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We will deal with
{

ẋ = P (x, y), (1)

ẏ = Q(x, y),

where P (x, y) and Q(x, y) are analytic functions.

(x0, y0) is a critical point of (1) if P (x0, y0) = Q(x0, y0) = 0.

γ(t) is a periodic orbit of (1) if it is a non-constant solution and
there exists T ∈ R

+ such that γ(0) = γ(T ).

An isolated periodic orbit is called limit cycle.
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Critical points: Introduction

Let DX(0, 0) the jacobian matrix at the critical point (0, 0) of (1)

DX(0, 0) =







∂P
∂x

(0, 0) ∂P
∂y

(0, 0)

∂Q
∂x

(0, 0) ∂Q
∂y

(0, 0)







and λ1, λ2 its eigenvalues.

• If λ1λ2 6= 0, (0, 0) is an elementary critical point.

• If one, and only one, of λi is zero, (0, 0) is a semi-elementary
critical point.

• If λ1 = λ2 = 0, (0, 0) is a degenerate critical point and
◦ if DX(0, 0) is not identically null, (0, 0) is called nilpotent,
◦ If DX(0, 0) is identically null, (0, 0) is called linearly zero.
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Topological classification of critical points

Except for the center-focus problem:

• Hartman-Grobman Theorem (1964) topologically classifies
elementary critical points.

• In [ALGM, 1973], topologically classified semi-elementary
critical points.

• Andreev Theorem (1953) topologically classifies nilpotent
critical points.

• Each linearly zero case can be studied separately.
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Center-Focus Problem

{

ẋ = P (x, y), (1)

ẏ = Q(x, y),

The origin of system (1) is monodromic if there exists a
neighborhood of it where all the orbits turn around it.

The monodromy problem consists in determining when a critical
point is monodromic.

Il’yashenko and Ecalle (1991) proved that, if P (x, y) and Q(x, y)
are analytic and the origin is monodromic then it is either a focus
or a center.

The center-focus problem consists in distinguishing if a
monodromic singular point is a focus or a center.
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ẏ = Q(x, y),

The origin of system (1) is monodromic if there exists a
neighborhood of it where all the orbits turn around it.

The monodromy problem consists in determining when a critical
point is monodromic.

Il’yashenko and Ecalle (1991) proved that, if P (x, y) and Q(x, y)
are analytic and the origin is monodromic then it is either a focus
or a center.

The center-focus problem consists in distinguishing if a
monodromic singular point is a focus or a center.

Critical points – p. 6



Center-Focus Problem

{
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Center-focus problem

• Solved by Poincaré (1881) for elementary critical points.
The Lyapunov constants can be used to bifurcate limit
cycles from this kind of critical points.

• Solved by Moussu (1982) for nilpotent critical points.

The goal of the following results is to compute the generalized
Lyapunov constants of a general monodromic nilpotent critical
point and use them to bifurcate limit cycles from it.
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Normal form for nilpotent critical points

Lemma [Andreev, 1953]. An analytic vector field with the origin
being an isolated nilpotent monodromic singularity can be
written

{

ẋ = y(−1 + X1(x, y)), (2)

ẏ = f(x) + φ(x)y + Y0(x, y)y2,

where

X1(x, y) =
∑

i+j≥1

dijx
iyj , f(x) = x2n−1 +

∑

i≥0

aix
2n+i,

φ(x) = bxβ +
∑

i≥1

bix
β+i, Y0(x, y) =

∑

i+j≥0

eijx
iyj ,

satisfying φ(x) ≡ 0 or β ≥ n − 1. Furthermore if β = n − 1 then
b2 − 4n < 0.
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Stability for monodromic nilpotent critical points

{

ẋ = y(−1 + X1(x, y)), (2)

ẏ = x2n−1 + O(x2n) + (bxβ + O(xβ+1))y + Y0(x, y)y2.

