
Spin-orbit resonances

Very common situation
Resonance between the orbital motion of a body and its
rotation spin : 87-88 days - 58 days
Examples : Moon, Galilean satellites, Titan, ... and
Mercury (3/2)
Full system : orbital and rotational motion
Known orbit (function of time) in the rotational dynamics
Eccentricity role is essential for 3/2, not for 1/1 resonances
Mercury blocked in a 3/2 Spin-Orbit resonance : 58 days /
88 days
Mercury was the Forgotten Planet (Mariner 10)



The context

Space missions : Messenger & BepiColombo

Complete model of rotation for MORE
Academic and practical study
Rigid body - Fluid core - Multi-layers core
Long or Short periodic terms ?
Resonances : classical and unexpected
Suitable reference frames
Namur : D’Hoedt, Dufey, Lhotka, Noyelles,
Sansottera (from 04 to 16)
King : Peale (+ Yseboodt + Margot)
(65, 72, 74, 76, 97, 01, 05, 06, 07, 08, 09)



Capture of Mercury into the 3/2 Spin-Orbit resonance

The capture is assumed
Only known case of capture in a 3/2 : why not a 1/1 ?
Connected to the long time evolution of the Solar System
orbital and rotational motions
A. Correia and J. Laskar : 2004, Nature 429, 884
Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics

Probability of capture in the 3/2 : 52%
A. Correia and J. Laskar : 2009, Icarus 201, 1
Mercury’s capture into the 3/2 spin-orbit resonance including the effect of coreÐmantle friction

cascade of captures - final capture in spin-orbit for 98%
5/2 : 22%, 2/1 : 32% and 3/2 : 26%
increased to 55% if e < 0.025, to 73% if e < 0.005 in the
past.



The first hypotheses

Mercury is considered as a rigid body
Two coefficients of the gravitational potential are known
C2

0 and C2
2 with uncertainty of 50%

Mercury’s orbit is keplerian
Hamiltonian formalism to describe the rotational dynamics
Three dimensional problem : 3 Euler’s angles with their
proper frequencies
Four reference frames - origin = center of mass of Mercury

Inertial one (ecliptic at some epoch J2000)
Orbital frame (orbit of the Sun around Mercury)
Spin frame (rotational angular momentum)
Figure or body frame (principal axes of inertia)
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(h,K , g) between the
ecliptic frame and the spin
frame
(l , J,�) between the spin
frame and the body frame
~G angular momentum in
the direction of Z2

Conventions
Inertial : 0
Orbital : 1
Spin : 2
Body : 3

K ecliptic obliquity



The three dimensional Hamiltonian

H = Trotational + Vgravitational

Andoyer - Deprit set of canonical variables and momenta

Variables qi Momenta pi

l L = G cos J (J ' 0)
g G = norm of the angular momentum ~G
h H = G cos K (K the ecliptic obliquity )

ao the semi-major axis
io the inclination
eo the eccentricity
lo the mean anomaly, linear function of time
vo the true anomaly
!o the argument of the pericenter
ho the longitude of the ascending node

q̇i =
@H

@pi

ṗi = �
@H

@qi



Non singular variables and kinetic energy

l and h : slow variables
g spin : fast variable (58 days)

�1 = l + g + h ⇤1 = G

�2 = �l ⇤2 = G � L = G (1 � cos J)
�3 = �h ⇤3 = G � H = G (1 � cos K )

T =
(⇤1 � ⇤2)
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I1, I2 and I3 : moments of inertia of the planet I1 < I2 < I3.

T = T (⇤1,�2,⇤2).

Remark :
J ' 0 ! Spin ⌘ Body ! ⇤2 ' 0 ! T '

⇤2
1

2I3



The potential VG
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The rotations
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Orbit frame ! Inertial frame ! Spin frame ! Body frame.

Keplerian orbit : VG = VG(�1,⇤1,�2,⇤2,�3,⇤3, lo(t))

H = T (⇤1,�2,⇤2,⇤3) + VG(�1,⇤1,�2,⇤2,�3,⇤3, lo) + noLo



The resonant variables

The spin-orbit resonance : � = 2�1�3lo

2 slow variable

�1 = � � ho � go ⇤1
�3 = �3 + ho ⇤3
lo fast variable ⇤o = Lo + 3

2 ⇤1
�2 = �2 ⇤2

H = H(�1,⇤1,�2,⇤2,�3,⇤3, lo,⇤0)

Truncature in eo and io

Average over the fast variable lo : ⇤̄o is a constant
First order averaging : H̄ = H̄(�̄1, ⇤̄1, �̄2, ⇤̄2, �̄3, ⇤̄3)

Equilibria :
@H

@�̄i

= 0 =
@H

@⇤̄i



The Cassini’s equilibrium

Description of the equilibrium corresponding to Mercury
�̄1 = 0 : spin-orbit resonance
�̄3 = 0 : node commensurability (h and ho)
⇤̄?

