Valladolid, 29 June 2010 - 30 June 2010




Stability, bifurcation and chaos in finite and infinite dimension

Recent results will be analyzed accurately for describing different scenarios based on their dynamic stability properties. It will also examine situations of high dynamic complexity characterized by the presence of minimal or strange attractors (chaotic and non chaotic). We will discus aspects of the dynamic transition between these different scenarios, which can sometimes be done by branching arguments. Flows and semiflows will be studied and discrete and continuous models that come from ordinary differential equations, functional equations and partial differential equations. Other problems on autonomous and non-autonomous dynamic will be studied on some specific scenarios of high complexity of the latter have no analogue in the standalone versions.  

The sessions will take place in Escuela de Ingenierías Industriales. Paseo del Cauce 59. Valladolid.


Ministerio de Eduación y Ciencia Universidad de Valladolid  


Àngel Jorba (Universitat de Barcelona)
Carmen Nuñez (Universidad de Valladolid)



Eduardo Liz (Universidad de Vigo)
Rafael Obaya (Universidad de Valladolid)


Eduardo Liz (Universidad de Vigo)
Rafael Obaya (Universidad de Valladolid)

Download as a PDF file


Scientific Sessions

 Rigorous validation of invariant tori on the verge of a hyperbolicity breakdown - Alex Haro (Universidad de Barcelona)
 General dynamical description of monotone and sublinear skew-product semiflows - Carmen Núñez (Universidad de Valladolid)
 Two-dimensional systems of monotone and sublinear differential equations - Ana M. Sanz (Universidad de Valladolid)
 Approximation of nonautonomous invariant manifolds - Martin Rasmussen (Universidad de Ausburgo)
 Breakdown of stability in nonautonomous ODEs with rapidly oscillating coefficients - Russell Johnson (Universidad de Florencia)
 Nonautonomous neutral functional differential equations monotone for the exponential ordering. - Sylvia Novo (Universidad de Valladolid)
 Some new results on Lyness recurrences - Armengol Gasull (Universidad Autónoma de Barcelona)
 More on nonautonomous bifurcation - Christian Pötzsche (Universidad Técnica de Munich)
 On globally periodic maps and periodic flows - Víctor Mañosa (Universidad Politécnica de Cataluña)
 Nonnegativity and monotonicity for delay differential equations - Mihály Pituk (Universidad de Pannonia)
 Quasi-periodic Schrödinger operators beyond the almost Mathieu - Joaquim Puig (Universidad de Barcelona)
 Smoothness problems for differential equations with state- dependent delay - Tibor Krisztin (Universidad de Szeged)
 Heteroclinic and homoclinic cycles in unfoldings of singularities - Santiago Ibáñez (Universidad de Oviedo)
 Effective computation of bifurcations of periodic points related to homoclinic bifurcations - Joan Carles Tatjer (Universidad de Barcelona)
 Rafael Obaya, Universidad de Valladolid (Spain)
 Eduardo Liz, Universidad de Vigo (Spain)
 Russell Johnson, Universidad de Florencia (Italy)
 Sylvia Novo, Universidad de Valladolid (Spain)
 Martin Rasmussen, University of Ausburg (Germany)
 Alex Haro, Universitat de Barcelona (Spain)
 Carmen Núñez, Universidad de Valladolid (Spain)
 Ana M. Sanz, Universidad de Valladolid (Spain)
 Joaquim Puig, Universitat de Barcelona (Spain)
 Tibor Krisztin, University of Szeged ( Hungary)
 Santiago Ibáñez, Universidad de Oviedo (Spain)
 Joan Carles Tatjer, Universitat de Barcelona (Spain)
 Christian Pötzsche, Technical University of Munich (Germany)
 Víctor Mañosa, Universitat Politècnica de Catalunya (Spain)
 Mihály Pituk, University of Pannonia (Hungary)
 Armengol Gasull, Universitat Autónoma de Barcelona (Spain)
 Ana I. Alonso, Universidad de Valladolid (Spain)
 Gianluigi Del Mago, Universidade Técnica de Lisboa (Portugal)
 Joao Lopes-Dias, Universidade Técnica de Lisboa (Portugal)
 Victor Muños-Villarragut, Universidad de Valladolid (Spain)
 Jesús Rojo, Universidad de Valladolid (Spain)