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We discuss some of the mathematical theory for bifurcations of dynamical
systems, with application to network dynamics. The presence of special structures
in the form of network symmetries constrain but give a much richer set of possible
generic bifurcations that the non-symmetric case. We introduce in some detail the
tools of generic bifurcation theory for equivariant (symmetric) systems to help
understand how onset or less of synchrony appears in networks of coupled
oscillators.

Some topics we discuss:

Bifurcation theory for ODEs, bifurcations of equilibria and genericity

Centre manifolds, normal forms and symmetries

Symmetric (equivariant) dynamics: group representation and bifurcations

Network dynamical systems and applications of symmetric bifurcation theory

Some examples in networks of coupled oscillators
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Background

Initial discussion: aims, background, expectations
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Background

Background

In general, one cannot find solutions x(t) of nonlinear differential equations

ẋ = f (x)

for x ∈ Rn and even quite simple functions f with n small. Possible ways forward
are:

Option 1: Use numerical approximation.

Option 2: Find simple solutions (equilibria, periodic orbits) and determine
their stability.

Unfortunately option 1 may give much data but not give much insight, and option
2 may not tell us about the ‘typical solutions’ that we want to know about.
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Background Bifurcation theory

Bifurcation theory

Bifurcation theory looks at how simple solutions change on changing a parameter
λ in an autonomous ODE

ẋ = f (x , λ).

x = (x1, · · · , xn) ∈ Rn - state variable

λ = (λ1, · · · , λd) ∈ Rd - bifurcation parameter

f : Rn+d → Rn - smooth function

There is also a coherent bifurcation theory for iterated maps

xn+1 = f (xn, λ)

but these is subtly different to what we discuss here.
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Background Bifurcation theory

One parameter bifurcation theory: consider

ẋ = f (x , λ)

i.e.

ẋ1 = f1(x1, · · · , xn, λ)

...
...

ẋn = fn(x1, · · · , xn, λ)

for

x ∈ Rn - state variable

λ ∈ R - bifurcation parameter

f : Rn+1 → Rn - right hand side

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 9 / 200



Background Bifurcation theory

Local bifurcation theory deals with equilibria (also known as steady solutions
or singular points), i.e. x0 such that

f (x0, λ) = 0.

Equilibria typically come in branches i.e. (X (λ), λ) parametrized by the
bifurcation parameter. There may be many branches at any given λ.

We usually express the bifurcation pattern in a bifurcation diagram which
plots some measure of the solution x (vertical axis) against the parameter
(horizontal axis). A branch is plotted as a smooth line on such a diagram.

Typical choices for the vertical axis are: one of the coordinates of x ; a norm
of x (such as L1 or L2 norm) but any smooth observable of x may be shown.
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Background Linear stability

Linear stability

Linear stability of equilibrium (X , 0) can be found by examining the n × n
Jacobian matrix J of partial derivatives

J = Df (X , 0) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xn


where all partial derivatives are evaluated at (X , 0).
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Background Linear stability

Consider J = Df (X , 0) Jacobian of equilibrium solution:

If no eigenvalues of J are on the imaginary axis, then we say X is hyperbolic
and (X , 0) is a point on a branch of equilibria.

If at least one eigenvalues of J are on the imaginary axis, then we say X is at
a bifurcation and more than one branch may meet at (X , 0).

For generic or typical choice of f the only bifurcations are following:

Saddle-node bifurcation where there is a single zero eigenvalue of J.

Hopf bifurcation where there is a single pure imaginary pair of eigenvalues of
J.
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Background Linear stability

Saddle-node bifurcation
Example of a saddle-node bifurcation in one dimension

ẋ = λ− x2 (1)

Has two equilibria for λ > 0, one for λ = 0 and none for λ < 0.

λ

x stable

unstable
Bifurcation diagram
The same bifurcation diagram (up to reflection in x and/or λ) holds for ALL
saddle-node bifurcations. Equation (1) is the normal form for a saddle-node
bifurcation.
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Background Linear stability

Hopf bifurcation
Example of a Hopf bifurcation in two dimensions z = x + iy :

ż = (λ+ iω)z − |z |2z (2)

Has one equilibrium for all λ. A periodic orbit appears on increasing λ through
zero.

λ

x

y

stable periodic orbit

stable
eqm

unstable eqm

Bifurcation diagram
The same bifurcation diagram (up to coordinate changes) holds for ALL Hopf
bifurcations. Equation (2) is the normal form for a Hopf bifurcation.
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Background Genericity

Genericity

What is meant by a bifurcation problem being generic?

There is always an implied context for a system, for instance if

ẋ = f (x , λ)

is a model of a simple physical system with x , λ ∈ R then we hope that the
predictions of the model are not sensitive to small details in the specification of f .

Suppose that f ∈ C∞(R,R) is a particular function, then unless we have a
compelling reason to believe that f must have a special property (such as oddness
f (−x) = −f (x)), we assume that is has no such property.
Formally, let P(f ) be some property of a f ∈ C∞.

We say the property P is generic if it holds on an open dense subset of C∞.

Otherwise we say it is non-generic.
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Background Genericity

Examples of genericity

Let A be the set of all smooth functions f : R→ R.
Let As ⊂ A be the set of all symmetric (i.e. odd) smooth functions f : R→ R.

It is not generic for f ∈ A to be also in As , i.e. to be an odd function.

It is generic for f ∈ A to be non-constant.

It is generic for f ∈ As to have a simple zero at x = 0.

It is not generic for f ∈ A to have any zero.

BUT: It is not generic for f ∈ A to have no zero.

In all cases, genericity depends on context; if we assume there is no special
symmetry, the only bifurcations are saddle-node and Hopf. If however we know
there is a symmetry in the model, there may be new generic bifurcations.
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Background Bifurcation case study

Bifurcation case study
Case study [G&S (1.1)]

ẋ = λx − (x + y + z) + x2

ẏ = λy − (x + y + z) + y2

ż = λz − (x + y + z) + z2

where (x , y , z) ∈ R3 and λ ∈ R is a parameter.

Clearly there is an equilibrium at x = y = z = 0 for all λ.

Jacobian at this equilibrium is:

J =

 λ− 1 −1 −1
−1 λ− 1 −1
−1 −1 λ− 1


with eigenvectors and eigenvalues:

v0 = (1, 1, 1)T : e0 = λ− 3
v1 = (1,−1, 0)T : e1 = λ
v2 = (1, 0,−1)T : e2 = λ

Bifurcation at λ = 0 is neither saddle-node nor Hopf!
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Background Bifurcation case study

From

ẋ = λx − (x + y + z) + x2

ẏ = λy − (x + y + z) + y2

ż = λz − (x + y + z) + z2.

Same equations for all permutations of x , y , z . Equilibria at

λx + x2 = λy + y2 = λz + z2 = x + y + z

Near λ = 0 and 0 the is an equilibrium at x = y = z = 0 and also equilibria at

x = y =
−λ+ 1−

√
λ2 − 6λ+ 1

2
, z =

−λ− 1 +
√
λ2 − 6λ+ 1

2

x = z =
−λ+ 1−

√
λ2 − 6λ+ 1

2
, y =

−λ− 1 +
√
λ2 − 6λ+ 1

2

y = z =
−λ+ 1−

√
λ2 − 6λ+ 1

2
, x =

−λ− 1 +
√
λ2 − 6λ+ 1

2

(plus four more solutions!)
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Background Bifurcation case study

Near λ = 0 the first of these solutions can be written

x = λ+ O(λ2)

y = λ+ O(λ2)

z = −2λ+ O(λ2)

Computing also stabilities we have the following bifurcation diagram:

(−,−,−) λ
(+,+,−)

(x,y,z) (+,−,−)

(+,−,−)

Note that (a) several branches of equilibria come together at one point and (b) no
branching solution is stable!
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Bifurcations of equilibria
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Bifurcations of equilibria

Bifurcations of equilibria

We now look at bifurcations of steady solutions (equilibria) in general, with a view
to understanding examples such the example with symmetry.
If a bifurcation problem

ẋ = f (x , λ)

has constraints, then the typical bifurcations that appear will change substantially.
Examples:

If f has symmetries then typically get multiple eigenvalues passing through
zero.

If f is divergence free then cannot get bifurcation to attractors.

If f = −∇φ then cannot get periodic solutions.

Essentially, if the context changes then we get a new set of ”generic bifurcations”.
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Bifurcations of equilibria Constrained bifurcations

Constrained bifurcations

Suppose that the system
ẋ = f (x , λ)

for x , λ ∈ R has a constraint that x = 0 is always an equilibrium.

We can infer that f (x , λ) = xg(x , λ) for some new function g with a removable
singularity at x = 0.

On varying λ we expect to find equilibria at x = 0 and branches x(λ) such that
g(x , λ) = 0

Generically, if a branch of solutions x(λ) of g(x , λ) = 0 hits zero, it will pass
through ”transversally”.

In such a case, near typical bifurcation of x = 0 there is a normal form

ẋ = x(λ− x)

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 22 / 200



Bifurcations of equilibria Constrained bifurcations

Transcritical bifurcation

The only generic steady bifurcation for a 1− D problem constrained to have an
equilibrium at zero is the transcritical bifurcation with normal form

ẋ = x(λ− x)

λ

x

Bifurcation diagram
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Bifurcations of equilibria Constrained bifurcations

Pitchfork Bifurcation

The only generic steady bifurcation for a 1−D problem with a symmetry x 7→ −x
is the pitchfork bifurcation with normal form

ẋ = x(λ− x2)

λ

x

Bifurcation diagram
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Bifurcations of equilibria Bifurcation equivalence

Bifurcation equivalence

Previous examples beg the question; What do we mean by equivalence and normal
form? Various approaches exist and we cannot go into full detail here, but give a
sketch for the interested student!
(More detailed approaches use smooth germs of vector fields; these are
equivalence classes of vector fields at a point 0, such that f ∼ g if there is a
neighbourhood of 0 on which f ≡ g .)
For the case of one state variable and one parameter, (x , λ) ∈ R2, suppose that
two bifurcation problems

ẋ = f (x , λ), ẋ = g(x , λ)

have bifurcations we want to compare.
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Bifurcations of equilibria Bifurcation equivalence

Suppose
ẋ = f (x , λ), ẋ = g(x , λ)

both have bifurcations at (0, 0); namely

f (0, 0) = g(0, 0) = fx(0, 0) = gx(0, 0) = 0.

We say these bifurcations are strongly equivalent if there are smooth functions
S(x , λ),X (x , λ) and Λ(λ) such that:

The map (x , λ) 7→ (X (x , λ),Λ(λ)) is a local diffeomorphism mapping (0, 0)
to itself.