1 and ⇤̄?
3 : K ? = io

�̄2 = 0 and ⇤2 = 0 or J = 0 : Spin axis ⌘ axis of inertia
Small librations around the exact equilibrium

Quadratic Taylor’s development of H in cartesian
coordinates
Apparition of crossed terms (1 and 3) : untangling
transformation
Rescaling of the variables and action-angle variables

H = ⌫1 J1 + ⌫2 J2 + ⌫3 J3 + . . .

3 proper (free) frequencies :
⌫1 (free) longitude of the libration
⌫2 (free) wobble
⌫3 (free) precession



Comments

Model introduced by Peale (1973) :
no wobble
inertial frame = orbital frame + precession of the orbital
node

Introduction of a CONSTANT precession of the node (over
some period of time) : K ? = io + ✏,
1 Arcmin  ✏  2 Arcmin.
Introduction of a CONSTANT precession of the pericenter :
less interesting
D’Hoedt & Lemaitre (2004) : data taken Anderson et al
(1987)

3 proper periods :
T1 = 15.8573 years,
T2 = 583.989 years
T3 = 1065.08 years



Libration of Mercury about the exact 3/2 resonance

Is Mercury at the exact equilibrium or not ? Existence of
proper (free) libration motions
Toy model : harmonic oscillator + dissipation

ẍ�h
2
ẋ + ⌫2

x = 0 ! x(t) = A(t) cos(⌫ 0t + �)

Peale (2005) : dissipation over periods of 105 to 106 years
3 dissipation mechanisms

Tidal dissipation
Viscous core-mantle coupling (dominant)
Recent excitation mechanism : impact of a small body
Collisions could not explain a significant free libration

Mercury is very, very close to the Cassini’s equilibrium



Margot’s results : radar data

Radar data compared with two models over 4.5 years
A : at the exact Cassini’s state (period of 88 days)
B : with a free libration (period of 88 days and 12 years)

Margot et al (2007), Science



Very long periods

The (mean) orbit of Mercury is not keplerian
Introduction of a secular motion of io, eo, ho and !o

Periods of 105 years
Idea of Peale (1976, 2006) : adiabaticity on the (�1, ⇤1)
Slow evolution with time for the stable equilibrium
(captured)
Averaging process on proper angles (on periods of 103

years)
D’Hoedt & Lemaitre (2008)

Generalization to two degrees of freedom
Adiabatic model : (�1, ⇤1) and (�3, ⇤3)
Confirmation of the behavior for the (2-degree of freedom)
equilibrium for long periods of time



Adiabaticity of (�1, ⇤1)



Adiabaticity of (�3, ⇤3)



Laplace plane

Cassini’s equilibrium : function of io and of the precession
rate
Calculated with respect to a specific plane : Laplace plane
Ideal Laplace plane = the plane about which the orbital
inclination remains constant throughout a precessional
cycle.
Instantaneous Laplace plane : the plane about which
variations in inclination are minimized.
Dependence on the interval of time, the chosen approach,
the set of ephemeris or synthetic theory
Dependence on the goal (academic or practical)
D’Hoedt et al (2009), ASR



Positions of the Laplace planes
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Unicity

4 papers
Peale (2006) : numerical fit to ephemerides
Yseboodt & Margot (2006) : secular theory + numerical fit
Rambaux & Bois (2004) : principles but no values
D’Hoedt et al (2009) : Henrard’s simple formulation

Y&M : a unique instantaneous Laplace plane
20000 years, in intervals of 2000 years (JPL DE408)
Namur : an infinity of instantaneous Laplace planes, best

one

interval of 6000 years (JPL DE406)

Comparable results :
angle Y&M Namur P
S 3.3� 2.7�

j 5.33� 7.5� 8.6�



Liquid core

Mercury is not a rigid body
Old question treated by Peale

1976, Nature Does Mercury have a molten core ?

