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During the last years a lot of attention has been paid to the

analysis of the so-called Strange Non-chaotic Attractors (SNA).

However the number of conjectures coming from numerical res-

olution is higher than the number of rigorous proofs.

We consider skew-products 
ows coming from non-autonomous

second order di�erential and di�erence equations with quasiperi-

odic or almost periodic coe�cients.

By using methods coming from the topological dynamics, we

show the strong connection between these `strange' sets and

the well known almost automorphic (but not quasiperiodic) ex-

tensions of the base 
ow.

We establish conditions ensuring the occurrence of this kind of

dynamics and sets.



The Harper 
ow is de�ned on T1 × R by

x(n+1) = − 1
x(n)

− λ− 2b cos 2π(ω + nα)

(α ∈ R−Q, b ∈ R (�xed), λ ∈ R (varying)).

It comes from the Harper transformation

�ω = ω + α

�x =
1

x
− λ− 2b cos 2π(�ω)

and it is of skew-product type: the pair (ω, x0) ∈ T1 × R is

sent in time n to the pair (ω + nα, x(n)), where x(n) satis�es

the previous equation with x(0) = x0.



The Harper skew-product 
ow is de�ned on T1 × R by

x(n+1) = − 1
x(n)

− λ− 2b cos 2π(ω + nα)

(α ∈ R−Q, b ∈ R (�xed), λ ∈ R (varying)).

The 
ow is just local. To cope with the in�nity point we take

ϕ = cot−1 x ∈ [0, π) and obtain a global 
ow on T1 × P1:

ϕ(n+1) = cot−1
(
− 1
cotϕ(n)

− λ− 2b cos 2π(ω + nα)
)

Both 
ows come from the almost Mathieu spectral problem,

−z(n+1)− z(n− 1)− 2b cos 2π(ω + nα) z(n) = λ z(n)

(x(n) = z(n)/z(n− 1)), and this comes from[
z(n)

z(n+1)

]
=

[
0 1
−1 −λ− 2b cos 2π(ω + nα)

] [
z(n− 1)

z(n)

]



[
z(n)

z(n+1)

]
=

[
0 1
−1 −λ− 2b cos 2π(ω + nα)

] [
z(n− 1)

z(n)

]

Let Zλ(n, ω) be its propagation matrix: the 
ow on T1 × R2

sends (ω, z0) in time n to (ω + nα, Zλ(n, ω) z0).

OSEDELETS: for Lebesgue almost every ω ∈ T1, the limit

lim
|n|→∞

1

n
ln ‖Zλ(n, ω)‖ = β(λ) ≥ 0

exists and takes the same value. (The values ±β(λ) are the

Lyapunov exponents of the system.) In addition, if β(λ) > 0,

there exists a measurable decomposition T1 × R2 = W+

λ ⊕ W−
λ

in two invariant one-dimensional subbundles with

lim
|n|→∞

1

n
ln |Zλ(n, ω) z0| = ∓β(λ)

for (ω, z0) ∈ W±
λ with z0 6= 0.



The family of systems has an exponential dichotomy over

T1 if β(λ) > 0 and T1×R2 = W+

λ ⊕W−
λ as topological sum. In

this case,

lim
|n|→∞

1

n
ln |Zλ(n, ω) z0| = ∓β(λ)

for every ω ∈ T1 and (ω, z0) ∈ W±
λ with z0 6= 0.

So that the possibilities are:

• β(λ) = 0: elliptic case,

• β(λ) > 0 and ED: uniformly hyperbolic case,

• β(λ) > 0 and not ED: non-uniformly hyperbolic case.

JOHNSON: the spectrum � of the (almost Mathieu) opera-

tor does not depend on ω ∈ T1, and λ ∈ � if and only if

the two-dimensional system does not admit an exponential di-

chotomy. (That is, spectrum means ellipticity or non-uniformly

hyperbolicity.)



So far the results hold for a much more general setting. What

makes the Harper transformation interesting is that

• if b 6= 0, � is a (non-empty, compact) Cantor set for any

α ∈ R−Q (PUIG; �AVILA & JITOMIRSKAYA).

• if |b| > 1, then β(λ) > 0 for every λ ∈ R (HERMAN).

So that if |b| > 1 the dynamics for Harper transformation is

never elliptic, but always hyperbolic: uniformly for λ /∈ � and

non-uniformly for λ ∈ �. And there exists a countable in�nite

number of end-points of spectral gaps.

GOAL: to prove the existence of SNAs on R for the trans-

formations corresponding to the \extreme" values of λ.



Consider the Harper 
ow on T1 × P1, de�ned by iterating

(ω, ϕ0) 7→ (ω + α, ϕλ(1, ω, ϕ0))

with ϕλ(1, ω, ϕ0) = cot−1
(
− 1
cotϕ0

− λ− 2b cos 2π(ω + α)
)
.

De�nitions. An invariant curve is a map c : T1 → P1 which is

measurable, de�ned everywhere, such that

c(ω·1) = ϕλ(1, ω, c(ω)) for every ω ∈ T1.

The curve is real if c : T1 → (0+, π−)
([δ, π − δ] ⊂ (0+, π−), P1 ≡ Z/(nπ)).

The corresponding (real) invariant graph is the set

graph(c) = {(ω, c(ω)) | ω ∈ T1} ⊂ T1 × P1 (T1 × (0+, π−)).

The Lyapunov exponent of a real c is

βs(c) =
∫
T1
ln

∂ϕλ

∂ϕ0
(1, ω, c(ω)) dω .



A strange non-chaotic attractor on R is a non-continuous

real invariant curve with negative Lyapunov exponent.