The function S(x , λ) is positive in a neighbourhood of (0, 0)

The ODEs are topologically equivalent

f (x , λ) = S(x , λ)g(X (x , λ),Λ(λ))

in some neighbourhood of (0, 0).
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Bifurcations of equilibria Bifurcation equivalence

To be more precise, a bifurcation of ẋ = f (x , λ) is a pitchfork at (0, 0) if there are
functions X ,Λ,S as above such that

x(λ− x2) = S(x , λ)f (X (x , λ),Λ(λ)).

on some neighbourhood of (0, 0).
A more general definition for a pitchfork at (x0, λ0) is that there are S ,X and Λ
with (x , λ) 7→ (X (x , λ),Λ(λ)) such that (x0, λ0) 7→ (0, 0) and

x(λ− x2) = S(x , λ)f (X (x , λ),Λ(λ)).

on some neighbourhood of (x0, λ0).
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Bifurcations of equilibria Bifurcation equivalence

Finite determinacy

We say a bifurcation is k-determined if it is strongly equivalent to a
polynomial function of x , λ of degree at most k .

Generally we say a bifurcation is finitely determined if it k-determined for
some finite k .

It is a useful fact that most bifurcation problems of interest ARE finitely
determined, mostly at quite low order!

Finite determinacy allows one to reduce a bifurcation problem to a finite
dimensional family.
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Bifurcations of equilibria Taylor expansion and normal forms

Taylor expansion and normal forms

Because of finite determinacy of many bifurcation problems, an important tool in
the study of bifurcation singularities is the Taylor series expansion; in a
multi-variate form one can write near x = 0 for x ∈ Rn as

ẋ = f (x) =
∞∑
k=0

∑
K∈Mk

f (K)(0)

K !
xK

where
Mk = {(K1, · · · ,Kn) : Kj ∈ Z+ and K1 + · · ·+ Kn = k}

is the set of terms of order k,

K ! = K1!K2! · · ·Kn!, xK = xK1
1 · · · x

Kn
n

and

[f (K)]i =
∂f ki

∂K1x1 · · · ∂Knxn
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Bifurcations of equilibria Taylor expansion and normal forms

Basic question for normal form theory is:

Which of the terms in the Taylor expansion are important to determine the
branching behaviour and which are not?

In order to answer this one can consider changes of coordinate that are
near-identity at the bifurcation in question to transform it into a normal form.
This means we consider changes in coordinate that remove as many terms as
possible from the Taylor series. An examples of a normal form theorem without
parameters is the Poincaré normal form theorem:

Theorem

Suppose ẋ = f (x) has a hyperbolic equilibrium at x = 0 and there are no
resonances between eigenvalues of df (0). Then there is a near-identity change of
coordinates that removes all nonlinear terms from f (x) near 0.
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Bifurcations of equilibria Taylor expansion and normal forms

All of this, and the use of singularity theory to classify generic and degenerate
(higher parameter) bifurcation problems in low dimension is treated in some detail
a number of texts, and there is an extensive literature on singularity theory for
bifurcation problems.

Basic results are in the form of theorems that allow one to recognize and classify
bifurcation problems according to codimension, i.e. number of parameters needed
to be added before one obtains genericity.
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Bifurcations of equilibria Taylor expansion and normal forms

Some issues remain for singularity theory approach to bifurcation theory:

Very powerful for one dimension centre manifold, not so good for higher
dimension.

Very powerful for codimension one and fairly simple groups, not so good for
higher codimension and more complicated groups.

Problems with moduli for higher codimension.

Different notions of equivalence can be used to trade between simplicity and
accuracy of classification.

Big challenges for global bifurcations, eg homoclinic bifurcations.
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Bifurcations of equilibria Taylor expansion and normal forms

Tuesday
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Bifurcations of equilibria Reduction of bifurcation problems

Reduction of bifurcation problems

Singularity theory can become very complicated for higher dimensional subspaces;
however one can reduce bifurcations to problems that have lower dimension and
then, by finite determinacy, to finite truncation.
Reduction methods can reduce a bifurcation problem at (x0, λ0) to one that has
dimension

dimW c(x0, λ0).
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Bifurcations of equilibria Reduction of bifurcation problems

Lyapunov-Schmidt reduction

We consider the Lyapunov-Schmidt method for equilibria. Suppose we wish to
find equilbria of

ẏ = F (y , λ)

for y ∈ Rn, λ ∈ Rk and F (0, 0) = 0, dF |(0,0) is singular. Let

K = ker(dF |(0,0)), R = range(dF |(0,0)).

and split
Rn = K ⊕ K̂, Rn = R⊕ R̂
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Bifurcations of equilibria Reduction of bifurcation problems

Let E : Rn → Rn be projection onto R with kernel R̂, i.e. E is the unique linear
map such that E (x) = x for x ∈ R and E (x) = 0 for x ∈ R̂.
Writing y = (x ,w) with x ∈ K and w ∈ K̂ we have

F ((x ,w), λ) = 0 (∗)

if and only if

EF ((x ,w), λ) = 0

(1− E )F ((x ,w), λ) = 0.

Since (dF(0,0))|K̂ is nonsingular the implicit function theorem implies there is a

unique function w : K × Rk → K̂ such that

EF ((x ,w(x , λ)), λ) = 0.

Hence solving (*) is equivalent to solving

f (x , λ) := (1− E )F ((x ,w(x , λ)), λ) = 0
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Bifurcations of equilibria Reduction of bifurcation problems

Note that we have transformed the n-state variable problem F (y , λ) = 0 to a
Lyapunov-Schmidt reduced bifurcation problem:

f (x , λ) = 0

where x ∈ K has dimension of the kernel of dF and λ ∈ Rk and

f (x , λ) := (1− E )F ((x ,w(x , λ)), λ) = 0.
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Bifurcations of equilibria Reduction of bifurcation problems

Another technique is centre manifold reduction:

This is a very powerful method for reduction that preserves not only equilibria
at bifurcation but all dynamics near a bifurcation.

The Centre manifold reduced system is typically not unique and may have
lower smoothness than the Lyapunov-Schmidt reduced equations.

Centre manifold gives access to Hopf and Steady bifurcations at the same
time; the Lyapunov-Schmidt method for steady solutions can be adapted to
Hopf.

The Centre manifold reduction can be more involved to compute the reduced
equations.

Both methods give the same solutions and stability for one dimensional
reduced problems.
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Bifurcations of equilibria Reduction of bifurcation problems

Centre manifold theory relies on the following (or related) result:
Suppose ẏ = F (y , λ) has F (0, 0) = 0. Suppose dF (0, 0) has a centre eigenspace
E c of dimension m ≤ n.

Theorem
There exists is a locally invariant manifold, the centre manifold W c , containing
(0, 0) that is of dimension m + k on which all bifurcations locally occur.
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Dynamics with symmetry

Dynamics with symmetry

The main content of the course is to examine generic bifurcations of higher
dimensional systems where there is a symmetry in the system.

What this means is that we have a bifurcation problem

ẋ = f (x , λ)

for x ∈ Rn, λ ∈ R and a set of orthogonal transformations G1,G2, · · · (that may
be infinite) such that for all k

f (Gkx , λ) = Gk f (x , λ)

i.e. the nonlinear map f commutes with the matrices Gk .
Clearly if f commutes with G1 and G2 then it commutes with G1G2 and with the
inverses G−1

k ; the set of commuting matrices forms a group Γ.
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Dynamics with symmetry Symmetries: equivariance and invariance

Symmetries: equivariance and invariance

We consider symmetry groups that are compact Lie groups (they have manifold
and group structure) and in general if they act on Rn one can assume that these
are subgroups of an orthogonal group:

O(n) = {M ∈ Rn×n : MTM = Id}

where MT is the transpose of M; det(M) = ±1. Note that:

O(2) is set of rotations about the origin, and reflections fixing the origin. It
has two connected components that for an action on R2 are generated by:

ρθ =

(
cos θ − sin θ
sin θ cos θ

)
and

κ =

(
1 0
0 −1

)
O(3) is the set of rotations about the origin and reflections through the
origin in dimensions 2 and 3.
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Dynamics with symmetry Symmetries: equivariance and invariance

Important subgroup of O(n) is the special orthogonal group:

SO(n) = {M ∈ Rn×n : MTM = Id and det(M) = 1}.

Note that:

SO(2) is set of rotations about the origin in 2d

ρθ =

(
cos θ − sin θ
sin θ cos θ

)
SO(3) is the set of rotations about the origin in 3d
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Dynamics with symmetry Symmetries: equivariance and invariance

Other common groups (NB many alternative notations!)

Zn the cyclic group on n elements; a possible representation on C is

ρ(z) = e i2π/nz

Dn the dihedral group; symmetries of a regular n-gon; a possible
representation on C is

ρ(z) = e i2π/nz

and
κ(z) = z

Sn the group of all permutations on n elements; a possible representation on
Rn is given by the set of permutation matrices.

S1 = SO(2) the group of rotations on a circle.
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Dynamics with symmetry Symmetries: equivariance and invariance

Case study The dihedral group Dn.

This group has two generators: ρ and κ.

We have relations
ρn = 1, κ2 = 1, κρ = ρn−1κ

A list of all 2n elements of Dn is

{1, ρ, ρ2, · · · , ρn−1, κ, κρ, κρ2, · · · , κρn−1}.

First n elements are rotations, last n elements are reflections.

Only subgroups of Dn are
Zm for m|n
Dm for m|n.

Note that there are many copies of Dm for m < n, but only one of Zm.
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Normal subgroups
A special class of subgroups are normal subgroups: subgroup H ⊂ G is normal if

gH = Hg

for all g ∈ G . For Dn example, only Zm are normal subgroups

Conjugacy
Suppose H ⊂ G is a subgroup; then for any g ∈ G the set if

g−1Hg = {g−1hg : h ∈ H}

is a subgroup that is said to be conjugate to H. Clearly if H is normal then it is
only conjugate to itself.
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Dynamics with symmetry Symmetries: equivariance and invariance

Group homomorphism
Suppose G and H are groups and θ : G → H is a surjective map that respects the
group operation, i.e.

θ(g1g2) = θ(g1)θ(g2)

for all g1, g2 ∈ G . Then we say θ is a group homomorphism.

Isomorphic groups
We say groups G and H are isomorphic groups if there is a bijective group
homomorphism from G to H.

Normal subgroups are important because:

The kernel of θ is a normal subgroup K ⊂ G

The group H is isomorphic to G/K
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Dynamics with symmetry Symmetries: equivariance and invariance

One can construct further compact Lie groups by taking direct or semidirect
products of compact Lie groups;

One example is the Viergruppe

Z2 × Z2

generated by two orthogonal reflections. One can see Dn as a semidirect
product of Zn and Z2 (direct when n = 2).

Another example is
Tn

the group of all translations on an n-torus which is the product of n copies of
S1.
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Dynamics with symmetry Symmetries: equivariance and invariance

We say a function F : Rn → Rn is equivariant under the action of the matrix
group Γ ∈ O(n) if

F (gx) = gF (x)

for all g ∈ Γ.

