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Summary

e Faraday waves

e Nearly marginal modes in water waves at low viscosity: surface
modes, hydrodynamic modes

e Inviscid mean flow, viscous mean flow, Stokes drift
e Coupled amplitude-mean flow equations
e Spatially modulated Faraday waves of the standing type

e Concluding remarks



Faraday waves

e Faraday (Phil. Trans. Roy. Soc. London 121(1831)319-340)
waves are water waves produced in the free surface of the liquid
upon vertical vibration of the container.

e A paradigm of pattern forming system.

e Viscous effects are usually weak (except for quite viscous liquids
in quite small containers). Small viscous effects are quite subtle,
but allow to go further analytically.

e Except under quite special conditions (quite small containers, quite
small vibrating frequency), these waves are multi-mode waves
(spatially modulated), and are dynamically coupled to a mean

flow.

e Even if they are nearly-inviscid (dispersive), they show a fully dis-
sipative (diffusive) behavior near threshold, and lead to quintic
nonlinearities.



Nondimensionalized with w™! and ¢, defined as w? = g/f + o /(pl?)
v = velocity, p = pressure, f= free surface elevation

2
V.v=0, %—?%—V%—vx(va):—VansAv

in Q) X (—d, f), with boundary conditions
v=0 atz=—-d, v=0, f=0if(z,y) € I
v-n=(0f/0t)(e. -n), [(Vv+Vv')-n]xn=0,
p—1v*)2—=(1=8)f +SV - (Vf//1+|Vf]})=
dafcos2t +e[(Vo+Vo')en]-n ifz=f
e=v/(wP) <1, d=d'/l exp(-2d) <1, a=a"/l K1,
S =capillary gravity balance = o/(0 + pgd?) € [0, 1].
Quiescent solution (moving axes): v = 0, p = 0, f = 0, which is
destabilized (parametric excitation in a Floquet problem).

Linear stability: (v,p, f) = (V, P, F)eM:

e Surface modes (A = +i + O(y/¢), with AV ~ —V P except in
boundary layers); surface waves

e Hydrodynamic modes (A ~ ¢), with AV ~ —VP + AV ev-
erywhere: viscous mean flow. Excited by time-averaged Reynolds
stresses in boundary layers; produce a tangential velocity near solid
walls (Rayleigh 1883, Schlichting 1932) and a tangential stress near
the free surface (Longuet-Higgings 1954); both quadratic in the
surface wave steepness, and nonzero as € — 0!!.

2D weakly nonlinear theory at large aspect ratio
(Vega-Knobloch-Martel Physica D154(2001)313-336): Seek

(v,p, f) = A+ei(t_’”)(V, P, F)+ A_ei(tH)(VS, P, F)+c.c.
+ (0", p", f") + NRT,

A* and (v™, p™, f™) slowly varying in = and ¢.



Mean flow (mass transport due to global circulation produced by sur-
face waves through nonlinearity). Sources:

e Mass conservation (Davey-Stewartson, Proc. Roy. Soc. London
A338(1974)101-110)

e Time-averaged Reynolds stresses in oscillatory boundary layer
(Lord Rayleigh Phil. Trans. Roy. Soc. London A175(1883)1-21
1873 , Schlichting Phys Z 33(1932)327-335, Longuet-Higgins Phil.
Trans. Roy. Soc. London A245(1954)535-581).

o Stokes drift (Stokes Trans. Cam. Phil. Soc. 8(1847)441-455), a
purely kinematic effect; kinematics produce surprising effects, like
chaotic advection (Aref J. Fluid Mech. 212(1984)337-356).
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which yields a mean flow velocity v = V - VV 4+ c.c.. In the
incompressible case, the Stokes drift is nonzero only if the waves
are progressive, namely exhibit a nonconstant spatial phase.
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e ‘Generic’ under the following assumptions: Weak dissipation and
weak forcing ¢ < 1, a < 1; long wave |0/0z| < 1; slowly
varying |0/0t| < 1; and weakly nonlinear |A*| < 1.

