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Summary

• Faraday waves

• Nearly marginal modes in water waves at low viscosity: surface

modes, hydrodynamic modes

• Inviscid mean flow, viscous mean flow, Stokes drift

• Coupled amplitude-mean flow equations

• Spatially modulated Faraday waves of the standing type

• Concluding remarks



Faraday waves

• Faraday (Phil. Trans. Roy. Soc. London 121(1831)319-340)

waves are water waves produced in the free surface of the liquid

upon vertical vibration of the container.

• A paradigm of pattern forming system.

• Viscous effects are usually weak (except for quite viscous liquids

in quite small containers). Small viscous effects are quite subtle,

but allow to go further analytically.

• Except under quite special conditions (quite small containers, quite

small vibrating frequency), these waves are multi-mode waves

(spatially modulated), and are dynamically coupled to a mean

flow.

• Even if they are nearly-inviscid (dispersive), they show a fully dis-

sipative (diffusive) behavior near threshold, and lead to quintic

nonlinearities.



Governing equations

Nondimensionalized with ω−1 and `, defined as ω2 = g/` + σ/(ρ`3)

v = velocity, p = pressure, f= free surface elevation

∇ · v = 0,
∂v

∂t
+ ∇

|v|2
2

− v × (∇ × v) = −∇p + ε∆v

in Ω × (−d, f), with boundary conditions

v = 0 at z = −d, v = 0, f = 0 if (x, y) ∈ ∂Ω

v · n = (∂f/∂t)(ez · n), [(∇v + ∇v
>) · n] × n = 0,

p − |v|2/2 − (1 − S)f + S∇ · (∇f/
√

1 + |∇f |2) =

4af cos 2t + ε[(∇v + ∇v
>) · n] · n if z = f.

ε = ν/(ω`2) � 1, d = d∗/` exp(−2d) � 1, a = a∗/` � 1,

S =capillary gravity balance = σ/(σ + ρgd2) ∈ [0, 1].

Quiescent solution (moving axes): v = 0, p = 0, f = 0, which is

destabilized (parametric excitation in a Floquet problem).

Linear stability: (v, p, f) = (V , P, F )eλt:

• Surface modes (λ = ±i + O(
√

ε), with λV ' −∇P , except in

boundary layers); surface waves

• Hydrodynamic modes (λ ∼ ε), with λV ' −∇P + ε∆V ev-

erywhere: viscous mean flow. Excited by time-averaged Reynolds

stresses in boundary layers; produce a tangential velocity near solid

walls (Rayleigh 1883, Schlichting 1932) and a tangential stress near

the free surface (Longuet-Higgings 1954); both quadratic in the

surface wave steepness, and nonzero as ε → 0!!.

2D weakly nonlinear theory at large aspect ratio

(Vega-Knobloch-Martel Physica D154(2001)313-336): Seek

(v, p, f) = A+ei(t−x)(V , P, F ) + A−ei(t+x)(V S, P, F ) + c.c.

+ (vm, pm, fm) + NRT,

A± and (vm, pm, fm) slowly varying in x and t.



Mean Flows

Mean flow (mass transport due to global circulation produced by sur-

face waves through nonlinearity). Sources:

• Mass conservation (Davey-Stewartson, Proc. Roy. Soc. London

A338(1974)101-110)

• Time-averaged Reynolds stresses in oscillatory boundary layer

(Lord Rayleigh Phil. Trans. Roy. Soc. London A175(1883)1-21

1873 , Schlichting Phys Z 33(1932)327-335, Longuet-Higgins Phil.

Trans. Roy. Soc. London A245(1954)535-581).

• Stokes drift (Stokes Trans. Cam. Phil. Soc. 8(1847)441-455), a

purely kinematic effect; kinematics produce surprising effects, like

chaotic advection (Aref J. Fluid Mech. 212(1984)337-356).

dx

dt
= µV (x)eit + c.c.,

with µ � 1. Set x = µx1 + µ2
x2 + . . .. Then

dx1

dt
= V (x1)e

it + c.c.,
dx2

dt
= (V · ∇)V e2it + (V̄ · ∇)V + c.c.,

which yields a mean flow velocity v
m = V̄ · ∇V + c.c.. In the

incompressible case, the Stokes drift is nonzero only if the waves

are progressive, namely exhibit a nonconstant spatial phase.



Coupled amplitude-mean flow equations

A±
t ∓ vgA

±
x + iα0A

±
xx = −(2ε + iδ)A± + i(α1|A±|2 − α2|A∓|2)A±

±2i

∫ 0

−1

e2yϕm
y dy A± + aĀ∓,

ϕm
yyt = ϕm

yyyy, in − d < y < 0,

with boundary conditions

ϕm
x − fm

t = 2(|A−|2 − |A+|2)x, ϕm
yy = 8(|A+|2 − |A−|2),

(1 − S)fm
x + εϕm

yyy = 0 at y = 0;

ϕm = ϕm
y = 0 at y = −d.

ϕm= streamfunction (vm = (−ϕm
y , ϕm

x )). L � 1, δ � 1, and

vg =
1 + 2S

2
, α0 = 3S − 3(1 + 2S)2

2
,

α1 =
3S

1 − 3S
+

8 − 3S

4
, α2 = − 2

1 + 3S
− 4 + 3S

2
.