We say a function F : Rn → R is invariant under the action of the matrix
group Γ ∈ O(n) if

F (gx) = F (x)

for all g ∈ Γ.

If a system ẋ = F (x) has a group of symmetries Γ acting on phase space this
means that the function F is equivariant under the action of Γ.
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Dynamics with symmetry Symmetries: equivariance and invariance

Example: Consider the vector field for the van der Pol system on the plane R2;
(ẋ , ṗ) = f (x , p) = (ωp, ω(−x + p(1− x2)):

This is symmetric under the Z2 generated by (x , p) 7→ (−x ,−p); i.e. f is
equivariant under this symmetry.
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Dynamics with symmetry Symmetries: equivariance and invariance

Example: Henon-Heiles (ẋ , ẏ , ṗ, q̇) = (p, q,−x − 2xy ,−y − x2 + y2) projected
onto (p, q):

This is symmetric under the D3 on C2 (ρ is cube root of unity) generated by

(x + iy , p + iq) 7→ (ρ(x + iy), ρ(p + iq)), (x + iy , p + iq) 7→ (x − iy , p − iq))

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 51 / 200



Dynamics with symmetry Symmetries: equivariance and invariance

Example: From before

ẋ = λx − (x + y + z) + x2

ẏ = λy − (x + y + z) + y2

ż = λz − (x + y + z) + z2.

This is symmetric (RHS is equivariant) under the group generated by the
orthogonal matrices

ρ =

 0 1 0
0 0 1
1 0 0

 , κ =

 0 1 0
1 0 0
0 0 1

 .

Exercise: compute the group generated by these matrices and verify that it has 6
elements and is isomorphic to D3.
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Dynamics with symmetry Group representations and actions

Group representations and actions

NB are not interested in groups but rather group representations, i.e. their linear
actions on Rn. Often one will use the same symbol for group elements γ ∈ Γ and
their actions ργ where the context is clear.
However, be aware that a group can act in many different ways; for example Z2

can act on the plane by:

Rotation about the origin by π.

Reflection on an axis through the origin.

For this reason we sometimes label groups as being different Za
2, Zb

2 or Z2(κ1),
Z2(κ2) to distinguish between them.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Isotropy subgroups and fixed point subspaces

A basic property of solutions of equivariant ODEs is that for any solution x(t) one
of the following applies: For every g ∈ Γ either

gx(t) = x(t) for all t (g is a symmetry of the solution), or

gx(t) = y(t) 6= x(t) for all t and y(t) is also a solution of the system.

Note that the set of symmetries of a solution is a subgroup:

Given a point x ∈ Rn we define the isotropy subgroup (or just symmetry) of x to
be

Σx = {g ∈ Γ : gx = x}.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Basic properties of isotropy subgroups:

Not all subgroups of Γ are necessarily isotropy subgroups.

Which subgroups are isotropy subgroups depends on the action of Γ.

Independent of dynamics.

These groups form a lattice given by Σx → Σy if Σx ⊂ Σy .

If x(t) is a trajectory then
Σx(0) = Σx(t)

for all t.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Isotropy is about classifying the symmetries of a point in phase space. An obvious
converse question is to characterise the set of all points with a certain symmetry.
If H ⊂ Γ which acts linearly on Rn then

fix(H) = {x ∈ Rn : gx = x for all g ∈ H}

is the fixed point space of H.
Without loss of generality, we can assume that H is a subgroup of Γ.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Relationship between isotropy subgroups and fixed point subspaces:

Typical points x ∈ fix(H) have

Σx = H

However, some points may have MORE symmetry.

If H ⊂ K isotropy subgroups then

fix(H) ⊃ fix(K )
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Example: Dn acting on C.
Recall action generated by

ρ(z) = e2πi/nz , κ(z) = z

gives isotropy subgroups that are

Origin with full symmetry Σ0 = Dn.

Having no symmetry Σz = {e} = I is a generic property.

Reflection symmetric points e.g. z = x real, Σx = Z2(κ).
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

If we list all the reflection isotropy subgroups for Dn

Z(k)
2 = Z2(κρk)

for k = 1, · · · , n note that

Each of these is clearly a different but isomorphic subgroup of Dn.

Because we can conjugate the generator as follows:

ρn−`κρkρ` = κρk+2`

we have
I If n is odd then all such groups are conjugate.
I If n is even then the groups split into two conjugacy classes.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Recall that isotropy subgroups are partially ordered into a lattice, by containment
of the groups. It is convenient to identify all conjugate groups and consider
isotropy up to conjugacy:

For example, for D5 and D6 we have containment of isotropy as below:

D

I

6

Z Z

I

D

ZZZ ZZ ZZZZ

5

2 2 2 2 2 2 2 2 2 2
(1)
2

(1)(2) (3) (4) (5) (2) (3) (4) (5) (6)
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

We can write the isotropy lattice for general Dn acting on C as

Z Z
2

(1)
2

(2)

I

D

I

D
2n+1 2n

Z
2

for odd and even n respectively.

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 61 / 200



Dynamics with symmetry Isotropy subgroups and fixed point subspaces

The lattice of isotropy subgroups gives a partition of phase space into points of a
given isotropy.
More precisely, the set of all points with isotropy H ⊂ Γ can be written

fix(H) \
⋃
J

fix(J)

where the union is over all isotropy subgroups J that contain H. This is important
for local bifucations in phase space; they will bifurcate with typical bifurcations for
their isotropy.
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Dynamics with symmetry Isotropy subgroups and fixed point subspaces

Recall that
fix(H) = {x ∈ Rn : gx = x for all g ∈ H}.

Lemma

The fixed point spaces fix(H) are invariant subspaces for the dynamics.

There is however no guarantee that the dynamics within a fixed point subspace is
stable to perturbations that break the symmetry! However this result does give us
a ”skeleton” on which to organize the dynamics.
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Dynamics with symmetry Normalizer and subspace symmetries

Normalizer and subspace symmetries

One might think that the isotropy is the only constraint to symmetric bifurcations
within a subspace, but there are additional constraints:
Define the normalizer of a subgroup H ⊂ Γ to be the subgroup

NΓ(H) = {g ∈ Γ : gH = Hg}.

Note that NΓ(H) is a group
H ⊂ NΓ(H) ⊂ Γ

that contains H as a normal subgroup. It is the largest subgroup for which this
holds.
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Dynamics with symmetry Normalizer and subspace symmetries

Lemma

For any H the fixed point subspace fix(H) is invariant under the action of the
normalizer NΓ(H).

To see this, note that for any g ∈ NΓ(H)

g fix(H) = {gx : hx = x for all h ∈ H}
= {x : hg−1x = g−1x for all h ∈ H}
= {x : ghg−1x = x for all h ∈ H}
= {x : hx = x for all h ∈ H}
= fix(H).
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Dynamics with symmetry Normalizer and subspace symmetries

Example:
Consider D2n with reflection subgroup Z2(κ). Then

ND2n(Z2(κ)) = Z2(κ)× Z2(ρn).

To see this, note that
κρn = ρ2n−nκ = ρnκ

Elements in NΓ(H) \ H are sometimes called hidden symmetries because they
must be respected by the subspace but are not in the isotropy of points in H.
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Dynamics with symmetry Irreducible subspaces

Irreducible subspaces

Symmetries give a powerful tool for decomposing and understanding the
eigenvalues of linear maps.

Back to our favourite example:

ẋ = λx − (x + y + z) + x2

ẏ = λy − (x + y + z) + y2

ż = λz − (x + y + z) + z2

has Jacobian at 0 with two equal eigenvalues λ, one λ− 3. Clearly the symmetries
have something to do with the multiple eigenvalues.
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Dynamics with symmetry Irreducible subspaces

Suppose Γ acts orthogonally on Rn. We say V ⊂ Rn is a Γ-invariant subpace if it
is a linear subspace that is mapped to itself by all elements of Γ.

Examples:

For Dn (n ≥ 3) acting on C: the only Γ-invariant subspaces are {0} and C.

For Z2 acting on C by rotation about the origin by π radians, any line
passing through the origin is Γ-invariant.

For S4 acting by permutations of axes in (x1, x2, x3, x4) ∈ R4, there are two
Γ-invariant subspaces; one of these is the diagonal

V = {(x , x , x , x) : x ∈ R}

while the other is the three-dimensional complement to this:

V c = {(x1, x2, x3, x4) : x1 + x2 + x3 + x4 = 0}
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Dynamics with symmetry Irreducible subspaces

Last result is a special case of following lemma: Let 〈u, v〉 represent the inner
product of vectors u, v .

Lemma
Suppose V ⊂ Rn is an Γ-invariant subspace for Γ acting orthogonally. Then V c is
also invariant.

Proof: Suppose that V ⊂ Rn is Γ-invariant and consider

V c = {w ∈ Rn : 〈w , v〉 = 0 for all v ∈ V }.

Then for any w ∈ V c , v ∈ V and g ∈ Γ

〈gw , v〉 = 〈w , g−1v〉

The fact that V is Γ-invariant means that the latter is zero.
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Dynamics with symmetry Irreducible subspaces

We can also combine Γ-invariant subspaces through vector addition:

Lemma
Suppose V ,W ⊂ Rn are Γ-invariant subspaces for Γ acting orthogonally. Then
V + W is also Γ-invariant.

A Γ-irreducible subspace is a Γ-invariant subspace that contains no smaller
nontrivial Γ-invariant subspace.
The above lemma means that any vector space on which Γ acts can be usefully
decomposed into a sum of Γ-irreducible subspaces V1, · · ·Vk .
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Dynamics with symmetry Irreducible subspaces

Note that we can use this result to decompose Rn into a number of irreducible
subspaces:

Rn = V1 ⊕ V2 ⊕ · · · ⊕ Vk

However this is not usually a unique decomposition.

Example:
For Z2 acting on C by rotation by π we can decompose into any pair of
one-dimensional orthogonal subspaces.
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Dynamics with symmetry Irreducible subspaces

For Dn (n ≥ 3) acting on C, C is Γ-irreducible.

For D2 acting on C, C is not Γ-irreducible as it contains Γ-invariant real and
imaginary axes.

For Z2 acting on C by rotation about the origin by π radians, any line
passing through the origin is Γ-irreducible.

For S4 acting on R4, both the diagonal and its orthogonal complement are
Γ-irreducible.
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Dynamics with symmetry Irreducible subspaces

Wednesday
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Dynamics with symmetry Commuting linear maps

Commuting linear maps

We now consider the consequences of Γ-irreducible subspaces for a linear map
that commutes with a group action: We say the linear map A : Rn → Rn

commutes with the action Γ if
gA = Ag

for all g ∈ Γ.

Note that ker(A) is Γ-invariant as Av = 0 implies that

Agv = gAv = 0

so gv is also in ker(A).

