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◮ Tratamos el problema (por lo menos yo) con bastante
ingenuidad.

◮ Nos dimos cuenta que habı́a mucho trabajo por hacer. En
particular habı́a que rehacer, revisar y reentender muchos
de los conceptos de la literatura.

Estado actual: hay mucho trabajo por hacer. En particular hay
que rehacer, revisar y reentender muchos de los conceptos de
la literatura.



Outline

◮ A revision of the definition.
◮ Some open problems on non autonomous

quasiperiodically forced dynamical systems.



The start of the story

The term Strange Non-chaotic attractor (SNA) was introduced
and coined in

[GOPY] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke.
Strange attractors that are not chaotic.
Phys. D, 13(1-2):261–268, 1984.

After this paper the study of these objects became rapidly
popular and a number a papers studying different related
models appeared.

A more complete version of this part of the talk can be found at
http://mat.uab.es/∼alseda/talks/



The [GOPY] model (ω equals the golden mean)

(1)

{
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn) cos(2πθn)

where x ∈ R, θ ∈ S1, ω ∈ R \ Q and σ > 1.
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The authors called it an SNA since:

◮ it is an attractor

◮ it is strange because it is not piecewise differentiable: it
cuts the repellor x = 0 at an invariant set which is dense
(in x = 0) and the attractor is different from zero in a set
whose projection to S1 is dense.

◮ it is non-chaotic because the Lyapunov exponents are non
positive (computed numerically).
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Remarks

A– The word strange in this theory is used in a different way
that it is used in the “world” of the chaotic attractors.

B– Since the line x = 0 intersects the attractor and it is
invariant (a repellor), the basin of attraction of the attractor
does not contain an open set.



The current situation

Looking at the relevant literature one sees that



The current situation

Looking at the relevant literature one sees that

◮ The notion of SNA is neither unified nor precisely
formulated



The current situation

Looking at the relevant literature one sees that

◮ The notion of SNA is neither unified nor precisely
formulated

◮ The existence of SNA, usually, is not proved rigorously.
Some authors just give very rough/rude numerical
evidences of their existence that easily can turn out to be
wrong.



The current situation

Looking at the relevant literature one sees that

◮ The notion of SNA is neither unified nor precisely
formulated

◮ The existence of SNA, usually, is not proved rigorously.
Some authors just give very rough/rude numerical
evidences of their existence that easily can turn out to be
wrong.

◮ The theoretical tools to study these objects and derive
these consequences, are often used in a wrong way.



On the positive side there are few works where the existence of
an SNA is rigorously proved. Mainly:

[BO] Z. I. Bezhaeva and V. I. Oseledets.
On an example of a “strange nonchaotic attractor”.
Funktsional. Anal. i Prilozhen., 30(4):1–9, 95, 1996.

[Kel] G. Keller.
A note on strange nonchaotic attractors.
Fund. Math., 151(2):139–148, 1996.
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Aims

◮ propose a rigorous definition for the notion of SNA in the
topological setting.

◮ discuss some methodological aspects relative to the
non-chaoticity part of the definition.



The notion of attractor

We use the definition of attractor proposed by Milnor in

J. Milnor.
On the concept of attractor.
Comm. Math. Phys., 99(2):177–195, 1985.
(Erratum: Comm. Math. Phys, 102(3) (1985), 517–519).

The closed set A is an attractor provided its realm of attraction
ρ(A) := {x : ω(x) ⊂ A} has positive Lebesgue measure and
there is no strictly smaller closed set A′ ⊂ A so that ρ(A′)
coincides with ρ(A) (up to sets of measure zero).



Towards the definition of strangeness

It has been proved by

J. Stark.
Invariant graphs for forced systems.
Phys. D, 109(1-2):163–179, 1997.
Physics and dynamics between chaos, order, and noise
(Berlin, 1996).

that the invariant curves of models of type
{
θn+1 = θn + ω (mod 1),

xn+1 = ψ(θn, xn)

are the graph of a correspondence from S1 to R.
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The different definitions of strangeness used in the
literature

An attractor which is the graph of a correspondence is called
strange when

(A) it is not a finite set of points neither piecewise differentiable.

(B) it has fractal geometry. That is its Hausdorff dimension is
greater than its topological one.

