2}\right)$

Numerical comparison

Growth of error with time for the nonlinear wave equation

SMC4 (h = 1/10, 1/20), pseudospectral (M = 500)

Annihilating frequencies

filter function $\phi(\epsilon) = \left(\frac{\sin(\epsilon)}{\epsilon}\right)^2 \left[1 + \frac{2}{3}(1 - \cos(\epsilon))\right]$

Qualitative properties of symmetric methods

Better behaviour with respect to growth of error with time

MC3 (not symmetric) (h = 1/10, 1/20),

pseudospectral (M = 250)

Quadratic error growth while linear before

Numerical integration of Euler-Bernoulli equation

$$u_{tt} = -u_{xxxx} - 0, 4u^3, \quad x \in [0, 2\pi], \quad 0 \le t \le T,$$

$$u(x, 0) = \frac{5}{2}e^{\frac{\cos(x)}{5}} - \frac{5}{2},$$

$$v(x, 0) = e^{\frac{\sin(x)}{5}} - \frac{5}{2},$$

periodic boundary conditions

Conserved quantities

$$H = \int_{a}^{b} \left[\frac{1}{2}u_{t}^{2} + \frac{1}{2}u_{xx}^{2} + 0, 1u^{4}\right] dx,$$

$$M = -\int_{a}^{b} u_{t}u_{x}dx.$$

Growth of energy and momentum error with time

Gautschi (filtered) (h = 1/20, 1/40),

pseudospectral (M = 10)

'bounded '

 $h = 1/20, \rightarrow \lambda_M h = 20, \quad h = 1/40, \rightarrow \lambda_M h = 10$

Growth of energy and momentum error with time

MC3 (filtered) (h = 1/20, 1/40),

pseudospectral (M = 10)

linear error growth

Growth of energy and momentum error with time

SMC4 (filtered) (h = 1/20, 1/40),

pseudospectral (M = 10)

^{&#}x27;bounded '