If A commutes with Γ then A−1 (if it exists) also commutes with Γ.
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Dynamics with symmetry Commuting linear maps

We now give a classification of irreducible subspaces. Suppose that Γ acts on Rn

such that Rn is irreducible; then we say Γ has an irreducible representation (irrep)
on Rn.

Lemma

(Schur) For Γ acting irreducibly on Rn, the set of linear maps GLΓ ⊂ GL(Rn) that
commute with Γ is isomorphic to one of:

R, C, H
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Dynamics with symmetry Commuting linear maps

Each compact Lie group has a finite number of irreps; in almost all cases these
give commuting matrices equal to R or C.
If GLΓ is isomorphic to R then:

We say Γ acts absolutely irreducibly.

The set of commuting maps is

GLΓ = {c Id : c ∈ R}

i.e. the only commuting matrices are scalar multiples of identity.
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Dynamics with symmetry Commuting linear maps

Consider a steady equivariant bifurcation problem, with f equivariant for Γ:

ẋ = f (x , λ).

Suppose there is a trivial solution f (0, λ) = 0 that has steady bifurcation at
λ = 0. Let A0 = (df )0,0.

Theorem

(G&S, Thm 1.27) For the above conditions, generically we have

The only eigenvalue of A0 on the imaginary axis is 0.

The generalized eigenspace corresponding to 0 is ker(A0).

The group Γ acts absolutely irreducibly on ker(A0).

This result allows us without loss of generality to only consider steady bifurcations
in cases where Γ acts absolutely irreducibly!
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Dynamics with symmetry Equivariant Branching Lemma

Equivariant Branching Lemma
We now arrive at a fundamental result of Vanderbauwhede and Cicogna: Suppose
Γ acts orthogonally and absolutely irreducibly on Rn and we have a steady
bifurcation

ẋ = f (x , λ)

that is Γ-equivariant and has a bifurcation at λ = 0. Then we can write

(df )0,λ = c(λ)I

with c(0) = 0 and generically c ′(0) 6= 0.

Theorem

(Equivariant Branching Lemma) For such a bifurcation problem pick any
isotropy subgroup H ⊆ Γ with

dim(fix(H)) = 1.

Then there is a branch of steady solutions with symmetry H that bifurcates from
the origin at λ = 0.
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Dynamics with symmetry Equivariant Branching Lemma

Proof of the Equivariant Branching Lemma:
Because dim(fix(H)) = 1 we write fix(H) as scalar multiples of a single nonzero
vector v ∈ Rn. In this subspace we have

f (tv , λ) = h(t, λ)v

by invariance of fix(H), where h : R× R→ R. Moreover

f (0, λ) = h(0, λ) = 0

so by Taylor’s theorem we have h(t, λ) = tk(t, λ) with k(0, 0) = c(0) = 0 and
kλ(0, 0) = c ′(0) 6= 0.
The implicit function theorem means there is a unique λ(t) such that λ(0) = 0
and

k(t, λ(t)) = 0

meaning that f (t, λ(t)) = 0. Note that the solutions clearly have isotropy H for
t 6= 0.
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Dynamics with symmetry Equivariant Branching Lemma

Example:
Consider Γ = Z2 on R with action x 7→ −x .

As dim(fix(H)) = 1 for the trivial group H = I we can apply the Equivariant
Branching Lemma to verify that at any bifurcation of 0 in a Z2-symmetric system
there will be at least one branch of symmetry broken equilibrium solutions.

Moreover, considering the group orbit of these solutions there must be a pair of
these.
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Dynamics with symmetry Equivariant Branching Lemma

In detail, consider f (x , λ) such that f (−x , λ) = −f (x , λ) and write as

f (x , λ) = x a(x , λ)

where a(x , λ) = a(−x , λ). Then one can write a(x , λ) = b(x2, λ) if a is smooth.
Generically we have bx2 (0, 0) = B 6= 0 and bλ(0, 0) = L 6= 0 and so we can write
using Taylor expansion that

f (x , λ) = Bx3 + Lxλ+ O(x5, x3λ, λ2)

By a suitable change of coordinates we can make f strongly equivalent to

g(x , λ) = ±x3 ± λx

which is the normal form for a pitchfork bifurcation.
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Dynamics with symmetry Equivariant Branching Lemma

Example:
Now consider Γ = Dm acting on C = R2 as before and suppose we have an
equivariant bifurcation problem

ż = f (z , λ)

that has f (0, λ) = 0 and df (0, 0) has nontrivial kernel, and the eigenvalues pass
from negative to positive half plane as λ increases through zero with nonzero
speed.

Then because Γ acts absolutely irreducibly on C we have df (0, λ) = c(λ)I . The
nonzero speed means c ′(0) > 0.

Taking Z(k)
2 = Z2(κρk) for any k we have dim(fix(Z(k)

2 )) = 1.

Applying the Equivariant Branching Lemma means that there must be a branch of

solutions with symmetry Z(k)
2 .

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 82 / 200



Linear and nonlinear equivariant systems

1 Background

2 Bifurcations of equilibria

3 Dynamics with symmetry
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5 Periodic solutions with symmetry

6 Coupled oscillators, synchrony and symmetry
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Linear and nonlinear equivariant systems

Linear and nonlinear equivariant systems

Summarizing so far, we are interested in understanding bifurcations of steady
solutions y ∈ Rk

ẏ = F (y , λ)

with symmetry Γ.

We can generically reduce to a bifurcation where the kernel is a subspace of
dimension equal to one of the absolutely irreducible representations of Γ.

Using Lyapunov-Schmidt reduction, we can reduce the original system to

ẋ = f (x , λ)

where x ∈ Rn, n ≤ k and f is equivariant for Γ.
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Linear and nonlinear equivariant systems Isotypic decomposition

Isotypic decomposition

We now look at implication of symmetries on the Jacobian of

ẋ = f (x , λ)

where f is equivariant under an orthogonal action of Γ. Clearly

f (gx , λ) = gf (x , λ)

means that for any x0 and g ∈ Σx0 we have

(df )x0,λg = g(df )x0,λ.

In particular
(df )0,λg = g(df )0,λ.

for all g ∈ Γ.
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Linear and nonlinear equivariant systems Isotypic decomposition

Suppose Γ acts on V and on W and recall that we say V is Γ-isomorphic to W ,
V ∼= W if there is a linear isomorphism A : V →W such that

A(gx) = gA(x).

for all g ∈ Γ and x ∈ V .

Recall one can decompose any Rn with a Γ action into a sum

Rn = V1 ⊕ · · · ⊕ Vk

where each Vj is a Γ-irreducible, but this decomposition is not unique.
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Definition

Pick a Γ-irreducible representation V ⊆ Rn and let V̂ denote the sum of all
Γ-irreducible representations that are isomorphic to V .

The subspace V̂ is called the isotypic component of Rn corresponding to the
irreducible rep V .

By definition, isotypic components are unique, although they will be composed of
Γ-irreducibles that are not unique.
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Some results about isotypic components [G& S p38]

Lemma
Let V be an irreducible subspace. Then there exist irreducible subspaces Vj

isomorphic to V such that V̂ = V1 ⊕ · · · ⊕ Vs

[G& S p38] Let V1 = V ⊆ V̂ .

If W ∼= V is contained in V1 we are done, otherwise choose V2 ⊆ V with V2 6⊆ V1.

Irreducibility means that V1 ∩ V2 = 0 meaning V1 + V2 = V1 ⊕ V2. Hence at
some stage we can decompose

V ′ = V1 ⊕ V2 ⊕ · · · ⊕ Vp ⊆ V

with all Vk
∼= V . If every W ⊆ V is contained in V ′ then we are done otherwise

suppose we have a Vp+1
∼= V with Vp+1 6⊆ ∩V ′ = 0.

Irreducibility means that Vp+1 ∩ V ′ = 0 meaning we have a direct sum.
This means the dimension increases at each stage and hence the process must
stop after a finite number of steps.
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Linear and nonlinear equivariant systems Isotypic decomposition

Lemma

Let U,V be irreps of Γ on Rn and suppose U ⊆ V̂ . Then U ∼= V .

Lemma
Choose Γ-irreducible subspaces Vj ⊆ Rn, j = 1, · · · , s so that every irreducible
subspace is isomorphic to exactly one Vj . Then

Rn = V̂1 ⊕ · · · ⊕ V̂s .

[G& S p38] Note that Rn must be the sum of the Vj ; the issue is that the sum is

direct which means we need to show that (V̂1 ⊕ · · · ⊕ V̂j) ∩ V̂j+1 = 0 for
j = 1, · · · , s − 1. If there was an intersection containing something more then let
U be an irreducible in this intersection. We would have U ∼= Vj+1. However

irreducibility of U means it must be contained U ⊆ V̂i , i ≤ j . This would give an
isomorphism between irreducibles in different isotypic components and hence it
would give a contradiction.

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 89 / 200



Linear and nonlinear equivariant systems Isotypic decomposition

A key result is the following: one can use the unique isotypic decomposition

Rn = V̂1 ⊕ · · · ⊕ V̂s

to block diagonalize a Jacobian (or any commuting linear map):

Lemma

If A : Rn → Rn is linear map that commutes with Γ then A(V̂ ) ⊆ V̂ .

To see this pick any Γ-irreducible U ⊆ V̂ and consider A′ : U → Rn, the
restriction. Then ker(A′) is Γ-invariant. Irreducibility means that either
ker(A′) = 0 in which case A(U) ∼= U or ker(A′) = U in which case A′ = 0. In
either case we have A(V̂ ) ⊆ V̂ .
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Linear and nonlinear equivariant systems Isotypic decomposition

Consider a Γ-equivariant bifurcation problem and an arbitrary steady solution
x0 ∈ Rn, λ0 ∈ R.

Theorem
The isotypic decomposition of Rn with respect to Σx0 can be used to
block-diagonalize (df )x0,λ0 .

The larger the isotropy subgroup Σx0 is, the more of a constraint this is.