(C) its Hausdorff dimension is greater than one.

The three definitions above are used in articles where
two-dimensional systems are studied, while for
higher-dimensional system only the first definition is used.



A remark in the two dimensional case

Using elemental dimension theory one can prove that the
Hausdorff dimension of the graph of a one-dimensional
piecewise differentiable map from S1 to R is one.

Therefore, in the two dimensional case the definition (A) above
is the most general one.

This justifies the choice of the following



The notion of strangeness

An attractor is called strange when it is not a finite set of points
neither a piecewise differentiable manifold.

A manifold M is piecewise differentiable if there exists a finite
set of disjoint differentiable submanifolds A1, . . . ,Ak such that

M ⊂ Cl(∪k
i=1Ai).

If M has boundary, then it must be piecewise differentiable too.



A usual argument in the literature

Recall that {
θn+1 = θn + ω (mod 1),

xn+1 = ψ(θn, xn)

The usual procedure is to compute numerically the vertical
Lyapunov exponent:

λv (θ0, x0) = lim
n→∞

1
n

log

∣∣∣∣
∂xn

∂x

∣∣∣∣

and call the system non-chaotic if λv (θ0, x0) < 0.
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Theoretical explanation (in dimension 2 to simplify) —
Oseledec’s Theorem

Assume that µ is an ergodic measure of the system. Then,
according to the Oseledec’s Theorem, µ almost every point
(θ0, x0) is regular. A regular point verifies the following
properties:

(R1) the above limit exists and takes a value λv = λv (θ0, x0);
which it is independent on the choice of the point.

(R2) for all v ∈ T(θ0,x0)S
1 × R, the limit

lim
n→∞

1
n

log ‖M(θn, xn)v‖ where M(θn, xn) =

(
∂θn
∂θ

∂θn
∂x

∂xn
∂θ

∂xn
∂x

)

takes at most two different values λv and another one
(which may coincide with λv ), that we will denote by λ̂.



(R3)

λv + λ̂ = lim
n→∞

1
n

log det |M(θn, xn)|

= lim
n→∞

1
n

log det

∣∣∣∣

(
1 0

∂xn
∂θ

∂xn
∂x

)∣∣∣∣

= lim
n→∞

1
n

log

∣∣∣∣
∂xn

∂x

∣∣∣∣ = λv

Consequently, λ̂ = 0 and no Lyapunov exponent is
positive µ-a.e. if and only if the vertical Lyapunov
exponent is not positive µ-a.e..
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Some problems — Some complains

◮ Usually the vertical Lyapunov exponent is computed
numerically in a very rude way and with a serious lack of
precision. Thus the nonpositivity of λv is not guaranteed.

◮ Almost never the convergence of the limit is justified and
the invariant ergodic measure that is used is not specified.
Thus, if the considered initial point is not regular the
following problems should be dealt with:

(P1) the limit may not exist (see the next example)

(P2) λv need not be constant, and

(P3) the formula in (R3) need not hold. Consequently, it well may
happen that λ̂(θ, x) > 0.



A very simple example on the non existence of lim in
Lyapunov exponents

Consider {
θn+1 = θn + ω (mod 1),

xn+1 = τ(xn) + ε cos(2πθn);

where τ(x) is a tent-like map:

τ(x) =

{
α(x − 1

2) + 1 if 0 ≤ x ≤ 1
2

−β(x − 1
2) + 1 if 1

2 ≤ x ≤ 1

with 0 ≤ α, β ≤ 2.



Computing the vertical Lyapunov exponent
Then,

1
n

log

∣∣∣∣
∂xn

∂x

∣∣∣∣ =
1
n

log

∣∣∣∣
∂τn(x0)

∂x

∣∣∣∣ =
1
n

log
(
αn1 · βn2

)

where n1 + n2 = n and n1 (respectively n2) is the number of
times that the orbit x0, x1, . . . , xn−1 visits the the interval [0, 1

2)

(respectively (1
2 ,1]).

Clearly,

1
n

log
(
αn1 · βn2

)
=

n1 log(α) + n2 log(β)

n1 + n2
.

By using elementary symbolic dynamics, its is possible to
choose plenty of points x (but in a set of zero Lebesgue
measure) so that the above sequence has no limit (even it can
have the interval formed with endpoints log(α) and log(β) as
the set of accumulation points).