Theorem A. The origin of system (2) is a stable (resp. unstable)
monodromic critical point when ∆ < 0 (resp. ∆ > 0), where:

(a) ∆ = b, if β ∈ {n − 1, n, n + 1} and β is even;

(b) ∆ = (2n + 1)b1 +
(

− 3e00 + (n − 1)d10 − (n + 2)a0

)

b,

if β = n and β is odd;

(c) ∆ = (2n + 1)b1 +
(

− 5e00 + (n − 2)d10 − (n + 3)a0

)

b+

+5
(

d11 + 3e01 + d01d10 + 2d01e00

)

X{n=2},

if β = n + 1 and β is odd.
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Some remarks

Theorem A. The origin of system (2) is a stable (resp. unstable)
monodromic critical point when ∆ < 0 (resp. ∆ > 0), where:

(a) ∆ = b, if β ∈ {n − 1, n, n + 1} and β is even;

(b) ∆ = (2n + 1)b1 +
(

− 3e00 + (n − 1)d10 − (n + 2)a0

)

b,

if β = n and β is odd;

(c) ∆ = (2n + 1)b1 +
(

− 5e00 + (n − 2)d10 − (n + 3)a0

)

b+

+5
(

d11 + 3e01 + d01d10 + 2d01e00

)

X{n=2},

if β = n + 1 and β is odd.

Remarks:

• The theorem only covers the cases β ∈ {n − 1, n, n + 1}.
The method used to prove the theorem could also be
utilized to cover the other cases satisfying β > n + 1.
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Some remarks

Theorem A. The origin of system (2) is a stable (resp. unstable)
monodromic critical point when ∆ < 0 (resp. ∆ > 0), where:

(a) ∆ = b, if β ∈ {n − 1, n, n + 1} and β is even;

(b) ∆ = (2n + 1)b1 +
(

− 3e00 + (n − 1)d10 − (n + 2)a0

)

b,

if β = n and β is odd;

(c) ∆ = (2n + 1)b1 +
(

− 5e00 + (n − 2)d10 − (n + 3)a0

)

b+

+5
(

d11 + 3e01 + d01d10 + 2d01e00

)

X{n=2},

if β = n + 1 and β is odd.

Remarks:

• One case has resisted by using this approach: β = n − 1,

b2 − 4n < 0 and β is odd.
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Analytic normal form for nilpotent critical points

Theorem [Stróżyna & Żoładek, 2002]. Consider an analytic
planar system having the origin as a nilpotent critical point. Then
there exists an analytic change of variables such that, in a
neighborhood of the origin, it writes as

{

ẋ = −y, (3)

ẏ = x2n−1 + yb(x),

being b(x) ≡ 0 or b(x) =
∑

j≥β

bjx
j , with bβ 6= 0.
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Stability for monodromic nilpotent critical points

Theorem B. Consider system (3),

{

ẋ = −y,

ẏ = x2n−1 + yb(x),

having a monodromic nilpotent critical point at the origin. Then

(i) If b(x) = bo(x) + x2` (b2` + O(x)) , with b2` 6= 0, being
bo(x) := (b(x) − b(−x))/2, then its first significant
generalized Lyapunov constant is

(I) V2−n+2` = Kb2` when either β > n − 1, or β = n − 1
and β is odd. Here K = K(n, `, bn−1) is a positive
constant given in the proof.

(II) V1 = exp

(

2bβπ

n
√

4n−b2

β

)

when β = 2` = n − 1.

(ii) The origin is a center if and only if be(x) := b(x) − bo(x) ≡ 0.
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Bifurcations from monodromic nilpotent critical point

Theorem. Consider next system of Kukles type

{

ẋ = −y, (∗)
ẏ = a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy2 + a03y
3,

with a30 > 0 and a2
11 − 8a30 < 0 (the monodromy conditions).

The only families inside (∗) with a center at the origin are
a21 = a03 = a11a02 = 0.

Moreover, there exist systems of the form (∗) with at least 3 limit
cycles around the origin.
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Abel equation

Consider the Abel equation

ẋ = A(t)x3 + B(t)x2 + C(t)x.

We study the particular case

ẋ = A(t)x3 + B(t)x2. (4)

Systems with homogeneous nonlinearities

{

ẋ = −y + Pn(x, y),

ẏ = x + Qn(x, y),

by passing to polar coordinates and applying Cherkas’
transformation, x = rn−1

1+rn−1g(θ) , they are transformed into

equation (4).
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Trigonometric Abel equation

Consider the Abel equation

ẋ = A(t)x3 + B(t)x2, (4)

where A(t) and B(t) are trigonometric polynomials of degrees n
and m, respectively.

Version of Hilbert’s 16th Problem for equation (4): Does there
exist an upper bound, depending only on n and m, H(n, m), for
the number of periodic orbits of (4)?