When an equilibrium x0 does a generic steady bifurcation, it will bifurcate with a
centre eigenspace that is an absolutely irreducible subspace in only one of the
isotypic components of Σx0 .
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Back to our favourite example [GS (1.1)]

ẋ = λx − (x + y + z) + x2

ẏ = λy − (x + y + z) + y2

ż = λz − (x + y + z) + z2

where (x , y , z) ∈ R3 and λ ∈ R is a parameter and (df ) at origin is

J =

 λ− 1 −1 −1
−1 λ− 1 −1
−1 −1 λ− 1


We note that only irreducible subspaces are

V1 = {(x , x , x)}, V2 = {(a, b, c) : a + b + c = 0}

and these are not isomorphic. Hence this is also the isotypic decomposition and J
in a basis for these subspaces will be diagonal.
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Example:
Consider ring of six diffusively coupled cells

ẋk = f (xk) + C (xk+1 + xk−1 − 2xk)

for k = 1, · · · , 6 and (x1, · · · , x6) (subscripts taken mod 6).
This is equivariant under the action of D6 acting by permutation on R6, i.e.
[ρ(x)]k = xk+1 and [κ(x)]k = x6−k . This decomposes into four absolutely
irreducible subspaces

V1 = {(x , x , x , x , x , x)}

V2 = {(x ,−x , x ,−x , x ,−x)}

V3 = {(x , x cosπ/3, x cos 2π/3,−x ,−x cosπ/3,−x cos 2π/3)+
(0, y sinπ/3, y sin 2π/3, 0,−y sinπ/3,−y sin 2π/3)}

V4 = {(x , x cos 2π/3, x cos 4π/3, x , x cos 2π/3, x cos 4π/3)+
+(0, y sin 2π/3, y sin 4π/3, 0, y sin 2π/3, y sin 4π/3)}.
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Note that each irreducible is non-isomorphic, meaning the isotypic decomposition
is just

R6 = V1 ⊕ V2 ⊕ V3 ⊕ V4

where D6 acts on

V1 trivially.

V2 as a homomorphism into Z2.

V3 as a homomorphism into D3.

V4 faithfully (kernel of the action is the identity).

This decomposition is invariant for the Jacobian of any solution with full symmetry
meaning a generic steady bifurcation will occur in precisely one of the Vi .
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Using the previous decomposition we can then use the Equivariant Branching
Lemma to classify the steady instabilities in this system according to the isotypic
component containing the kernel of the Jacobian:
V1: There will be branches bifurcating in the full-symmetry subspace

fix(D6) = R(1, 1, 1, 1, 1, 1)

V2: There will be branches bifurcating in

fix(D3) = R(1,−1, 1,−1, 1,−1)

V3 and V4: There will be branches bifurcating tangent to all fixed point spaces
with dim fix = 1 in these representations.
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For example if V4 goes unstable then there will be a branch in

fix(Z2(κ)) = {(a, b, c , c , b, a)}

that is tangent to the vector in V4

(−1, 0, 1, 1, 0,−1).

Nonlinear terms will typically ”bend” the centre manifold into generic points in
fix(Z2(κ)), i.e. typical points on the branch will be

(a, b, c , c , b, a).
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Example:
Suppose that Z2 acts orthogonally on Rn for some n. Then we can write the
generator as

κ(x) = Mx

where M2 = I . Since Z2 has only two irreducible representations both of
dimension 1: one where there is trivial action and one where the action is x 7→ −x .

Hence we can decompose into two isotypic components

Rn = V1 ⊕ V2.

with dim(V1) = k , dim(V2) = n − k .

Relative to this basis for this, we can write any linear A that commutes with this
group in block diagonal form.
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Linearization and group orbits

Given a point x ∈ Rn and Γ acting on Rn the group orbit of x under Γ is the set

Γx = {gx : g ∈ Γ}.

From previous results we have that if x an equilibrium then all points in its group
orbit are equilibria.

More generally, for any dynamically invariant set A ⊆ Rn, its group orbit

ΓA = {gA : g ∈ Γ}

will be composed of invariant sets.

Note that if A is compact and Γ a compact Lie group then ΓA also compact.
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We introduce a concept that is especially useful for problems with continuous
symmetry.

Suppose x is a point such that Γx is dynamically invariant. Then we say all points
on Γx are relative equilibria.

We do not require that x is an equilibrium, though it may be.

For a continuous group of dimension dim(Γ) > 0, the group orbit Γx of a point
will be a manifold of dimension at most dim(Γ).
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If Γ is finite we have a dichotomy that there is a δ > 0 such that for every g ∈ Γ
either

gx = x or |gx − x | > δ.

This means that x is isolated from the rest of its group orbit.

Hence to understand the constraints of symmetry on linearization near an
equilibrium x for a finite group we need only consider the action of Σx .
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If Γ is a continuous group there will be other constraints on the linearization,
notably [G&S p39]:

Theorem

A Jacobian (df )x0,λ0 will have dim Γ− dim Σx0 eigenvalues equal to zero, and the
corresponding eigenvectors correspond to infinitesimal motion on the group orbit
of x0.
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To see this, consider a parametrized path g(s)

g : R→ Γ

with g(s) = I and a point x0 that we assume to be a relative equilibrium.

This means that f (x0, λ0) must be tangent to the group orbit and so
f (g(s)x0, λ0) is also tangent to the group orbit for any fixed s.

We calculate

0 =
d

ds
f (g(s)x0, λ0)|s=0 = (df )x0,λ0 (g ′(0)x0)

and so any infinitesimal perturbation v = g ′(0) on the group orbit will lead to a
zero eigenvalue.

Note that dim(Σx0 ) of these will give vx0 = 0 so only dim(Γ)− dim(Σx0 ) will give
non-zero eigenvectors.
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The following result [G&S p173] characterizes typical motion of relative equilibria:

Theorem
Suppose that Γx is a relative equilibrium with isotropy Σx . Then generically the
dynamics of x is quasiperiodicity with k independent frequencies, where k is the
dimension of the largest torus group in N(Σx)/Σx .

This motion on a relative equilibrium is sometimes called drift on the group orbit.
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Example:
Consider O(2) acting on R2. Group orbits are circles around the origin and these
are generically fixed points.

Consider SO(2) acting on R2. Group orbits are also circles around the origin but
generically there is a periodic motion on the group orbit.
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Nonlinear commuting maps

We now wish to understand the structure of polynomial invariants and
equivariants.

A polynomial F : Rn → Rn is equivariant for Γ ∈ O(n) if

F (gx) = gF (x)

for all g ∈ Γ. A polynomial F : Rn → R is invariant for Γ ∈ O(n) if

F (gx) = F (x)

for all g ∈ Γ.

Let P(Γ) denote the set of Γ-invariant polynomials for a particular action. This
forms a commutative ring under addition and multiplication.
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We say the ring of invariant functions P(Γ) has a Hilbert basis {u1(x), · · · , uk(x)}
if every polynomial h ∈ P can be written as a polynomial function of u1, · · · uk ,
i.e. if there is a p such that

h(x) = p(u1(x), · · · , uk(x)).

Theorem

(Hilbert-Weyl) Let Γ be a compact Lie group acting on Rn. Then there exists a
finite Hilbert basis for P(Γ).
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Hilbert-Weyl can be generalized in a very powerful way to hold not only for
invariant polynomials but for invariant smooth functions. Let {u1, · · · , uk} be a
Hilbert basis for P(Γ).

Theorem

(Schwartz) Let f : Rn → R be any C∞ invariant function. Then there is a C∞

function h such that
f (x) = h(u1(x), · · · , uk(x)).
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Similarly, for equivariants one can find

X1(x), · · ·X`(x)

that allow one to write any polynomial equivariant function in the form

p1(x)X1(x) + · · · p`(x)X`(x)

where the pj are Γ-invariant polynomial functions and the Xj are a basis of
polynomial equivariants.
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The main result that is used for decomposition of equivariant vector fields is [G&S
p42]. We pick a group Γ acting on some Rn.

Theorem

(Poénaru) Let u(x) = (u1(x), · · · , uk(x)) be a Hilbert basis for the Γ-invariant
functions and X1(x), · · · ,X`(x) be a basis for the module of Γ-equivariants
functions. Then any C∞ Γ-equivariant f (x) can be written as

f (x) = p1(u(x))X1(x) + · · ·+ p`(u(x))X`(x).
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Example: Dn

We now consider a case study of computing the invariants and equivariants for
nonlinear maps that commute with the action of Dn on C = R2.

Consider a polynomial invariant I : C→ R; then we can write

I (z) =
∑

cp,qz
pzq

with the sum over some set of non-zero complex coefficients cp,q.

Invariance means we require
I (z) = I (z)

I (ze2πi/n) = I (z)

while real-valuedness means that

I (z) = I (z).
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For invariance we need

I (z) =
∑

cp,qz
pzq =

∑
cp,qz

qzp

I (z) =
∑

cp,qz
pzq =

∑
cp,qz

qzp

and
I (z) =

∑
cp,qz

pzq =
∑

cp,qz
pzqe2πi(p−q)/n

for all z .
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This means that
cp,q = cq,p

and
cp,q = cp,q

Using these properties we can conclude that

I (z) =
∑
q≤p

cp,q(zz)q(zp−q + zp−q).
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Using the other invariance we have cp,q = 0 unless

p = q (modn)

so we can write the invariant function as

I (z) = p1(|z |2)(zn + zn) + p2(|z |2)(z2n + z2n) + · · ·

with p1, p2 real-valued arbitrary polynomials. Noting that

zn(k+1) + zn(k+1) = (znk + znk)(zn + zn)− znkzn − znkzn

= (znk + znk)(zn + zn)− |z |2n(zn(k−1) + zn(k−1))

inductively we can write all terms as functions of

|z |2, zn + zn

Hence (Lemma 2.25 of [GS]) a Hilbert basis for the invariants is

{|z |2, zn + zn}.
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For the equivariants of the action of Dn on C, suppose that E : C→ C

E (z) =
∑

dq,pz
pzq

is equivariant. Then ∑
dp,qz

pzq =
∑

dp,qz
pzq

which says that dp,q is real, and

e2πi/n
∑

dp,qz
pzq =

∑
dp,qz

pzqe2πi(p−q)/n

for all z .
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The second condition says that∑
dp,qz

pzq =
∑

dp,qz
pzqe2πi(p−q−1)/n

and so
p − q = 1 (modn).

This means that a minimal set of equivariant generators is:

{z , zn−1}.
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Summarizing, we have [G&S Theorem 2.24]:

Theorem
One can write any smooth equivariant function for Dn acting on C as

f (z) = p1(|z |2, zn + zn)z + p2(|z |2, zn + zn)zn−1

for some smooth real functions p1, p2.
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The previous calculations can be used to find the general normal form for Dn

vector fields near z = 0.

For example, consider D4 and let u = |z |2, v = z4 + z4. Then

ż = p1(u, v)z + p2(u, v)z3.

Expanding up to and including fifth order terms we have

ż = (a1 + a2|z |2 + a3(z4 + z4) + a4|z |4)z + (a5 + a6|z |2)z3
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This can be written

ż = a1z + a2|z |3z + a5z
3 + a3(z5 + zz4) + a4|z |4z + a6|z |2z3.

to fifth order.

Compare to the general order Taylor expansion:

g(z) = g0 + g1z + g2z + g3z
2 + g4zz + g5z

2 + g6z
3 + g7z

2z + g8zz
2 + g9z

3 + · · ·

and note that:

Many of the terms from a general expansion are missing

Some of the terms that are present are related.