Jager’s approach to the definition of non-chaoticity

Another approach to the definition of non-chaoticity is to
consider the dynamical system in dimension one restricted to
the attractor.

Then the original system is called non-chaotic if the unique
Lyapunov exponent of this reduced system is non positive.

This argument can be made rigorous by means of the Birkhoff
Ergodic Theorem since the dynamics on the attractor is driven
by θn+1 = θn + ω (mod 1), which is uniquely ergodic with the
unique ergodic measure being the Lebesgue measure.



A first approach to the notion of non-chaoticity – I



A first approach to the notion of non-chaoticity – I

◮ In our opinion, none of the previous approaches is
satisfactory because the non-chaoticity condition should be
observable (positive Lebesgue measure)



A first approach to the notion of non-chaoticity – I

◮ In our opinion, none of the previous approaches is
satisfactory because the non-chaoticity condition should be
observable (positive Lebesgue measure)

◮ In the first approach, the “non-chaotic” points are the
regular ones which “live” in the support of invariant
measures which are not absolutely continuous with respect
to the Lebesgue one. Thus, being not observable in the
above sense.



A first approach to the notion of non-chaoticity – I

◮ In our opinion, none of the previous approaches is
satisfactory because the non-chaoticity condition should be
observable (positive Lebesgue measure)

◮ In the first approach, the “non-chaotic” points are the
regular ones which “live” in the support of invariant
measures which are not absolutely continuous with respect
to the Lebesgue one. Thus, being not observable in the
above sense.

◮ In the second approach the “non-chaotic” points are almost
all points in the attractor. The situation is similar.
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A first approach to the notion of non-chaoticity – II

◮ Finally, if we forget about regularity then we have to deal
correctly with the problems (P1), (P2), (P3) pointed out
before. The solution to the problem:

(P1) is to consider lim sup instead of lim (see the previous
example).

(P2) is to estimate the Lyapunov exponents for all relevant
points; since now no point can be chosen as a
representative.

(P3) is to compute the maximal Lyapunov exponent (see the
next example).



And finally: the notion of non-chaoticity

An attractor A is non-chaotic if the set of points in its realm of
attraction ρ(A), whose maximal upper Lyapunov exponent

λmax(x) = lim sup
n→∞

1
n

log ‖Df n(x)‖

is positive, has zero Lebesgue measure.



An example from de la Llave

We have seen before that the problems (P1), (P2) pointed out
before cannot be avoided. The main question is whether the
argument presented in (R3) works for non regular points.

Although this is not known to us in the case of quasiperiodically
forced skew products there is the following nice example of de
la Llave that suggests that the definition that we gave, in
general, cannot be simplified because the “determinant
formula” (R3) does not hold in this case.

Consider an asymmetric horseshoe C∞ diffeomorphism f as
the one shown in the next picture (N = C1 ∪ C2 ∪ A ∪ B ∪ H
denotes the whole disc). To fix ideas we assume that

Df
∣∣
A =

(1
4 0
0 24

)
and Df

∣∣
B =

(
−1

2 0
0 −12

)
.

Observe that both matrices have determinant 6.



The asymmetric horseshoe

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

f (H)

f (C1) f (C2)

B

C2

H

A

C1

f (A)

f (B)



Summarising: a definition of Strange Nonchaotic
Attractor

Summarising, a Strange Nonchaotic Attractor is a closed set A
such that



Summarising: a definition of Strange Nonchaotic
Attractor

Summarising, a Strange Nonchaotic Attractor is a closed set A
such that

1. is an attractor in the sense of Milnor: its realm of attraction
ρ(A) := {x : ω(x) ⊂ A} has positive Lebesgue measure
and there is no strictly smaller closed set A′ ⊂ A so that
ρ(A′) coincides with ρ(A) (up to sets of measure zero).



Summarising: a definition of Strange Nonchaotic
Attractor

Summarising, a Strange Nonchaotic Attractor is a closed set A
such that

1. is an attractor in the sense of Milnor: its realm of attraction
ρ(A) := {x : ω(x) ⊂ A} has positive Lebesgue measure
and there is no strictly smaller closed set A′ ⊂ A so that
ρ(A′) coincides with ρ(A) (up to sets of measure zero).