1981, Icarus Measurement accuracies required for the determination of a Mercurian liquid

core

1997, LPI Characterizing the core of Mercury

Existence of a molten or fluid core : influence on I3

I3 has to be C or Cm : simple introduction of two layers
Peale et al (2007 and 2009) : viscous core

Solidarity core-mantle only for very slow motions
Slow motions or long periodic terms : I3 = C (rigid planet)
Fast motions or short periodic terms : I3 = Cm (only the
mantle)



Simple two layers model

H = H(�1,⇤1,�2,⇤2,�3,⇤3, lo,⇤0)

First order averaging over the fast variable lo :
H̄ = H̄(�̄1, ⇤̄1,�,�, �̄3, ⇤̄3) - No wobble

2 proper periods : T1 = 15.8573 years,
T3 = 1065.08 years

Third or fourth order averaging over the fast variable lo

results of Sandrine’s PhD : too small changes
Margot + Peale : new set of data with a fluid core
hypothesis
Cm = 0.579 C, C = 0.34, J2 = 6 10�5, C22 = 10�5

2 proper periods : T1 = 12.055 years,
T3 = 615.69 years



Lie triangle

H(�1,⇤1,�2,⇤2,�3,⇤3, lo,⇤0) ! H̄(�̄1, ⇤̄1, �̄2, ⇤̄2, �̄3, ⇤̄3)

Canonical transformation, order by order, Lie triangle
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Short periodic terms

Inverse algorithm : Deprit (1969) and Henrard (1970)
Introduction of cartesian coordinates :
(�1,⇤1) ! (x1, y1) and (�3,⇤3) ! (x3, y3)

f (x1, x3, y1, y3) =

f (x̄1, x̄3, ȳ1, ȳ3) +
orderX

i=1

✏i

i!
(f (x1, x3, y1, y3);Wi)(x̄1,x̄3,ȳ1,ȳ3)

Any function f (non averaged variables) can be expressed
as a function of the averaged solution through an
expansion using the generators Wi

In particular : f = xi or f = yi .
(x̄1, x̄3, ȳ1, ȳ3) evaluated at the equilibrium of the averaged
model
Peale’s results about the proximity of Mercury to the
Cassini’s state
Keplerian case : varo = var?o + Fvar(lo)



Non Keplerian case

Short periodic planetary perturbations : VSOP, IMCCE
(courtesy of J.L. Simon)
Orbital elements of Mercury : ao, eo, io, go, ho, lo

Validity of more than 100 years
Introduction of the mean longitudes of all the planets

varo = var?o + Fvar(lo, lV , lE , lMa, lJ , lS, lU , lN),

H = �
µ2

2L2
o

+ nJ⇤J + nV⇤V + nS⇤S + nE⇤E + $̇oGo + ⌦̇oHo

+
⇤2

1
2Cm

+VG(lo,$o,⌦o, eo, ao, io,�1,�3, Lo,⇤1,⇤3, lV , lE , lJ , lS)



Results of Peale et al (2007) on �1

Numerical integration - One degree of freedom : (�1,⇤1)
Complete two layers model : core - mantle dissociated
Using JPL DE408 (20 000 years) for planetary
contributions
Damping factor : tidal effect - Elimination of proper (free)
frequencies in the final spectrum



Short periodic terms on �1

Comparison between Namur and Peale et al (2007) :
C22 = 1.5 10�5 (period of �1 ' 9 years )

angle combination Period (years) Amplitude (rad) Relative
amplitude

NAMUR
Mercury (lo ) 0.24084 0.197285 10�3 1
Jupiter (�J ) 11.86200 0.643367 10�4 0.326110
Mercury (2lo ) 0.12042 0.219964 10�4 0.111496
Venus (2lo � 5�V ) 5.66608 0.210918 10�4 0.106910
Jupiter (2�J ) 5.93100 0.811086 10�5 0.041112
Saturn (2�S ) 14.7285 0.597894 10�5 0.030306
Earth (lo � 4�E ) 6.57966 0.347122 10�5 0.017595
PEALE
Mercury (�M � $ = lo ) 0.24084 1 1
Venus (2lo � 5�V + 3$) 5.66608 0.1427 0.1289
Mercury (2(�M � $) = 2lo ) 0.12042 0.1028 0.1115
Jupiter (�J ) 11.86200 not listed (' 0.04) 0.0571
Jupiter (2�J � 2$) 5.93100 0.3483 0.0509
Saturn (2�S ) 14.7285 not listed (' 0.02) 0.0138
Earth (lo � 4�E ) 6.57966 not listed (' 0.01) 0.0239

Dufey et al (2008), CM&DA



Explanations

Comparisons with SONYR (Rambaux & Bois) :
encouraging results
Especially using a forced analytical orbital motion

Angle combination Period Amplitude Relative Relative amplitude
(years) (rad) amplitude
SONYR SONYR SONYR NAMUR

Mercury (lo ) 0.24084 0.201135 10�3 1 1
Jupiter (�J ) 11.86200 0.633015 10�4 0.314721 0.326110

Mercury (2lo ) 0.12042 0.195272 10�4 0.097085 0.111496
Venus (2lo � 5�V ) 5.66608 0.211462 10�4 0.105134 0.106910

Jupiter (2�J ) 5.93100 0.813315 10�5 0.040436 0.041112
Saturn (2�S ) 14.7285 0.596094 10�5 0.029365 0.030306