• ‘Generic’ under the following assumptions: Weak dissipation and

weak forcing ε � 1, a � 1; long wave |∂/∂x| � 1; slowly

varying |∂/∂t| � 1; and weakly nonlinear |A±| � 1.

• Invariant under O(2):

A+ ↔ A−, (x, ϕm) → −(x, ϕm); x → x + c.

• Resonances avoided: 1 − S and 1 − 3S not too small.

• Nonlocal effect of the mean flow, which is parallel in this limit.

• No diffusion. Broad band instabilities are avoided by

dispersion/nonlinearity, as in KdV.

• Two slow spatial scales (instabilities): convection at the group

velocity (x ∼ ε−1) and dispersion (x ∼ ε−1/2).

• ‘Simplest’ (standing-wave) limit: dissipative, Ginzburg-Landau-

like equation.



STANDING WAVES JUST BEYOND THRESHOLD

Set (A+, A−) = (A0, Ā0)e
λt+iκx into the amplitude equations, and lin-

earize. Dispersion relation:

λ = −2ε ±
√

a2 − v2
gκ

2 ' a − ac − v2
gκ

2/(4ε) + . . . ,

as κ � ac ≡ 2ε � 1. This means that the linear part of the

amplitude equation ((A+, A−) ' (A, Ā), with A ∈ C) should be

At = v2
gκ

2Axx/(4ε), and we expect a Ginzburg-Landau-like equa-

tion. In order to guess nonlinear terms, we seek spatially constant

solutions, of the form A± = Re±iκx+iν; replacing this into the ampli-

tude equations, we obtain

4ε2 + [vgκ + (α1 + α2)R
2]2 = a2, 2ε = a cos 2ν,

which setting |a − ac| � 1, yields

ε(a − ac) ' v2
gκ

2/4 + (α1 + α2)
2R4/4 + vg(α1 + α2)κR2/2.

This suggests the following quintic equation

At =
β1

ε
Axx + (a − ac)A − β2

ε
|A|4A − i

β3

ε
|A|2Ax,

which contains higher order terms ‘generically’. But this is not the end

of the story because the right equation also has a nonlinear term

−i
β4

ε
(|A|2)xA, with β4 = −α1vg

2
,

which could never have been guessed using simple priori arguments.

The additional terms break a spurious reflection symmetry. Note:

• We are obtaining diffusion in a non-diffusive problem. In fact,

‘diffusion’ comes from transport at the group velocity.

• The mean flow plays no role in this.

• We are obtaining a nongeneric equation under ‘generic’ conditions,

which is surprising. The question is: What has happened with

cubic nonlinearity?



GENERIC EQUATION

The answer is: We are obtaining a nongeneric equation because the

starting point is a nongeneric system: viscous effects have been only

considered in the linear damping term. Both nonlinear damping and

nonlinear forcing have been neglected in the coupled amplitude-mean

flow equations:

A±
t ∓ vgA

±
x + iα0A

±
xx = −(2ε + iδ)A± + i(α1|A±|2 − α2|A∓|2)A±

±2i

∫ 0

−1

e2yϕm
y dy A± + aĀ∓,

ϕm
yyt = ϕm

yyyy, in − d < y < 0,

with boundary conditions

ϕm
x − fm

t = 2(|A−|2 − |A+|2)x, ϕm
yy = 8(|A+|2 − |A−|2),

(1 − S)fm
x + εϕm

yyy = 0 at y = 0,

ϕm = ϕm
y = 0 at y = −d,

A±(x + L, t) ≡ A±(x, t),

ϕm(x + L, y, t) ≡ ϕm(x, y, t), fm(x + L, t) ≡ fm(x, t),
∫ L

0 fm dξ =
∫ L

0 ϕm
yyy dx = 0.

When cubic O(|A±|3)-corrections are added to both damping and forc-

ing, the following generic equations result (Mancebo-Vega, Physica

D197(2004)346-363):

At =
β1

ε
Axx + (a − ac)A − β5ε|A|2A

− β2

ε
|A|4A − i

β3

ε
|A|2Ax − i

β4

ε
(|A|2)xA − i

β6

ε
φx,

φt =
β7

ε
φxx −

β8

ε
(|A|2)xx,

where φ comes from the mean flow. This system includes as par-

ticular case its cubic version, which is also obtained in weakly non-

linear dynamics of conservation laws invariant under the O(2) group

(Matthews-Cox Nonlinearity 13(2000)1293-1320, Vega Nonlinearity

18(2005)1425-1441).



CONCLUDING REMARKS

• Water waves (namely, liquid motions with interfaces at low vis-

cosity) still involve fascinating open problems from both the fluid

dynamicist and the applied mathematician points of view.

• Weakly nonlinear dynamics must be analyzed from first principles;

ad hoc guessing is useful, but dangerous.

• Weakly nonlinear dynamics must include, as determining modes,

all nearly-marginal modes.

• Non-conservative hyperbolic problems may exhibit parabolic be-

havior (e.g., the sine-Gordon equation exhibits Ginzburg-Landau

dynamics).


