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Àngel Jorba, Joan Carles Tatjer
Universitat de Barcelona

Islantilla (Huelva), 20 de Octubre de 2006

0-0



Consider

x̄ = fµ(x, θ),

θ̄ = θ + ω,


where x ∈ R, θ ∈ T1, µ ∈ R is a parameter, ω ∈ (0, 2π) \ 2πQ and
fµ is smooth enough.

Assume that, for a given µ0, there is an attracting invariant curve,
xµ0(θ) with rotation number ω,

fµ0(xµ0(θ), θ) = xµ0(θ + ω), ∀ θ ∈ T1.

We want to study the continuation (and the bifurcations) of xµ0

with respect to the parameter µ.
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Example: the quasiperiodically forced logistic map.

x̄ = α(1 + ε cos(θ))x(1− x),

θ̄ = θ + ω,


with ω = π(

√
5− 1) and ε = 0.5.

Left: α = 2.65, Λ ≈ −0.03884. Right: α = 2.665, Λ ≈ −0.00845.

In this talk we consider the fractalization process as a bifurcation.

2



Assume that

x̄ = fµ(x, θ),

θ̄ = θ + ω,


has a Cr (r ≥ 0) invariant curve x = u0(θ) for µ = 0.

This curve satisfies the functional equation F (u0, 0) = 0, where
F : Cr(T1,R)× R → Cr(T1,R) and, if (u, µ) ∈ Cr(T1,R)× R,

F (u, µ)(θ) = fµ(u(θ), θ)− u(θ + ω).

To apply the Implicit Function Theorem, DuF (u0, 0) needs to be a
linear bounded operator with bounded inverse.

The action of DuF (u, µ) on an element v ∈ Cr(T1,R) is given by

[DuF (u, µ)v](θ) = Dxfµ(u(θ), θ)v(θ)− v(θ + ω).
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As f0(u0(θ) + h, θ) = f0(u0(θ), θ) +Dxf0(u0(θ), θ)h+ · · · , the
linearized dynamics around u0(θ) is given by

x̄ = a(θ)x,

θ̄ = θ + ω,

 (1)

where a(θ) = Dxf0(u0(θ), θ).

In what follows, we will assume that a(θ) 6≡ 0.

Definition 1 (1) is called reducible iff there exists a linear change
of variables x = c(θ)y such that (1) becomes

ȳ = by,

θ̄ = θ + ω,


where b does not depend on θ.
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The bifurcations of reducible curves can be studied by means of
normal form techniques.

Proposition 1 Assume that ω satisfies a Diophantine condition,

|qω − 2πp| ≥ γ

|q|τ
, for all (p, q) ∈ Z× (Z \ {0}),

and that a is C∞. Then, (1) is reducible iff a has no zeros.

This result also holds if a ∈ Cr, for r big enough but, due to the
effect of the small divisors, the reducing transformation does not
need to belong to Cr.
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The Lyapunov exponent of (1) at θ is

λ(θ) = lim sup
n→∞

1
n

ln

∣∣∣∣∣∣
n−1∏
j=0

a(θ + jω)

∣∣∣∣∣∣ .
We define

Λ =
1
2π

∫ 2π

0

ln |a(θ)| dθ.

If Λ is finite, then the Birkhoff ergodic theorem implies that

λ(θ) = Λ, for Lebesgue-a.e. θ ∈ T1.

The value Λ is usually known as the Lyapunov exponent of the
skew product.

Proposition 2 If a(θ) is C0 and the skew product is reducible,
then the Lyapunov exponent at θ, λ(θ), does not depend on θ.
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Theorem Let us consider a one-parametric family of linear
skew-products

x̄ = a(θ, µ)x,

θ̄ = θ + ω,


where ω is Diophantine and µ belongs to an open subset of R. a is
a C∞ function of θ and µ. We assume that:

1. For each µ, a(·, µ) has finitely many zeros, each of them are
simple except maybe one of multiplicity 2.

Let us call M the (open) set of values of µ for which all the
zeros of a(·, µ) are simple.

2. If a(·, µ) has a zero of multiplicity 2 at θ = θ0 for µ = µ0, then

∂a

∂µ
(θ0, µ0) 6= 0.
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Then, the Lyapunov exponent Λ(µ) depends continuously on µ, and

1. Λ is C∞ on M .

2. If µ0 /∈M , then

(a) if the number of zeros of a(·, µ) increases at µ0, then

lim
µ→µ−0

Λ′(µ) = −∞, and lim
µ→µ+

0

Λ′(µ) exists and is finite

(b) if the number of zeros of a(·, µ) decreases at µ0, then

lim
µ→µ−0

Λ′(µ) exists and is finite, and lim
µ→µ+

0

Λ′(µ) = +∞.