GOAL: To establish conditions ensuring the existence of SNAs

on R (for those values of λ), such that:

• the curve is discontinuous on a subset of full measure,

• it is continuous on a residual subset,

• the closure of the graph is a minimal subset of T1 × (0, π).

Theorem. M ⊂ T1× (0, π) minimal, Mω = {x | (ω, x) ∈ M}.
1. cardMω = 1 for the elements ω ∈ R ⊂ T1 residual (M

is an almost automorphic extension of the base);

2. if
βs(M) = sup

graph(c)⊂M
β̃s(c) < 0 ,

then cardMω = 1 for ω ∈ T1 (M is a copy of the base,

T1, the graph of a continuous invariant curve).



So that a minimal containing an SNA (its closure) is an almost

automorphic extension of the base with βs(M) ≥ 0. That is,

• its section reduces to a point for a residual set of base points,

• contains a real invariant graph with negative Lyapunov exponent,

• contains a real invariant graph with non-negative (it will be

positive) Lyapunov exponent,

• its sections do not reduce to a point for a full-measure set

of base points.

There are well known examples of SNAs not contained in min-

imal sets, like the one described by KELLER.

As in his case, our SNAs will appear as a result of the collision

(as a parameter varies) of invariant tori.



Assume |b| > 1 and hence β(λ) > 0 for every λ ∈ R, and consider
the dynamics on T1 × P1.

Theorem. If λ /∈ � (uniformly hyperbolic case),

1. there are exactly two minimal subsets of T1×P1, graphs
of continuous invariant maps T1 → P1, ω 7→ �ϕ±λ (ω),
which are uniformly attracting and repelling:

∓β(λ) = lim
|n|→∞

1

n
ln |zλ(n, ω, ϕ±λ (ω))| for all ω ∈ T1;

2. the orbits of T1 × P1 starting outside those copies of

the base are heteroclinic orbits, going from the graph

of �ϕ−λ to the graph of �ϕ+λ .

Note: �ϕ±λ are the projections on P1 of the (closed) Oseledets

subbundles W±
λ .



Theorem. If λ ∈ � (non-uniformly hyperbolic case),

1. there is a unique minimal Mλ ⊂ T1 × P1 which is not

a smooth curve: it contains exactly two non-closed

invariant subsets, graphs of two non-continuous mea-

surable functions �ϕ±λ : T1 → P1;

2. there exists a full measure set 
λ 6= T1 with

∓β(λ) = lim
|n|→∞

1

n
ln |zλ(n, ω, ϕ±λ (ω))| for all ω ∈ 
λ ;

3. for ω ∈ 
λ the trajectories corresponding to (ω, �ϕ0)

with �ϕ0 6= �ϕ±λ (ω0) are heteroclinic;

4. there is a residual subset of Mλ of points giving rise to

orbits on T1 × R2 oscillating exponentially as |n| → ∞.

As before, �ϕ±λ are the projections on P1 of W±
λ (non-closed).



Take J ⊂ R−� and let λ∗ be a �nite extreme point of J.

Theorem.

1. As λ ∈ J approaches λ∗, the attracting and repelling

curves �ϕ±λ approach each other in a monotone and non-

uniform way;

2. when λ reaches λ∗, the two curves \collide" on a dense

set of points and they stop being continuous;

3. the limiting curves �ϕ±λ∗ are continuous and coincident

on an invariant residual set, whereas they are di�erent

and discontinuous in a full measure subset;

4. the closure of the graphs of �ϕ±λ∗ is the unique mini-

mal subset Mλ∗ ⊂ T1 × P1, and this set is an almost

automorphic extension of T1.



In the case that Mλ∗ ⊂ T1 × (0, π), the graph of �ϕ−λ∗ is a real

SNA: a non continuous invariant curve with range in (0+, π−)
and Lyapunov exponent −β(λ∗)/2.

It can be proved that this is what happens when λ∗ is the �rst

point of the spectrum (J = (−∞, λ∗)).

The next graphics show the evolution described. All of them

correspond to b = 1.1, letting the parameter λ vary in small

intervals.



















But the situation at any other extreme point of the spectrum

may be di�erent: in the case that the projection of Mλ∗ on P1

contains the point 0 (the in�nity point), the attractor may be

winding on P1, so that it cannot be naturally included in R.

















Theorem. Let J and λ∗ be as before, and �x λ0 ∈ J.

1. The smooth map

T1 × P1 → T1 × P1 , (ω, ϕ) 7→ (ω, ϕ− �ϕ−λ0(ω))

de�nes a 
ow homeomorphism, and the transformed


ow has a unique minimal set M̃λ∗ ⊂ T1 × (0, π) which

is not a copy of the base;

2. Let ϕ±λ∗ = �ϕ±λ∗ − �ϕ−λ0. Then βs(ϕ
±
λ∗) = ±β(λ∗)/2, and

the invariant curve ϕ−λ∗ is an SNA on R.

So that the process of unwinding the attractor is a smooth

transformation (a translation) on P1 that allows to embed the

attractor in R, used to show the existence of SNAs on R.













All these results hold in a much more general setting: projective


ows coming from two-dimensional Dirac systems, second or-

der scalar linear Schr�odinger equation, and Jacobi transforma-

tions, over a continuous quasiperiodic 
ow on Td or even over

an almost periodic 
ow.

Our results show the occurrence of SNAs at those extreme

points of spectral gaps in the case that the corresponding dy-

namics is non-uniformly hyperbolic. (An unwinding procedure

is in general required.)

MILLION�S�CIKOV and VINOGRAD examples �t in our conditions.




