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Motivation. Hopf-zero singularity and Shilnikov bifurcation (I)

The Hopf-zero singularity

Assume that a family of vector fieldXη: R3 → R3, η ∈ Rk, satisfies

• X0(0, 0, 0) = 0.

•

X∗ := DX0(0, 0, 0) =


0 −α∗ 0

α∗ 0 0

0 0 0
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (II)

Taking into account only the linear part,X∗ is generic into a linear familyX∗
η if

• Dissipative case: k = 2 (codimension two). Eigenvalues ofX∗
η are of the

form λ, µ± iα∗.

• Conservative case: k = 1 (codimension one). Since tr(X∗
η ) = 0, λ = −2µ.
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (III)

Normal form

A theorem due to Broer (1980).

LetXη: R3 → R3 be aC∞ family of vector fields having a Hopf zero singularity

at ξ = 0 andη = 0, (η ∈ Rk).

Then there exists aC∞ change of coordinates such thatXη can be expressed as
Xη=Xη+Fη with Fη a flat functions in(0, 0) ∈ R3 × Rk andXη in cylindrical
coordinates:

θ̇ = f(r
2
, z, η)

ṙ = rg(r
2
, z, η) (1)

ż = h(r
2
, z, η)

f(0, 0, 0) = α
∗

g(0, 0, 0) = h(0, 0, 0) = ∂zh(0, 0, 0) = 0.

Keys: Borel-Ritt theoremandformal normal form. This argument is not true in

the analytic case.
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (IV)

The dynamics of the normal form,Xη

Up to generic conditions about the terms of order two of the normal form (??):

• It has two fixed pointsS±(η) of saddle-focus type.

• The axisx = y = 0 contains aheteroclinic connectionbetween

S±(η) = (x±, y±, z±):

W s(S−(η)) = W u(S+(η)) = {(0, 0, z), z− < z < z+}

• There exists a curveΓ in theη-plane such thatW u(S−(η)) = W s(S+(η)) is

aheteroclinic surfacefor all η ∈ graphΓ.
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (V)

Shilnikov bifurcation

The Silnikov bifurcation takes place when a critical point of saddle-focus type

exists and its stable and unstable manifolds intersect given rise to a homoclinic

orbit.

Dynamics ofXη. Shilnikov bifurcation
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (VI)

Trivially, the vector fieldXη have no homoclinic connection.

Theorem (Broer-Vegter, 1984)

GivenXη, there exist flat perturbationFη such that the full system

Xη=Xη +Fη possesses a sequence of Silnikov’s bifurcations taking

place at a sequence ofηn ∈ Γ accumulating atη = 0.
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Motivation. Hopf-zero singularity and Shilnikov bifurcation (VII)

Keys of the proof:

To prove such result is necessary to check that

• Theheteroclinic connection disappears.

• The two dimensionalstable and unstable manifolds intersect

transversally.

Our work is a very first step towards to prove that a similar result is valid in the

analytic case.
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Our problem (I)

For simplicity, let us assume that we are in the conservative case.

LetXµ be a smooth vector field passing through the singularityX∗ atµ = 0,

ξ = 0.

Performing thenormal form procedureup to order two and after some scalings

and changing the parameter if necessary, we get a system of the form

dx

dt
= −xz − y

(
α

δ
+ cz

)
+ εδ

−2
f(δx, δy, δz, δ)

dy

dt
= −yz + x

(
α

δ
+ cz

)
+ εδ

−2
g(δx, δy, δz, δ)

dz

dt
= −1 + b(x

2
+ y

2
) + z

2
+ εδ

−2
h(δx, δy, δz, δ),

with ε = 1 andf , g, h real analytic functions in all their variables, whose Taylor

series begin at least with terms of degree three.
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Our problem (II)

Whenε = 0, the system has aheteroclinic connectionbetween the critical points

(0, 0,±1) parameterized by

{(0, 0,− tanh t); −∞ < t < +∞}

which has singularities at±iπ/2 + kπi.

The full system has critical pointsS±(δ) of saddle-focus type. The fixed points

S±(δ) have unidimensional invariant manifoldsσs,u = (xs,u, ys,u, zs,u).
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Our problem (III). The regular case

Whenε = δp+2 , p > −2, it has been proved that

x
s,u

(t), y
s,u

(t) ∼ Cδ
p+4

∣∣∣∣t∓ i
π

2

∣∣∣∣−3

, z
s,u

(t) ∼ C

∣∣∣∣t∓ i
π

2

∣∣∣∣−1

+ Cδ
p+3

log δ

∣∣∣∣t∓ i
π

2

∣∣∣∣−2

These estimates indicate that when|t ± iπ/2| = O(δ), then

x
s,u

(t), y
s,u

(t), z
s,u

(t) ∼ O(δ
p+1

)
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Our problem (IV). The singular case

Whenε is not small (for instanceε = 1), the previous results do not work.

Even this, they seems to indicate that if|t± iπ/2| = O(δ), we will have that

x
s,u

(t), y
s,u

(t), z
s,u

(t) ∼ O(δ
−1

)

To study the manifoldsσs,u around the singularity iπ/2, we perform the change

ψ = δ(x+ iy), ϕ = δ(x− iy), η = δz, τ =
t− iπ/2

δ
.

We obtain a new system

dψ

dτ
=

(
− (α+ cη)i− η

)
ψ + εF̃1(ψ, ϕ, η, δ)

dϕ

dτ
=

(
(α+ cη)i− η

)
ϕ+ εF̃2(ψ, ϕ, η, δ)

dη

dτ
= −δ2 + bψϕ+ η

2
+ εH̃(ψ, ϕ, η, δ)
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Our problem (V). The inner equation

Takingδ = 0 in the previous system we obtain

dψ

dτ
=

(
− (α+ cη)i− η

)
ψ + εF1(ψ,ϕ, η)

dϕ

dτ
=

(
(α+ cη)i− η

)
ϕ+ εF2(ψ,ϕ, η) (2)

dη

dτ
= bψϕ+ η2 + εH(ψ,ϕ, η).

Which is the system under consideration.

In addition, one expects thatσs,u will behave as

xs,u(τ), ys,u(τ) ∼ 1

δτ3
, zs,u(τ) ∼ 1

δτ
,

hence we look for solutions of (??) satisfying

lim
Reτ→±∞

Φ±(τ) = 0, Im τ < 0.
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Our result (I)

System (??) has two analytic solutionsΨ± satisfying

lim
Reτ→±∞

Ψ±(τ) = 0, Im τ < 0.

Let ∆Ψ = Ψ− −Ψ+.

Then  π1,2∆Ψ(τ)

τ2π3∆Ψ(τ)

 = τe−i(|α|τ−c log τ)ε
(
C(ε) + ξ(τ, ε)

)
whereξ(τ, ε) → 0 as Imτ → −∞.

Moreover

π1,2C(0) = (2πim̂(iα), 0)

wherem̂ is the Borel transform ofz1+icF1(0, 0,−z, 0).
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Our result (II)

Some remarks

• Whenε = δp+2, the previous result agree with the one obtained in the

regular case which is:

π1,2∆Ψ(t) ∼

 e−iαt/δeic log(cosh t) cosh t c01

eiαt/δe−ic log(cosh t) cosh t c02


with c02 = c01 and

c01 = 2πecπ/2m̂(iα)δpe−π|α|/(2δ)e−ic log δ +O(δp+1)e−π|α|/(2δ)

• The dominant term depend on thefull jet of f , g andh.

• Matching complex techniqueswill be required to prove that, whenε = 1, the

distance between the invariant manifoldsσs,u is dominated by∆Ψ.
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