Escisión de una órbita heteroclínica y sistema "inner" en despliegues de la singularidad "Hopf-zero"

Inmaculada Baldomá Barraca¹ Tere M. Seara²

¹ Dpt. Enginyeria Informàtica i Matemàtiques. Universitat Roviri i Virgili inma.baldoma@urv.net
² Dpt. Matemàtica Aplicada I. Universitat Politècnica de Catalunya

Tere.M-Seara@upc.edu

Motivation. Hopf-zero singularity and Shilnikov bifurcation (I) The Hopf-zero singularity

Assume that a family of vector field $X_{\eta} \colon \mathbb{R}^3 \to \mathbb{R}^3, \eta \in \mathbb{R}^k$, satisfies

• $X_0(0,0,0) = 0.$

$$\boldsymbol{X}^* := DX_0(0, 0, 0) = \begin{pmatrix} 0 & -\alpha^* & 0 \\ \alpha^* & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Motivation. Hopf-zero singularity and Shilnikov bifurcation (II)

Taking into account only the linear part, X^* is generic into a linear family X^*_{η} if

- Dissipative case: k = 2 (codimension two). Eigenvalues of X^{*}_η are of the form λ, μ ± iα^{*}.
- Conservative case: k = 1 (codimension one). Since $tr(X_{\eta}^*) = 0$, $\lambda = -2\mu$.

Motivation. Hopf-zero singularity and Shilnikov bifurcation (III)

Normal form

A theorem due to Broer (1980).

Let $X_{\eta} \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a C^{∞} family of vector fields having a Hopf zero singularity at $\xi = 0$ and $\eta = 0$, $(\eta \in \mathbb{R}^k)$.

Then there exists a C^{∞} change of coordinates such that X_{η} can be expressed as $X_{\eta} = \overline{X}_{\eta} + F_{\eta}$ with F_{η} a flat functions in $(0,0) \in \mathbb{R}^3 \times \mathbb{R}^k$ and \overline{X}_{η} in cylindrical coordinates:

$$\dot{\theta} = f(r^2, z, \eta)
\dot{r} = rg(r^2, z, \eta)$$

$$\dot{z} = h(r^2, z, \eta)$$
(1)

$$f(0,0,0) = \alpha^*$$
$$g(0,0,0) = h(0,0,0) = \partial_z h(0,0,0) = 0.$$

Keys: Borel-Ritt theorem and formal normal form. This argument is not true in the analytic case.

Motivation. Hopf-zero singularity and Shilnikov bifurcation (IV) The dynamics of the normal form, \overline{X}_{η}

Up to generic conditions about the terms of order two of the normal form (??):

- It has two fixed points $S_{\pm}(\eta)$ of saddle-focus type.
- The axis x = y = 0 contains a heteroclinic connection between S_±(η) = (x_±, y_±, z_±):

 $W^{s}(S_{-}(\eta)) = W^{u}(S_{+}(\eta)) = \{(0, 0, z), z_{-} < z < z_{+}\}$

 There exists a curve Γ in the η-plane such that W^u(S₋(η)) = W^s(S₊(η)) is a heteroclinic surface for all η ∈ graphΓ.

Motivation. Hopf-zero singularity and Shilnikov bifurcation (V) Shilnikov bifurcation

The Silnikov bifurcation takes place when a critical point of saddle-focus type exists and its stable and unstable manifolds intersect given rise to a homoclinic orbit.

Motivation. Hopf-zero singularity and Shilnikov bifurcation (VI)

Trivially, the vector field \overline{X}_{η} have no homoclinic connection.

Theorem (Broer-Vegter, 1984)

Given \overline{X}_{η} , there exist flat perturbation F_{η} such that the full system $X_{\eta} = \overline{X}_{\eta} + F_{\eta}$ possesses a sequence of Silnikov's bifurcations taking place at a sequence of $\eta_n \in \Gamma$ accumulating at $\eta = 0$.

Motivation. Hopf-zero singularity and Shilnikov bifurcation (VII)

Keys of the proof:

To prove such result is necessary to check that

- The heteroclinic connection disappears.
- The two dimensional stable and unstable manifolds intersect transversally.

Our work is a very first step towards to prove that a similar result is valid in the analytic case.

Our problem (I)

For simplicity, let us assume that we are in the conservative case.

Let X_{μ} be a smooth vector field passing through the singularity X^* at $\mu = 0$, $\xi = 0$.

Performing the normal form procedure up to order two and after some scalings and changing the parameter if necessary, we get a system of the form

$$\begin{aligned} \frac{dx}{dt} &= -xz - y\left(\frac{\alpha}{\delta} + cz\right) + \varepsilon \delta^{-2} f(\delta x, \delta y, \delta z, \delta) \\ \frac{dy}{dt} &= -yz + x\left(\frac{\alpha}{\delta} + cz\right) + \varepsilon \delta^{-2} g(\delta x, \delta y, \delta z, \delta) \\ \frac{dz}{dt} &= -1 + b(x^2 + y^2) + z^2 + \varepsilon \delta^{-2} h(\delta x, \delta y, \delta z, \delta), \end{aligned}$$

with $\varepsilon = 1$ and f, g, h real analytic functions in all their variables, whose Taylor series begin at least with terms of degree three.

Our problem (II)

When $\varepsilon = 0$, the system has a heteroclinic connection between the critical points $(0, 0, \pm 1)$ parameterized by

$$\{(0, 0, -\tanh t); -\infty < t < +\infty\}$$

which has singularities at $\pm i\pi/2 + k\pi i$.