Moreover, for µ→ µ−0 in (a) and for µ→ µ+
0 in (b), we have

Λ(µ) = Λ(µ0) +A
√
|µ− µ0|+O(|µ− µ0|). (A > 0).
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Definition 2 If a ∈ Cr(T1,R), the transfer operator L : Cr → Cr

is defined as

(Lψ)(θ) = a(θ − ω)ψ(θ − ω) ∀ θ ∈ T1. (2)

It is easy to check that we can apply the IFT if and only if 1 does
not belong to the spectrum of the transfer operator.

The reducibility depends on the existence of eigenfunctions for L.

Regardless of the reducibility, the spectrum of L is invariant by
rotations (Mather, 1968).
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Proposition 3 Let L : C0 → C0 and Λ denote, respectively, the
transfer operator and the Lyapunov exponent of (1). Then,

ρ(L) = exp(Λ).

If a is Cr, L can be defined acting on any Cs, 0 ≤ s ≤ r. It can be
shown (A. Haro & R. de la Llave, 2005) that its spectrum does not
depend on s.

Proposition 4 If a has zeros (this implies that the skew product is
not reducible), then

Spec (L) = {z ∈ C such that |z| ≤ exp(Λ)}.
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Affine systems

x̄ = αa(θ)x+ b(θ),

θ̄ = θ + ω,

 (3)

where a and b are Cr functions and α is a real positive parameter.
It is clear that, for any invariant curve of (3), its linearized normal
behaviour is described by

x̄ = αa(θ)x,

θ̄ = θ + ω.

 (4)

In what follows, we will assume that (4) is not reducible.
The Lyapunov exponent is given by

Λ = lnα+
1
2π

∫ 2π

0

ln |a(θ)| dθ.
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If the previous integral exists (and it is finite), then the Lyapunov
exponent is negative for sufficiently small values of α, namely,

α < α0 = exp
(
− 1

2π

∫ 2π

0

ln |a(θ)| dθ
)
.

In particular this implies that, for α < α0, any invariant curve of

x̄ = αa(θ)x+ b(θ),

θ̄ = θ + ω,


is attracting and, therefore, it must be unique.

Proposition 5 If a and b are of class Cr and α < α0, then there
exists a unique attracting invariant curve of class Cr of (3).
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Fractalization

As we are dealing with an affine system and the sup norm of a
curve does not need to be bounded, we will say that a curve is
fractalizing when its C1 norm –taken on any closed nontrivial
interval for θ– goes to infinity much faster than its C0 norm, that
is, when

lim sup
α→α0

‖x′α‖I,∞

‖xα‖∞
= +∞,

where ‖ · ‖I,∞ is the sup norm on a nontrivial closed interval I.
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Theorem 1 Assume that a, b ∈ C1(T,R) and that (4) is not
reducible. Then,

a) If lim sup
α→α−0

‖xα‖∞ < +∞,

and b ∈ D1 (D1 is a suitable residual set), we have

lim sup
α→α−0

‖x′α‖I,∞ = +∞,

for any nontrivial closed interval I ⊂ T.

b) If lim sup
α→α−0

‖xα‖∞ = +∞,

then, for any nontrivial closed interval I ⊂ T, we have

lim sup
α→α−0

‖xα‖I,∞ = +∞, and lim sup
α→α−0

‖x′α‖I,∞

‖xα‖∞
= +∞.
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On repelling continuous curves

Now we assume that α > α0 which implies that the origin of is a
repellor. As before, we are assuming that the skew product is not
reducible and we are interested in the existence of a repelling
invariant curve.

Proposition 6 Assume, for all θ ∈ T1, that a(θ) ≥ 0. Then the
operator

x(θ) 7→ x(θ + ω)− αa(θ)x(θ),

defined on C0(T1,R), is not surjective. In particular, there is no
x ∈ C0(T1,R) such that x(θ + ω) = αa(θ)x(θ) + 1.

Proposition 7 Assume, in the hypothesis of Proposition 6, that
a(θ) is not always positive. Then, there exists b ∈ C0(T1,R) for
which there is no x ∈ C0(T1,R) such that
x(θ + ω) = αa(θ)x(θ) + b(θ).
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In this section we focus on the fractalization phenomena for the
affine system (3), but assuming that a is a positive function with at
least a zero (so that the skew product is not reducible).

Proposition 8 Assume, in (3), that a, b ∈ C1(T,R), a(θ) ≥ 0 for
all θ ∈ T1 and there exists a value θ0 such that a(θ0) = 0. We also
assume that b never vanishes. Then,

a) If a, b ∈ Cr(T,R), r ≥ 1, then xα ∈ Cr(T,R) for 0 < α < α0.

b) For any nontrivial closed interval I ⊂ T, we have

lim
α→α−0

‖xα‖I,∞ = +∞, and lim
α→α−0

‖x′α‖I,∞

‖xα‖∞
= +∞.

c) For α > α0, there is no x ∈ C0(T,R) such that
x(θ + ω) = αa(θ)x(θ) + b(θ).
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Some numerical examples

x̄ = α (1 + cos θ)x+ 1,

θ̄ = θ + ω,


where ω is the golden mean. We note that 1 + cos θ ≥ 0 so we are
in the hypotheses of the last proposition.