e Invariant under O(2):
AT = A7 (2,0") — —(x,0™); T — T+ c
e Resonances avoided: 1 — S and 1 — 3.5 not too small.

e Nonlocal effect of the mean flow, which is parallel in this limit.

e No diffusion. Broad band instabilities are avoided by
dispersion /nonlinearity, as in KdV.

e Two slow spatial scales (instabilities): convection at the group
velocity (x ~ e~ and dispersion (x ~ ¢7'/?).

o ‘Simplest’ (standing-wave) limit: dissipative, Ginzburg-Landau-
like equation.



Set (AT, A7) = (A, Ag)eMt1 into the amplitude equations, and lin-
earize. Dispersion relation:

A=—-2+,/a —02%2““(1—&6—’0/6/(48)

as Kk < a, = 2¢ < 1. This means that the linear part of the
amplitude equation (AT, A7) ~ (A4, A), with A € C) should be
Ay = vjK* Ay, /(4e), and we expect a Ginzburg-Landau-like equa-
tion. In order to guess nonlinear terms, we seek spatially constant
solutions, of the form A* = Reil’m*l”, replacing this into the ampli-
tude equations, we obtain

46 + [vgk + (a1 + o) R** = a®, 2 = acos2v,

which setting |a — a.| < 1, yields
ela—a.) ~v 162/4 + (o1 + 2)* R4 + vy(an + an) K R?/2.

This suggests the following quintic equation

by

Ay =—A +(a—a.)A — @|A\4A—i@\Al2Agj,
3 3 £

which contains higher order terms ‘generically’. But this is not the end
of the story because the right equation also has a nonlinear term
Qg
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which could never have been guessed using simple priori arguments.

S APLA, it = -

The additional terms break a spurious reflection symmetry. Note:

e We are obtaining diffusion in a non-diffusive problem. In fact,
‘diffusion’ comes from transport at the group velocity.

e The mean flow plays no role in this.

e We are obtaining a nongeneric equation under ‘generic’ conditions,
which is surprising. The question is: What has happened with
cubic nonlinearity?



The answer is: We are obtaining a nongeneric equation because the
starting point is a nongeneric system: wviscous effects have been only
considered in the linear damping term. Both nonlinear damping and
nonlinear forcing have been neglected in the coupled amplitude-mean
flow equations:

A;t + ’UgA;t + iOéoA;tx = —(26 + 1(5)Ai + i(CMl‘Ai‘Q - &2‘A$‘2)Ai

0
j:2i/ ergo dy A* + a A7,
~1

Oyt = Pyyyyy M —d <y <0,
with boundary conditions
P = fit =2(1ATF = |ATP)e, @, =8(JAT]P = A7),
(L=8)f" +epy,, =0 aty=0,
"=, =0 aty=—d,
Af(x + L, t) = A% (x,t),
P+ Ly t) =" (@, y 1), e+ L) = (2 1),
foLfmdg — fo Pyyy 4z = 0.
When cubic O(] A*|?)-corrections are added to both damping and forc-

ing, the following generic equations result (Mancebo-Vega, Physica
D197(2004)346-363):
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where ¢ comes from the mean flow. This system includes as par-
ticular case its cubic version, which is also obtained in weakly non-
linear dynamics of conservation laws invariant under the O(2) group
(Matthews-Cox Nonlinearity 13(2000)1293-1320, Vega Nonlinearity
18(2005)1425-1441).



e Water waves (namely, liquid motions with interfaces at low vis-
cosity) still involve fascinating open problems from both the fluid
dynamicist and the applied mathematician points of view.

e Weakly nonlinear dynamics must be analyzed from first principles;
ad hoc guessing is useful, but dangerous.

e Weakly nonlinear dynamics must include, as determining modes,
all nearly-marginal modes.

e Non-conservative hyperbolic problems may exhibit parabolic be-
havior (e.g., the sine-Gordon equation exhibits Ginzburg-Landau
dynamics).