Generically we can assume that all coefficients are non-zero.
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We now use this to investigate bifurcation of the normal form with a parameter λ.
In this case the Taylor expansion is

ż = a1(λ)z + a2(λ)|z |2z + a5z
3 + a3(λ)(z5 + zz4)

+a4(λ)|z |4z + a6(λ)|z |2z3

and at bifurcation we can assume (dλa1)(0) = 0.

To cubic order in (λ, z) we have

ż = f (z , λ) = b1λz + b2|z |2z + b3z
3

with b1, b2, b3 real valued constants that are generically non-zero.
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One can solve this setting z = re iθ to give

r = 0

or
b1λ+ r2(b2 + b3e

−4iθ) = 0.

Solving the latter we have θk = kπ/4, k = 0, · · · , 7 and so

r2 = − b1λ

b2 + (−1)kb3
.

This corresponds to pitchfork bifurcations occuring in each of the subspaces
fix(Z2) for D4 as long as we have non-degeneracy conditions

b1 6= 0, b2 6= 0, b3 6= 0, b2 6= b3, b2 6= −b3.

Hence the only bifurcating branches for this problem will generically be those
predicted by the Equivariant Branching Lemma.
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On the other hand, for D5 the normal form to third order is

ż = f (z , λ) = b1λz + b2|z |2z

with b1, b2 real valued constants that are generically non-zero.

In this case, there is a ring of equilibria for one sign of λ. This is not robust to
perturbations implying that the normal form, if finitely determined, is only
determined at order four or higher.

In fact Dn bifurcation for n ≥ 4 will generically be determined at order n − 1.
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Similar calculations are available in the literature for many group actions.

The basic recipe for analysing equivariant steady bifurcations (including those of
higher dimension) is:

Reduce to a centre eigenspace.

Compute the most general normal form the commutes with the action on the
centre eigenspace, including any parameters.

Analyse this for generic choice of normal form coefficients.

Check that all branches and stabilities are finitely determined.

For any specific system, one must then determine the actual normal form
coefficients.
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Periodic solutions with symmetry

Thus far we have limited ourselves to steady bifurcation problems. These are
essentially reducible to algebraic problems.

Periodic orbits give a number of new challenges of interest to symmetric systems
notably they are properly time-dependent solutions. Moreover they can appear at
generic bifurcation (Hopf bifurcation) from a trivial solution.
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Symmetries of periodic orbits

Suppose for x ∈ Rn

ẋ = f (x)

and f is equivariant under the action of the orthogonal group Γ.

Suppose P(t) is a periodic orbit, i.e. P is non-constant but P(t + T ) = P(t) for
all t ∈ R. We define the instantaneous symmetry of the periodic orbit to be the
isotropy subgroup

K = ΣP(0) = {g ∈ Γ : gP(0) = P(0)}

Recall that isotropy is preserved along orbits and so

K = ΣP(s)

for all s ∈ R.
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We define the spatio-temporal symmetry of the periodic orbit to be

H = {g ∈ Γ : gP(0) = P(sT ) for some s}.

Note that K ⊆ H and periodicity of P means that we can write any symmetry in
H as (g , s) for s ∈ [0, 1); there is a group homomorphism

θ : H → S1.

One can show that
K ⊆ H ⊆ Γ

and K = ker(θ) is a normal subgroup of H, with

H/K ∼= S ⊆ S1.

Note that H can be interpreted as the group of symmetries that fix the periodic
orbit as a set.

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 126 / 200



Periodic solutions with symmetry Symmetries of periodic orbits

Recall, if P(t) is a T -periodic orbit of an equivariant vector field then we define
the instantaneous symmetry of the periodic orbit to be the isotropy subgroup

K = ΣP(0) = {g ∈ Γ : gP(0) = P(0)}

and we define the spatio-temporal symmetry of the periodic orbit to be

H = {g ∈ Γ : gP(0) = P(sT ) for some s}.
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Typically, only a small number of subgroups of Γ are isotropy subgroups; this
depends on the action of Γ. On the other hand, more possible subgroups are
available as spatio-temporal symmetries of periodic orbits. A nice characterization
of possible spatio-temporal symmetries is [G&S, Theorem 3.4]:

Theorem
Suppose Γ is a finite group acting on Rn. Then there is a Γ-equivariant vector
field on Rn with a periodic orbit of spatial symmetry K and spatio-temporal
symmetry H if and only if:

(a) H/K is cyclic

(b) K is an isotropy subgroup

(c) dim fix(K ) ≥ 2.

(d) H fixes a connected component of

fix(K ) \
⋃
g 6∈K

fix(g).
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Hopf bifurcation with symmetry

One can adapt methods for steady bifurcations, including the Lyapunov-Schmidt
method, to calculate branching at equivariant Hopf bifurcations.

In these cases (see [G&S Chapter 4]) one can show the the linearization of an
equivariant bifurcation problem will generically have an action of Γ that is called
Γ-simple:

We say a vector space W is Γ-simple if either

W = V ⊕ V where V is an absolutely irreducible representation of Γ, or

Γ acts irreducibly but not absolutely irreducibly on W .

The main result at the linear level is [G&S Theorem 4.5]: the action on the centre
eigenspace is Γ-simple.
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Note that as a consequence of [G&S Lemma 4.7], if there is a Γ-simple action on
Rn and ẋ = f (x) is an equivariant ODE with (df )0 having eigenvalues ±iω, then
these eigenvalues will have multiplicity m = n/2 and there is a linear invertible
mapping S : Rn → Rncommuting with Γ such that

(df )0 = ωSJS−1

and

J =

[
0 −Im
Im 0

]
where Im is the m ×m identity matrix.

As a consequence one can change coordinates such that (df )0 is linearly in normal
form, i.e. so that (df )0 = J. Lemma 4.7 shows that one may choose this change
of coordinates depending on a parameter λ in a sensible way.
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The linearization J induces an action of S1 on Rn by

ρθx = exp(−iθJ)x

and one can preserve this action in all terms up to order n of any Taylor series
near an equivariant Hopf bifurcation.

This is just a special case [Theorem 4.16] of the more result for general
Poincaré-Birkhoff normal forms [G&S Theorem 4.14] that states that one can to
any finite order remove any terms that do not commute with the group
exp(s(df )0).

This gives a normal form that commutes with Γ× S1 symmetry. The remainder
terms are Γ-equivariant, but generically not S1 equivariant.
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In some cases one finds that symmetries force Hopf bifurcation to be the only
generic symmetry-breaking bifurcation.

For example, consider Z3 acting on R3 by permutation; then the linearization of a
fully symmetric state will be  λ α β

β λ α
α β λ


which has eigenvalues

λ+ α + β, λ− α + β

2
± i

2
β
√

3.

and for β 6= 0 this includes a complex pair. Hence the only generic symmetry
breaking bifurcation will be a Hopf bifurcation!
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Note that for Z3 acting on R3 by permutation we have isotypic decomposition

R3 = V1 ⊕ V2

where V1 is the trivial action in 1D and V2 is the action by rotation in 2D.

x

x

x

1

2

3

V

V

1

2

However steady bifurcations can occur for this example at codimension two.
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At the nonlinear level, one can obtain an analogous result to the Equivariant
Branching Lemma for steady bifurcations, namely the Equivariant Hopf Theorem:
Consider

ẋ = f (x , λ)

Theorem

Suppose Γ acts Γ-simply, orthogonally and nontrivially on R2m and that

(a) f : R2m+1 → R2m is equivariant, f (0, λ) = 0 and (df )0,λ has eigenvalues
σ(λ)± iρ(λ) of multiplicity m.

(b) σ(0) = 0, ρ(0) = 1, σ′(0) 6= 0.

(c) Σ ⊂ Γ× S1 has dim fix(Σ) = 2.

Then there is a unique branch of periodic solutions with period close to 2π
branching from the origin, with spatio-temporal symmetry Σ.
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The proof of the Equivariant Hopf Theorem proceeds by working within the two
dimensional subspace z ∈ C; the centre eigenspace within the invariant fixed point
subspace. Using either Lyapunov-Schmidt or Poincaré-Birkhoff normal form we
can reduce to a map with an extra S1 symmetry:

f (z) = p(|z |2, λ)z + q(|z |2, λ)iz

and then showing that this will generically have a branch of periodic solutions
when p passes through zero.

More generally, Lyapunov-Schmidt reduction can be used to look for an orbit close
to 2π-periodic that is fixed by the dynamics; i.e. a 2π-periodic loop u(s) such that

0 = (1 + τ)u̇ − f (u, λ)

where we view the right hand side as a map from C 1
2π to C 0

2π i.e. between Banach
spaces of 2π-periodic functions in Rn. This can be used to reduce to a problem on
a centre eigenspace.
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Poincare-Birkhoff normal form

Now returning to the normal form, suppose that we have for y ∈ Rn

ẏ = Ly + f2(y) + f3(y) + · · ·+ fk(y) + · · ·

where each of the terms fk is homogeneous of order k . Let Pk denote the set of all
kth-order homogeneous polynomials from Rn to Rn that are Γ-equivariant. Define

adL(Pk)(y) = (LPk)(y)− (dPk)yLy

and note that this is a linear operator on Pk . There is an inner product on Pk

such that one can orthogonally decompose

Pk = Gk ⊕ im adL .
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The Poincaré-Birkhoff Normal Form Theorem [G&S Thm 4.14] states then:

Theorem
For each k there is a polynomial near-identity change of coordinates y 7→ x such
that

ẋ = Lx + g2(x) + g3(x) + · · ·+ gk(x) + rk+1(x)

with gj ∈ Gj and rk+1 is of degree at least k + 1.
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Example: Hopf bifurcation with O(2) symmetry

As an example we consider a Γ-simple action of O(2) on C2 given by

(z1, z2) 7→ (z2, z1), (z1, z2) 7→ (e−iφz1, e
iφz2)

and then S1 acts by
(z1, z2) 7→ (e iθz1, e

iθz2).

One can compute the general Poincaré-Birkhoff normal form that commutes with
this action as:

ż1 = (p + iq)z1 + (r + is)(|z2|2 − |z1|2)z1

ż2 = (p + iq)z2 − (r + is)(|z2|2 − |z1|2)z2

where p, q, r , s are smooth functions of

|z2|2 + |z1|2, (|z2|2 − |z1|2)2.
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This normal form can be reduced to phase-amplitude equations: let x = |z1| and
y = |z2| and observe that above implies that

ẋ = (p + r(y2 − x2))x

ẏ = (p − r(y2 − x2))y

where p, r are functions of N = x2 + y2 and ∆ = (y2 − x2)2.

If there is a bifurcation and we wish to find periodic solutions, this means we need
to find equilibria of the above. One can show:

There will be branches of RW solutions (x , 0) and (0, x) if pλ(0) 6= 0 and
pN(0) + r(0) 6= 0.

There will be a branch of SW solutions (x , x) if pλ(0) 6= 0 and pN(0) 6= 0.