The Lyapunov exponent of the linear skew product is
Λ = lnα− ln 2 and, therefore, the critical value α0 is 2.

We have proved that there exists a unique invariant attracting
curve for 0 < α < 2, that undergoes a fractalization process when
α→ 2−.
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Another example.

x̄ = α cos(θ)x+ 1,

θ̄ = θ + ω,


being α a positive parameter.

It is easy to see that its Lyapunov exponent is lnα− ln 2.

If α < 2, the Lyapunov exponent is negative. Therefore, we must
have a unique and global attracting set.

Next slides show the attractor for several values α < 2.
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The quasiperiodically forced logistic map.

x̄ = α(1 + ε cos(θ))x(1− x),

θ̄ = θ + ω,


with ω = π(

√
5− 1).

Let x(θ) be a continuous invariant curve of this map; if h denotes
an infinitesimal displacement w.r.t. the curve then

h̄ = Dxfα,ε(x, θ)h = α(1 + ε cos θ)(1− 2x(θ))h,

θ̄ = θ + ω.


It is clear that |ε| ≥ 1 or x(θ0) = 1

2 for some θ0 imply
non-reducibility. On the other hand, if |ε| < 1, x(θ) 6= 1

2 (for all θ)
and x(θ) is smooth, the curve is reducible.

Let us select ε = 0.5.
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Left: α = 1.3. Right: α = 2.0.
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Left: α = 2.65, Λ ≈ −0.03884. Right: α = 2.665, Λ ≈ −0.00845.
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To give more numerical evidence that these “irregular” attracting
sets are smooth curves, let us consider the following dynamical
system,

x̄ = f(x, θ),

ȳ = Dxf(x, θ)y +Dθf(x, θ),

θ̄ = θ + ω.

 (5)

Note that, if x = x(θ) is a smooth invariant curve, then
(x, y) = (x(θ), x′(θ)) is an invariant curve of the system above.
This curve is attracting set of (5) iff x = x(θ) is an attracting set of
the initial system.

Now we will repeat the computations of the attracting sets but on
the system (5), to estimate the shape of the derivative of the curve,
if there is one. In all the cases we will use the initial condition
y0 = 1 for the second equation in (5).
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Attracting sets for the variational flow of the quasi-periodically
forced logistic map for α = 2.65 and 2.665. The horizontal axis
refers to θ and the vertical axis refers to y (see (5)). In the last plot
we show |y| in a log scale.
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To check whether the attractor for α = 2.665 is a curve or not, we
have performed several magnifications. If the attracting set is a
curve, the values of y in (5) once we are on the attracting set can
be used to estimate the maximum of the absolute value of the
derivative. This quantity gives the amount of magnification needed
to see the attractor as a smooth curve.

After a transient of 106 iterates, we take the maximum of the
derivative for 107 extra iterates, to obtain a value of −6.9× 109

near θ0 = 0.43748252111775532.

This process is very sensitive to roundoff error, especially from the
modulus 2π needed for the variable θ this point later on).

In all our tests the maximum of the derivative is of the order of
1010. These estimates imply that to resolve a neighborhood of θ0
we need magnifications of the order of 1010, at least.
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We will take the mesh θj = θ0 + j
m10−10 for j ranging from −m to

m. We have used several values of m between 100 and 1000. Then,
we have computed the values θ̂j = θj − nω(mod 2π) for a large n
(the concrete values are specified below) and we have iterated
forward the points θ = θ̂j , x = 0.4, n times, to obtain the values θ̃j .

These values should coincide with the initial values θj but, due to
the roundoff errors (mainly in the operation mod 2π) they are
slightly different. For instance, for n = 105, the differences θj − θ̃j

are close to 2.5× 10−12.

To be sure that the results do not depend on the roundoff errors,
we have repeated these computations with quadruple precision.
Now, for n = 105 the differences θj − θ̃j are close to 1.7× 10−23.
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To estimate the effect of the transient in these computations, we
have repeated them for n = 2× 105 with no visible differences in
the plots. We have also performed this zoom for other values of θ0
with similar results.

The results are shown below, where we have displayed the index j
vs. the corresponding value of x.
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Conclusions.

• Any continuous invariant curve with negative maximal
Lyapunov exponent is smooth and locally persistent (because it
is normally hyperbolic).

• There are simple examples where the process of fractalization
consists of the increase of the lenght of the invariant curve, but
the smoothness is preserved until the Lyapunov exponent is
zero.

This could be the case of the forced logistic map, as numerical
computations seem to confirm.

• From the point of view of operator theory, it seems that this
process of fractalization is related to the ‘failure’ of the IFT
when 0 becomes a spectral value that is not an eigenvalue.
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