The goal of the following result is to give a lower bound for
H(n, m) in three simple cases.
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Trigonometric Abel equation

ẋ = A(t)x3 + B(t)x2. (4)

Theorem C. Set H(n, m) for the number of isolated periodic orbits
of equation (4). Then

(a) H(n, 0) = H(0, m) = 2,

(b) H(n, 1) ≥ n + 2,

(c) H(1, m) ≥ 2m + 1.
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Some remarks

Theorem C. Set H(n, m) for the number of isolated periodic orbits
of equation (4). Then

(a) H(n, 0) = H(0, m) = 2,

(b) H(n, 1) ≥ n + 2,

(c) H(1, m) ≥ 2m + 1.

Remarks:

• Statement (a) can be easily proved by using the results of
[Lins-Neto, 1980] and [Gasull & Llibre, 1990].
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Some remarks

Theorem C. Set H(n, m) for the number of isolated periodic orbits
of equation (4). Then

(a) H(n, 0) = H(0, m) = 2,

(b) H(n, 1) ≥ n + 2,

(c) H(1, m) ≥ 2m + 1.

Remarks:

• Statement (b) was also proved by Lins-Neto.
Both proofs are based on first order Melnikov functions.
Lins gives a lower bound for the number of zeroes while we
compute the Abelian integral explicitly and give a sharp
upper bound.
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Some remarks

Theorem C. Set H(n, m) for the number of isolated periodic orbits
of equation (4). Then

(a) H(n, 0) = H(0, m) = 2,

(b) H(n, 1) ≥ n + 2,

(c) H(1, m) ≥ 2m + 1.

Remarks:

• Statement (c) is also based on a first order Melnikov
function. This case is much more difficult than the previous
one because the Abelian integral involves elliptic functions.
We get a lower and an upper bound for its number of
zeroes. But we have not been able to prove that our upper
bound is sharp.
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Abel equation on a strip

ẋ = A(t)x3 + B(t)x2, (5)

defined on the strip S = {(t, x) : t ∈ [0, 1], x ∈ R}.

If A(t) and B(t) are 1-periodic, the Abel equation is a differential
equation defined on a cylinder and equation (5) is equation (4).

A periodic orbit is a solution starting on t = 0 at x = x0 and
arriving to t = 1 with x = x0.

PSfrag replacements

t = 0 t = 1

x = x0 x = x0

x = 0 is always a periodic orbit.
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Abel equation on a strip

ẋ = A(t)x3 + B(t)x2, (5)

defined on the strip S = {(t, x) : t ∈ [0, 1], x ∈ R}.

If A(t) and B(t) are 1-periodic, the periodic orbits are actual
periodic orbits in the cylinder of the Abel equation.

A periodic orbit is hyperbolic if the Poincaré map between t = 0
and t = 1 has derivative different from one at the initial condition
of the periodic orbit.
x = 0 is always a non-hyperbolic periodic orbit.

The goal of the following result is to find a new criterion to bound
the number of periodic orbits of equation (5).
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Existing criteria

ẋ = A(t)x3 + B(t)x2. (5)

• In [Pliss, 1966]: If A(t) does not change sign, the Abel
equation (5) has, at most, 1 non-zero periodic orbit.

• In [Gasull & Llibre, 1990]: If B(t) does not change sign, the
Abel equation (5) has, at most, 1 non-zero periodic orbit.

In both cases, if the periodic orbits exists, it is hyperbolic.
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Abel equation on a strip

Theorem D. Consider the Abel equation

ẋ = A(t)x3 + B(t)x2. (5)

Assume that there exist a, b ∈ R such that aA(t) + bB(t) does
not vanish identically and does not change sign in [0, 1]. Then
equation (5) has at most one non-zero periodic orbit.

Furthermore, when this periodic orbit exists, it is hyperbolic.
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Abel equation on a strip

Theorem D. Consider the Abel equation

ẋ = A(t)x3 + B(t)x2. (5)

Assume that there exist a, b ∈ R such that aA(t) + bB(t) does
not vanish identically and does not change sign in [0, 1]. Then
equation (5) has at most one non-zero periodic orbit.

Furthermore, when this periodic orbit exists, it is hyperbolic.

Remark: This criterion generalizes the two first ones, that are
obtained through ours setting ab = 0.
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Systems on the cylinder

Consider the system on the cylinder

{

dr
dt

= α(θ) r + β(θ) rk+1 + γ(θ) r2k+1, (6)
dθ
dt

= b(θ) + c(θ) rk,

where t is real, k ∈ IN+ and all the above functions are real,
smooth and 2π−periodic.