No other branches will bifurcate generically.
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In fact solutions (x , 0) and (0, x) can be interpreted as rotating waves (RW), and
(x , x) as standing waves (SW). one can obtain [G&S Thm 4.19]:

Theorem

At generic O(2) Hopf bifurcation the only branches are rotating and standing
waves. Moreover, one can only obtain stable periodic solutions as branches if both
branches are supercritical, and in this case only one of the branches can be stable.
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pN(0)

r(0)

RW
SW

RW
SW

pN(0)+r(0)=0
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So far we have considered the constraints that symmetries pose on bifurcation
patterns through analysis of normal forms at generic one-parameter bifurcations.

We now briefly consider:

Higher codimension bifurcations

Invariant subspaces and robust heteroclinics

Other bifurcations with symmetry
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Codimension two bifurcations

Suppose we have
ẋ = f (x , λ, µ)

where x ∈ Rn and λ, µ ∈ R and f is equivariant under the action of some
compact Lie group Γ and suppose that f (0, λ, µ) = 0.

If we consider λ as a ”preferred” or ”distinguished” parameter, for generic choices
of µ we will have a generic bifurcation with one parameter, but for exceptional
cases we may have a further degeneracy. For the sake of argument suppose that
there is a degenerate steady bifurcation where λ = µ = 0, i.e.

dim ker(df )(0,0,0) ≥ 1

with some degeneracy.
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Then one of the following occurs:

There is an additional second linear instability; this means that the action of
Γ on W = ker(df )(0,0,0) is no longer absolutely irreducible. In such cases
there are several generic possibilities:

I W = V1 ⊕ V2 for two absolutely irreducible representations in the same
isotypic component of Rn.

I W = V1 ⊕V2 for two absolutely irreducible representations in different isotypic
components of Rn (this is often called a mode interaction).

I W = V is a non-absolutely irreducible subspaces in Rn (in which case (λ, µ)
generically has no steady bifurcations for nearby µ 6= 0!

There is a nonlinear degeneracy of the normal form but W = V is an
absolutely irreducible representations of Γ.
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This division into linear and nonlinear degeneracies informs the analysis of such
higher codimension bifurcations; for a linear degeneracy one typically arrives at a
normal form of higher dimension, but with generic choices of nonlinear terms.

On the other hand nonlinear degeneracies can be dealt with by including higher
order terms to ensure finitely determinacy.

Further generic codimension two points involve, for example, Hopf and Steady
bifurcation lines coinciding.
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Example: linear degeneracy Consider

ẋ = (λ+ ax2 + by2)x

ẏ = (µ+ cx2 + dy2)y

which is the third order normal form for a Z2 × Z2 equivariant bifurcation problem
on (x , y) ∈ R2.

Note that there are bifurcations at λ = 0 and µ = 0. The dimension of the kernel
of the Jacobian is one at all bifurcations except at the codimension two point
λ = µ = 0.

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 146 / 200



Periodic solutions with symmetry Codimension two bifurcations

We can represent the bifurcations near λ = µ = 0

Equilibria are at

0 = (λ+ ax2 + by2)x

0 = (µ+ cx2 + dy2)y

meaning that x = 0 or ax2 + by2 = −λ,
and y = 0 or cx2 + dy2 = −µ.
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In consequence there are branches:

Trivial solution (x , y) = (0, 0)

Primary solutions

(x , 0) where x2 = −λ
a

for −λ/a ≥ 0 and

(0, y) where y2 = −µ
d
.

for −µ/d ≥ 0

Mixed-mode solutions
(x , y)

where ax2 + by2 = −λ, cx2 + dy2 = −µ, such that x2 and y2 both positive.
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Example:

0 = (λ+ x2 +
1

2
y2)x

0 = (µ− 1

2
x2 + y2)y

has pure mode solutions (x , 0) in the region

λ < 0,

pure mode solutions (0, y) in the region

µ < 0

and mixed mode solutions (x , y) in region

λ− 1

2
µ < 0 and

1

2
λ+ µ < 0.

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 149 / 200



Periodic solutions with symmetry Codimension two bifurcations

Example: nonlinear degeneracy Consider the bifurcation problem on x ∈ R with
Z2 symmetry:

ẋ = λx + µx3 + bx5 + cx7 + · · ·

Note that if λ = 0 there is a steady bifurcation that is a supercritical pitchfork for
µ < 0 and a subcritical pitchfork for µ > 0; there is a change of criticality at
µ = 0.

b<0

m<0 m>0

l

x x

l

For µ = 0 there is a codimension two point where branching is determined by the
fifth order terms.
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Other equivariant bifurcations

Chaotic atractors also have bifurcations that can be classified according to
symmetry breaking.

Suppose that A ⊂ Rm is a chaotic attractor for some Γ-equivariant ODE ẋ = f (x).

As with periodic orbits one can distinguish the instantaneous symmetry of A

K = {g ∈ Γ : gx = x for all x ∈ A}

and the average symmetry of A

H = {g ∈ Γ : gA = A}.

In fact some average symmetries cannot be achieved by periodic orbits but can be
achieved by chaotic attractors!
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Some bifurcations get much simpler in a symmetric context.

For instance bifurcation of periodic and quasiperiodic attractors if they arise as of
relative equilibria.

Various generalisations, e.g. to non-compact groups are considered in [G&S].
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Invariant subspaces and bifurcation to heteroclinic cycles

The presence of invariant subspaces fix(H) for H ⊂ Γ subgroups forces a strong
structure not only onto local dynamics and bifurcations, but also on global
dynamics. This is partly because they are not constrained to be normally
hyperbolic.

Suppose N ⊂ Rn is a closed flow-invariant manifold. We say N is normally
hyperbolic if the expansion/contraction for the flow withing the manifold is
dominated by the expansion/contraction normal to the manifold (see texts for
precise statements).

Standard results imply that normally hyperbolic invariant manifolds persist under
perturbations to the flow, i.e. they are robust. Conversely, invariant manifolds
that are not normally hyperbolic do not persist under perturbations of the flow.
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By contrast all fix(H) are trivially robust to all perturbations that preserve the
symmetry. This can have consequences that invariant manifolds may behave in an
unusual manner for the dynamics.

A stranger consequence is that one can bifurcate straight from a trivial solution,
via a generic steady bifurcations with certain symmetries to robust heteroclinic
attractors or even to chaotic attractors (”instant chaos”).

Only fairly weak assumptions are necessary on the group action to get such
attractors appearing as robust attractors even if they do not bifurcate directly
from the origin.
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Example: bifurcation to a heteroclinic attractor
Consider the third order normal form for generic bifurcation with (Z2)3 ×2 Z3 for
(x , y , z) ∈ R3:

ẋ = (λ+ a(x2 + y2 + z2) + by2 + cz2)x

ẏ = (λ+ a(x2 + y2 + z2) + bz2 + cx2)y

ż = (λ+ a(x2 + y2 + z2) + bx2 + cy2)z

For an open set of a, b, c there is a bifurcation from stable (0, 0, 0) for λ < 0 to
an attracting heteroclinic cycle for λ > 0. No other solutions are stable for λ > 0.
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We consider the case where λ > 0 a < 0 and b, c close to zero. Note that by a
rescaling of time and state we can set λ = 1 and a = −1:

ẋ = (1− (x2 + y2 + z2) + by2 + cz2)x

ẏ = (1− (x2 + y2 + z2) + bz2 + cx2)y

ż = (1− (x2 + y2 + z2) + bx2 + cy2)z

for some scaled b, c . For any |b|, |c | � 1 this has equilibria at (x , y , z) = (0, 0, 0)
and

(±1, 0, 0), (0,±1, 0), (0, 0,±1).
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We compute the Jacobian at (x , y , z) to be

1− 3x2 + (b − 1)y2 2(b − 1)yx 2(c − 1)zx
+(c − 1)z2

2(c − 1)xy 1− 3y2 + (b − 1)z2 2(b − 1)yz
+(c − 1)x2

2(b − 1)xz 2(c − 1)yz 1− 3z2 + (b − 1)x2

+(c − 1)y2
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Hence for (0, 0, 0) we have

J =

 1 0 0
0 1 0
0 0 1


(unstable: source) while for X± = (±1, 0, 0) we have −2 0 0

0 c 0
0 0 b


etc. We choose b < 0 and c > 0 then X± etc are all saddle points with one
dimensional unstable manifolds. However the unstable manifold of X+ is
contained within the invariant subspace (x , 0, y) and can show within this
subspace that the unstable manifold limits to a sink at Z± = (0, 0,±1).
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As a consequence there is a network of heteroclinic connections for an open set of
a, b, c and this may be an attractor (need b < |c |).

The attractor is robust to all perturbations from higher order terms; the
bifurcation is 3-determined.

Such heteroclinic cycles cannot occur robustly for generic dissipative systems.

The network can be robustly asymptotically stable.

Trajectories approaching the network do not behave ergodically.

Similar phenomena occur in a wide range of examples.
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Coupled oscillators, synchrony and symmetry

We discuss some examples of application of dynamical systems with symmetry to
coupled oscillators, in particular those arising in neural systems modelling. Such
models attempt to explain how a coupled network of simply oscillatory systems
can give complex emergent behaviour in the network.
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Oscillators and isochrons
Q: What is an oscillator?
A: A dynamical system that produces periodic behaviour.

For example, in Rd :

ẋ1 = f1(x1, · · · , xd), ẋd = fd(x1, · · · , xd)

with a periodic orbit
P(t) = (p1(t), · · · , pd(t))

with period T > 0, i.e.
P(t + T ) = P(t)

such that T is smallest possible choice of periodicity of all components.
We consider stable limit cycle oscillators of ODEs for any initial condition x that
starts close enough to P(t) in all components we have

|x(t)− P(t + φ)| → 0

as t →∞ for some φ.
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Consider the Fitzhugh-Nagumo system

V̇ = F (V )−W + I

Ẇ = ε(V − γW )

with F (V ) = V (1− V )(V − A) and parameters

A = .25, ε = .05, γ = 1, I = .25
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Phase plane of typical solution with flow added.
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Code for xppaut [Ermentrout]:
http://www.math.pitt.edu/˜bard/xpp/xpp.html

dv/dt = f(v)-w+s(t)+I 0
dw/dt = eps*(v-gamma*w)
f(v)=v*(1-v)*(v-a)
s(t)=al*sin(omega*t)
param a=.25,eps=.05,gamma=1,I 0=.25
param al=0,omega=2
@ total=100,dt=.2,xhi=100
done
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Different types of periodic oscillations:

Weakly nonlinear oscillations, e.g. Near-onset small amplitude oscillations,
Hopf bifurcation.