The full system has critical points $S^{\pm}(\delta)$ of saddle-focus type. The fixed points $S^{\pm}(\delta)$ have unidimensional invariant manifolds $\sigma^{s,u} = (x^{s,u}, y^{s,u}, z^{s,u})$.

Our problem (III). The regular case

When $\varepsilon = \delta^{p+2}$, p > -2, it has been proved that

$$x^{s,u}(t), y^{s,u}(t) \sim C\delta^{p+4} \left| t \mp i\frac{\pi}{2} \right|^{-3}, \ z^{s,u}(t) \sim C \left| t \mp i\frac{\pi}{2} \right|^{-1} + C\delta^{p+3} \log \delta \left| t \mp i\frac{\pi}{2} \right|^{-2}$$

These estimates indicate that when $|t \pm i\pi/2| = O(\delta)$, then

 $x^{\mathrm{s},\mathrm{u}}(t),y^{\mathrm{s},\mathrm{u}}(t),z^{\mathrm{s},\mathrm{u}}(t)\sim O(\delta^{p+1})$

Our problem (IV). The singular case

When ε is not small (for instance $\varepsilon = 1$), the previous results do not work. Even this, they seems to indicate that if $|t \pm i\pi/2| = O(\delta)$, we will have that

$$x^{s,u}(t), y^{s,u}(t), z^{s,u}(t) \sim O(\delta^{-1})$$

To study the manifolds $\sigma^{s,u}$ around the singularity $i\pi/2$, we perform the change

$$\psi = \delta(x + iy), \ \varphi = \delta(x - iy), \ \eta = \delta z, \ \tau = \frac{t - i\pi/2}{\delta}.$$

We obtain a new system

$$\begin{aligned} \frac{d\psi}{d\tau} &= \left(-\left(\alpha + c\eta\right)i - \eta \right)\psi + \varepsilon \tilde{F}_{1}(\psi,\varphi,\eta,\delta) \\ \frac{d\varphi}{d\tau} &= \left(\left(\alpha + c\eta\right)i - \eta \right)\varphi + \varepsilon \tilde{F}_{2}(\psi,\varphi,\eta,\delta) \\ \frac{d\eta}{d\tau} &= -\delta^{2} + b\psi\varphi + \eta^{2} + \varepsilon \tilde{H}(\psi,\varphi,\eta,\delta) \end{aligned}$$

Our problem (V). The inner equation

Taking $\delta = 0$ in the previous system we obtain

$$\frac{d\psi}{d\tau} = (-(\alpha + c\eta)i - \eta)\psi + \varepsilon F_1(\psi, \varphi, \eta)$$

$$\frac{d\varphi}{d\tau} = ((\alpha + c\eta)i - \eta)\varphi + \varepsilon F_2(\psi, \varphi, \eta)$$

$$\frac{d\eta}{d\tau} = b\psi\varphi + \eta^2 + \varepsilon H(\psi, \varphi, \eta).$$
(2)

Which is the system under consideration.

In addition, one expects that $\sigma^{s,u}$ will behave as

$$x^{\mathrm{s},\mathrm{u}}(au), y^{\mathrm{s},\mathrm{u}}(au) \sim rac{1}{\delta au^3}, \ \ z^{\mathrm{s},\mathrm{u}}(au) \sim rac{1}{\delta au},$$

hence we look for solutions of (??) satisfying

$$\lim_{\operatorname{Re}\tau\to\pm\infty}\Phi^{\pm}(\tau)=0, \quad \operatorname{Im}\tau<0.$$

Our result (I)

System (??) has two analytic solutions Ψ^{\pm} satisfying

$$\lim_{\operatorname{Re}\tau\to\pm\infty}\Psi^{\pm}(\tau)=0, \quad \operatorname{Im}\tau<0.$$

Let $\Delta \Psi = \Psi^- - \Psi^+$.

Then

$$\begin{pmatrix} \pi^{1,2} \Delta \Psi(\tau) \\ \tau^2 \pi^3 \Delta \Psi(\tau) \end{pmatrix} = \tau \mathrm{e}^{-\mathrm{i}(|\alpha|\tau - c\log\tau)} \varepsilon \big(C(\varepsilon) + \xi(\tau,\varepsilon) \big)$$

where $\xi(\tau, \varepsilon) \to 0$ as $\operatorname{Im} \tau \to -\infty$.

Moreover

$$\pi^{1,2}C(0) = (2\pi i \hat{m}(i\alpha), 0)$$

where \hat{m} is the Borel transform of $z^{1+ic}F_1(0, 0, -z, 0)$.

Our result (II)

Some remarks

• When $\varepsilon = \delta^{p+2}$, the previous result agree with the one obtained in the regular case which is:

$$\pi^{1,2} \Delta \Psi(t) \sim \begin{pmatrix} e^{-i\alpha t/\delta} e^{ic \log(\cosh t)} \cosh t c_1^0 \\ e^{i\alpha t/\delta} e^{-ic \log(\cosh t)} \cosh t c_2^0 \end{pmatrix}$$

with
$$c_2^0 = \overline{c_1^0}$$
 and
 $c_1^0 = 2\pi e^{c\pi/2} \hat{m}(i\alpha) \delta^p e^{-\pi |\alpha|/(2\delta)} e^{-ic\log\delta} + O(\delta^{p+1}) e^{-\pi |\alpha|/(2\delta)}$

- The dominant term depend on the full jet of f, g and h.
- Matching complex techniques will be required to prove that, when $\varepsilon = 1$, the distance between the invariant manifolds $\sigma^{s,u}$ is dominated by $\Delta \Psi$.