2. is strange: it is not a finite set of points neither a piecewise
differentiable manifold.



Summarising: a definition of Strange Nonchaotic
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Summarising, a Strange Nonchaotic Attractor is a closed set A
such that

1. is an attractor in the sense of Milnor: its realm of attraction
ρ(A) := {x : ω(x) ⊂ A} has positive Lebesgue measure
and there is no strictly smaller closed set A′ ⊂ A so that
ρ(A′) coincides with ρ(A) (up to sets of measure zero).

2. is strange: it is not a finite set of points neither a piecewise
differentiable manifold.

3. is non-chaotic: the set of points in its realm of attraction
ρ(A) whose maximal upper Lyapunov exponent λmax(x) is
positive, has zero Lebesgue measure.



Open problems

◮ Fractalization as a route to SNA
◮ Combinatorial Dynamics in non autonomous

quasiperiodically forced dynamical systems.
◮ May SNA coexist in models with more complicate base

maps?

In previous sessions we have seen that fractalization is not
understood, and some models need to be deeply revised (see
also)

[HS] A. Haro, C. Simó.
To be or not to be a SNA: That is the question.
preprint, 2005.



Open problems: Fractalization as a route to SNA – I

We aim at elucidating whether the fractalization route to chaos
really happens, as in the model studied by of Heagy and
Hammel or Prasad, Negi and Ramaswamy presented before.
Also, we would like to understand better the dynamics of this
model: reducibility, ...

{
θn+1 = θn + ω (mod 1),

xn+1 = αxn(1 − xn) + ε cos(2πθn)

[NK] T. Nishikawa, K. Kaneko.
Fractalization of torus as a strange nonchaotic attractor.
Phys. Rev. E, 56(6) (1997), 6114–6124.



Open problems: Fractalization as a route to SNA — II

The idea behind this model is that since it relies in the tent map,
instead of in the logistic one, the computations can be made
explicit with the help of the symbolic dynamics (I do not say that
they are easy!). So, this is perhaps/probably a toy model to
study and understand analytically the the fractalization route to
chaos (drawback: the model is not differentiable!).

{
θn+1 = θn + ω (mod 1),

xn+1 = τ(xn) + ε cos(2πθn);

where τ(x) is a tent-like map:

τ(x) =

{
x + 1

2 if 0 ≤ x ≤ 1
2

3
2 − x if 1

2 ≤ x ≤ 1



Open problems: Combinatorial Dynamics in non
autonomous quasiperiodically forced dynamical
systems

In [FJJK] it is studied the coexistence of periodic pinched strips
as a generalisation of the Sharkovskii Theorem that studies the
coexistence of periodic orbits for interval maps.

[FJJK] R. Fabbri, T. Jäger, R. Johnson, and G. Keller.
A Sharkovskii-type theorem for minimally forced interval
maps.
Topological Methods in Nonlinear Analysis, 26 (2005) 163–
188.



Open problems: Combinatorial Dynamics in non
autonomous quasiperiodically forced dynamical
systems

The aim of this problem is to look deeply to the dynamical
structure of these objects. Instead of just looking at the period
we want to look at the combinatorial structure (“permutation”) of
the whole orbit of the periodic pinched strip and derive
dynamical consequences from it. Since we are using more
information than just the period we will definitely obtain more
information on the forced dynamics. Namely we aim at

◮ Study the forcing relation of the orbit of pinched strips,
◮ Perhaps, construct models with minimal dynamics (fixed a

given combinatorial data of an orbit of pinched strips),
◮ Obtain lower bounds of the topological entropy of the

system.



Open problems: May SNA coexist in models with more
complicate base maps?

Consider a model of the type

(2)

{
θn+1 = ϕ(θn),

xn+1 = ψ(θn, xn)

where ϕ is a continuous circle map of degree one with
nondegenerate rotation interval.

The ultimate question is whether may coexist (of course
simultaneously) different SNA’s associated to the Birkhoff orbits
of ϕ with different irrational rotational number.

Remark

Each of these orbits is semiconjugate — and plays the same
role of — a single orbit of the rigid rotation θn+1 = θn + ω

(mod 1) in the usual models.
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