Relaxation oscillations, e.g. Fitzhugh Nagumo, Hodgkin-Huxley models

Hybrid/switched system oscillations, e.g. leaky integrate-and-fire models

In all cases can be modelled as a phase oscillator

θ̇ = ω

for θ modulo 2π when transients have decayed, where frequency

ω =
2π

T

related to the period T . Off the limit cycle, however, other dynamics are at work.
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Suppose X ∈ Rd with
Ẋ = F (X )

has a stable limit cycle P(t), period T . We define the set of points with eventual
phase φ to be

Iφ = {Y ∈ Rd : |Y (t)− P(t + φ)| → ∞}

The sets Iφ are called the isochrons of the limit cycle. For a stable limit cycle:

They are manifolds of dimension d − 1.

They foliate a neighbourhood of the cycle.

They can be used to understand the behaviour of forced or coupled
oscillators.

K. Josic, E. Brown, J. Moehlis:
http://www.scholarpedia.org/article/Isochron

E Izhikevich:
http://www.izhikevich.com
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Isocrons for a Hodgkin-Huxley neuron
(http://www.scholarpedia.org/article/Isochron)
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Phase response curves

The phase response curve is a way of measuring the response to sudden change in
one variable; if we consider a vector perturbation Z ∈ Rd then

PRC (θ) = {φ : Iφ contains P(θ) + Z}.

Equivalently, starting at P(θ) we impulsively change to

X (0) = P(θ) + Z

and allow the system to evolve forwards in time. We choose PRC so that

|X (t)− P(t + θ + PRC (θ))| → 0

as t →∞.
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The phase response curve models the change in phase exactly, even for large
perturbations if a long enough settling time between perturbations is allowed.

Can apply to continuous perturbations using various equivalent approaches to
obtain the infinitesimal phase response curve.

Suppose that
Ẋ = F (X ) + εG (t)

where G (t) represents forcing and F has an attracting limit cycle P(t).

Assume that unperturbed oscillator P(t) has period 2π.
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Kuramoto’s approach: We define phase Θ(X ) of all points X ∈ Rd by inverting
the isochron map Iφ:

φ = Θ(X ) ⇔ X ∈ Iφ.

Note that for the system with ε = 0 we have

d

dt
[Θ(X (t))] = ∇Θ · dX

dt
= ∇Θ.F (X )

But φ̇ = 1 so
∇Θ · F (X ) = 1.

Hence for the case ε 6= 0 we have

φ̇ = 1 + ε∇Θ · G (t).
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Adjoint approach (Malkin): Note that if the unperturbed oscillators is linearly
stable, then the perturbed equation is to first order in ε given by

θ̇ = 1 + εQ(θ) · G (t)

where Q(t) is the solution to the adjoint variational equation

Q̇ = −{DF (P(t))}TQ, such that Q(0) · F (P(0)) = 1.

Note that

d

dt
(Q · F ) = Q̇ · F + Q · Ḟ

= −(DF )TQ · F + Q · (DF )F = 0.

Hence the solutions of the AVE satisfy

Q(t) · F (P(t)) = 1

for all t.
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Coupled phase dynamics

Consider two symmetrically coupled oscillators

Ẋ1 = F (X1) + εG1(X2,X1)

Ẋ2 = F (X2) + εG2(X1,X2)

for ε small (weak coupling) and Z2 symmetry.
In terms of phases we have approximately

θ̇1 = 1 + εQ(θ1) · G1(P(θ2),P(θ1))

θ̇2 = 1 + εQ(θ2) · G2(P(θ1),P(θ2)).
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Because the phase difference evolves on a slower timescale that the phases, we get
an interaction function that expresses the effect of X2 on X1 that can be written

H1(θ) =
1

T

∫ T

0

Q(t)G1(X0(t + θ),X0(t)) dt

where Q is the solution of the adjoint variational equation.
Method of averaging allows us to write previous equation (to O(ε2)) as

θ̇1 = 1 + εH1(θ2 − θ1)

θ̇2 = 1 + εH2(θ1 − θ2).
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For two identically coupled oscillators we set φ = θ2 − θ1 and obtain

φ̇ = −ε(H1(φ)− H2(−φ)) = εg(φ)

Similarly, starting at a set of N weakly coupled identical phase oscillators
θ1, · · · , θN , we can reduce to a set of N − 1 phase differences

φi = θi − θN

and can obtain
φ̇i = εgi (φ1, · · · , φN−1)

with evolution on a slow timescale.
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Example of g(θ) for various coupling functions. (d) are for gap junction-coupled
Morris-Lecar Neurons (from T.-W. Ko and G.B. Ermentrout, PRE 78:016203,
2008)
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Synchrony and coupling

Now consider N coupled oscillators reduced to phases:

θ̇i = ω + G (θ1 − θi , · · · , θN − θi ).

Simple model with “additive coupling” is

θ̇i = ω +
∑
j 6=i

Kijg(θi − θj)

with Kij coupling strengths; Kij = K for global (mean field) coupling.
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For global coupling, note that the system

θ̇i = ω +
∑
j 6=i

g(θi − θj)

has full permutation symmetry SN × T.

This symmetry causes a number of interesting effects such as

Synchrony breaking bifurcations have N − 1-dimensional centre manifolds.

Typically N branches appear at bifurcation.

Bifurcation directly to large amplitude periodic orbits.

For N ≥ 4 bifurcation directly to robust heteroclinic cycles.

See [A, Coombes and Nicks, J Math. Neurosci 2016] for a review.
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Some consequences of SN × T symmetry:

Theorem (A & Swift 1992)

Every isotropy subgroup of a general SN × T-equivariant vector field on TN is of
the form a rotating block where

(Sk1 × · · · × Sk`)m ×s Zm

where N = m(k1 + · · ·+ k`), and ×s denotes the semi-direct product.
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Example Find all isotropy subgroups of S6 × T acting on T6 and organize them
into a lattice by containment.
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Example Sketch the isotropy subspaces for phase differences of the action of
S3 × T on T3.
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Simple choices for phase response curve g(φ):

Kuramoto
g(φ) = − sin(φ)

Kuramoto-Sakaguchi
g(φ) = − sin(φ− α)

Hansel-Mato-Meunier

g(φ) = − sin(φ− α) + r sin(2φ)

General two harmonic

g(φ) = − sin(φ− α) + r sin(2φ− β)

https://www.frontiersin.org/articles/10.3389/fams.2016.00007/full

More general: Daido et al:

g(φ) =
∑
n

(an cos nφ+ bn sin nφ)
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Cluster switching/ slow oscillations

Can find open regions in parameter space (for all N ≥ 4) where the only attractors
consist of robust heteroclinic networks made up of:

Periodic orbits with nontrivial clustering.

Unstable manifolds of these periodic orbits.

Winnerless competition between cluster states (Afraimovich, Huerta, Laurent,
Nowotny, Rabinovich et al)

Slow oscillations/switching dynamics (Hansel et al, Kori and Kuramoto)
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Invariant subspaces where

Trajectory of system

there is phase clustering

periodic orbits
Saddle
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Example of transient clustering dynamics:
N = 5, α = 1.8, r = 0.2, β = −2

g(φ) = − sin(φ+ α) + r sin(2φ+ β)

0 50 100 150 200 250 300 350

1

2

3

4

5

t

[G. Orosz, J. Wordsworth, S. Townley & A. Reliable switching between cluster
states for globally coupled phase oscillators, SIAM J Applied Dynamical Systems
6:728-758 (2007)]
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Stable clustering

θ̇i = ω +
1

N

N∑
j=1

g(θi − θj) , (3)

Consider M clusters where 1 ≤ M ≤ N. Corresponding M-cluster partition
A = {A1, . . . ,AM} of {1, . . . ,N} such that

{1, . . . ,N} =
M⋃
p=1

Ap , (4)

where Ap are pairwise disjoint sets (Ap ∩ Aq = ∅ if p 6= q). NB if ap = |Ap| then

M∑
p=1

ap = N . (5)
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For partition A associate a subspace

TN
A = {θ ∈ TN : θi = θj ⇔ there is a p such that i , j ⊂ Ap} , (6)

and we say a given θ ∈ TN
A realizes the partition A.

Denote phase of the p-th cluster by ψp := θi = θj = θk = . . . for
{i , j , k , . . .} ⊂ Ap we obtain

ψ̇p = ω +
1

N

M∑
q=1

aq g(ψp − ψq) (7)

for p = 1, . . . ,M.
We say θ ∈ TN

A realizes the partition A as a periodic orbit if

ψp = Ω t + φp (8)

for p = 1, . . . ,M and all φp (mod 2π) are different.
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Substituting (8) into (7) gives

Ω = ω +
1

N

M∑
q=1

aq g(φp − φq) (9)

for p = 1, . . . ,M. By subtracting the last equation (p = M) from each of the
preceding equations (p = 1, . . . ,M − 1) we obtain

0 =
M∑
q=1

aq (g(φp − φq)− g(φM − φq)) (10)

for p = 1, . . . ,M − 1. Can determine M − 1 phases out of φp, p = 1, . . . ,M while
one phase can be chosen arbitrarily, and (9) determines the frequency Ω.
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Can compute linear stability in a similar way to above and show [Orosz, A. 2009]:

Theorem

There is a coupling function g for the system (3) such that for any N and any
given M-cluster partition A of {1, . . . ,N} there is a linearly stable periodic orbit
realizing that partition (and all permutations of it). Moreover, all nearby g in the
C 2 norm have a stable periodic orbit with the same partition.
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Final Comments

In summary, there are practical and numerical ways of reducing and understanding
the dynamics of coupled limit cycle oscillators of general type to coupled phase
oscillators. This can be useful because:

Reduces dimension of phase space

Gives framework for understanding effects of coupling (e.g. pattern
formation) on oscillators

For identical oscillators, can reduce limit cycle problems to equilibrium
problems

Phase dynamics can be highly nontrivial even for quite simple coupling

Can extend to cases of frequency synchrony breaking and “chimera states”.
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Tools include:

Numerical simulation/solution continuation.

Isochrons/phase response curves/phase transition curves

Averaging method

Use of adjoint variational equation

Analysis of coupled ODEs on a torus

Studying the synchronization properties

Symmetric dynamics and bifurcation theory

Coupling structures in coupled systems

Review: P. Ashwin, S. Coombes, R. Nicks. Mathematical Frameworks for
Oscillatory Network Dynamics in Neuroscience, J. Math. Neurosci. 2016:
https://mathematical-neuroscience.springeropen.com/articles/10.1186/s13408-015-0033-6

Peter Ashwin (University of Exeter) Network dynamics and bifurcations January 22–26 2018 198 / 200



Coupled oscillators, synchrony and symmetry Final Comments

The method of reduction to phase oscillators works well for sufficiently weak
coupling, but needs to be treated with respect for:

Strong coupling

Weakly attracting/neutrally stable limit cycles

Chaotic “oscillators”

Non-smooth systems

Be careful when averaging in multi-frequency systems
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Thank you for listening to the end and good luck for the future.

Please let me know if you find any interesting dynamics, oscillations or
bifurcations!

P.Ashwin@exeter.ac.uk
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