System (6) has two types of periodic orbits: contractible, the ones
that can be deformed continuously to a point, and
non-contractible, the ones that can not.

The goal of the following result is to find new criteria to bound
the number of non-contractible periodic orbits of system (6).
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Systems on the cylinder

Several planar systems, by passing to polar coordinates, are
transformed into system (6).

And if b(θ) 6= 0 for all θ then, applying Cherkas’ transformation,
x = r

b(θ)+c(θ)r , system (6) writes as the complete Abel equation

dx

dθ
= A(θ)x3 + B(θ)x2 + C(θ)x.

What happens if b(θ∗) = 0 for some θ∗ ∈ [0, 2π]?
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Systems on the cylinder

{

dr
dt

= α(θ) r + β(θ) rk+1 + γ(θ) r2k+1, (6)
dθ
dt

= b(θ) + c(θ) rk.

We define the functions

A(θ) = k(c(θ)2α(θ) + b(θ)2γ(θ) − b(θ)β(θ)c(θ)),

B(θ) = −2kc(θ)α(θ) + kb(θ)β(θ) + c(θ)b′(θ) − b(θ)c′(θ).
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Systems on the cylinder

Theorem E. Consider system (6) on the cylinder and suppose that
the function b(θ) vanishes. Define the functions A(θ) and B(θ)
as before. Then

(a) If one of the functions A(θ) or B(θ) does not change sign
then system (6) has at most 2 non-contractible limit cycles if
k is odd, or 4 non-contractible limit cycles if k is even.
Furthermore both bounds are sharp.

(b) If one of the functions b(θ)A(θ) or b(θ)B(θ) does not change
sign then system (6) has at most 3 non-contractible limit
cycles if k is odd, or 6 non-contractible limit cycles if k is
even.
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Cubic systems with symmetry of order 4

Consider the equation

ż = εz + p z2z̄ − z̄3, (7)

where z is complex, the time is real and ε = ε1 + iε2, p = p1 + ip2

are complex parameters.

It is the particular case for q = 4 of the family with a rotational
invariance of 2π/q radians, the only unsolved.

In [Arnold, 1980] there is a general study of the whole family, for
all q.

In [CLW, 1994] there is a deep study on the limit cycles, for all q.
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Cubic systems with symmetry of order 4

ż = εz + p z2z̄ − z̄3, (7)

The study of equation (7) can be split in three cases:

(I) Equation (7) has a unique critical point, the origin.

(II) Equation (7) has five critical points, the origin and four
saddle-nodes.

(III) Equation (7) has nine critical points, the origin, four saddle
points and four critical points of index +1.
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Cubic systems with symmetry of order 4

(I) was solved by Cheng and Sun (1992): either there exists a
unique periodic orbit (hyperbolic), or the origin is a global
attractor.

If the Poincaré compactification of (7) has critical points at
infinity (p2 ≤ 1) there exists at most one limit cycle encircling the
origin (hyperbolic). Moreover, if there exist non-zero singular
points they can not be surrounded by a periodic orbit.

Limit cycles not surrounding the origin, case (III), was solved by
Zegeling (1993): either there are no limit cycles or there are
exactly four (hyperbolic), each one surrounding exactly one
critical point of index +1.

When the infinity has no critical points, how many limit cycles
can exist surrounding the origin, and eventually other 4 or 8
critical points? Can they coexist with the 4 limit cycles that do
not surround the origin?
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Cubic systems with symmetry of order 4

Theorem F. (a) Consider equation (7) with ε2 6= 0, p2 > 1 and :

Σ±
A =

ε2p1p2 ±
√

ε2
2(p

2
1 + p2

2 − 1)

p2
2 − 1

,

Σ±
B =

ε2p1p2 ±
√

ε2
2(p

2
1 + 9p2

2 − 9)

2(p2
2 − 1)

.

If either (i) ε1 6∈ (Σ−
A, Σ+

A), or (ii) ε1 6∈ (Σ−
B, Σ+

B), then equation (7)
has at most one limit cycle surrounding the origin. Furthermore,
when it exists it is hyperbolic.

(b) There are equations (7) under condition (i) having exactly
one hyperbolic limit cycle surrounding either 1 or 5 critical points
and equations under condition (ii) having exactly one limit cycle
surrounding either 1, 5 or 9 critical points.
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Cubic systems with symmetry of order 4

Numerical example of a system (7) with 9 critical points and a
limit cycle surrounding them.

-2 -1 1 2

-2

-1

1

2
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Thanks for your attention!
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