Earth (lo � 4�E ) 6.57966 0.348243 10�5 0.017314 0.017595

Differences with SONYR (full N-Body integration) : OK
Main differences with Peale et al (2007) : no planetary
perturbations on Mercury’s mean anomaly
lo = no t + l0o and not lo = lo(lV , lE , lJ , lS)

New results of Peale et al (2009): in agreement with Namur



Short periodic terms on �1

Coefficients : Cm

C
= 0.579 and C22 = 1.0 10�5

T�1 = 12.055 years and T�3 = 615.69 years
Comparisons with numerical integration and frequency analysis

N lo lV lE lJ lS $o Period Amplitude Ratio Phase
at J2000

1 - - - 1 - -1 11.862 y 43.712 as 1.2193 164.46�
2 1 - - - - - 87.970 d 35.849 as 1.0000 84.80�
3 2 - - - - - 43.985 d 3.754 as 0.1047 79.59�
4 2 -5 - - - 5 5.664 y 3.597 as 0.1003 166.85�
5 - - - - 2 -2 14.729 y 1.568 as 0.0437 -85.96�
6 - - - 2 - -2 5.931 y 1.379 as 0.0385 125.91�
7 1 - -4 - - 4 6.575 y 0.578 as 0.0161 -25.57�
8 3 - - - - - 29.323 d 0.386 as 0.0108 -105.62�
9 1 - - -2 - 2 91.692 d 0.201 as 0.0056 -58.69�

10 1 - - 2 - -2 84.537 d 0.191 as 0.0053 48.28�
11 - - - 2 -5 3 883.28 y 0.103 as 0.0029 -153.53�
12 2 - - -1 - 1 44.436 d 0.069 as 0.0019 -25.51�
13 2 - - 1 - -1 43.541 d 0.067 as 0.0019 4.71�
14 1 - - -1 - 1 89.793 d 0.044 as 0.0012 -17.94�
15 1 - - 1 - -1 86.217 d 0.043 as 0.0012 7.17�
16 2 - - -2 - 2 44.897 d 0.041 as 0.0011 -63.89�
17 2 - - 2 - -2 43.110 d 0.040 as 0.0011 43.07�

Dufey et al (2009), CM&DA - calculation of the phase



Short periodic terms on �3

Coefficients : Cm

C
= 0.579 and C22 = 1.0 10�5

T�1 = 12.055 years and T�3 = 615.69 years
Comparisons with numerical integration and frequency analysis

N lo lV lE lJ lS $o ⌦o Period Amplitude Ratio Phase
1 - - - - - 2 -2 63315 y 3.74 as 26.128 -56.84

�

2 1 - - - - - - 87.970 d 143.06 mas 1.0000 84.80�
3 2 - - - - 2 -2 43.985 d 67.31 mas 0.4705 -67.25�
4 - - - 2 -5 3 - 883.280 y 65.44 mas 0.4574 15.01�
5 3 - - - - 2 -2 29.323 d 45.02 mas 0.3147 107.55�
6 4 - - - - 2 -2 21.992 d 14.71 mas 0.1028 -77.66�
7 - - - 2 - -2 - 5.931 y 14.64 mas 0.1023 -117.10�
8 2 - - - - - - 43.985 d 12.91 mas 0.0902 -100.41�
9 1 - - - - 2 -2 87.970 d 8.20 mas 0.0573 -62.04�

11 - - - 1 - -1 - 11.862 y 7.83 mas 0.0547 -148.63�
10 2 -5 - - - 5 - 5.664 y 6.00 mas 0.0420 100.24�
12 - - - - 2 -2 - 14.729 y 4.43 mas 0.0309 -157.27�
13 1 - -4 - - 4 - 6.575 y 1.93 mas 0.0135 -66.00�

Precessional motion : a long-period perturbation
Limit of the model : core - mantle dissociated

Dufey et al (2009), CM&DA - calculation of the phase



Resonances : 1) with Jupiter

Main short periodic term
lo with a period of 88 days
As a function of C22 and of Cm

C
:

8 years < T�1 < 16 years
Present best value : T�1 = 12.055 years
Other short periodic terms :
lJ with a period of 11.86 years
Critical value of C22 : exact resonance
Potential commensurability mentioned
Peale et al (2009), Icarus
Complete study of this resonance
Potential (small) influence : BepiColombo



Resonances : 2) with the Great Inequality

Cm

C
= 0.579 and C22 = 1.0 10�5 : T�3 = 615.69 years

As a function of C22 and of Cm

C
:

400 years < T�3 < 1100 years
A possible value of C22 and for Cm

C
= 0.829 :

T�3 = 883.28 years
Exact 1:1 resonance with the Great Inequality :
�25 = 2lJ � 5lS

Complete study of this resonance, resonant angle
↵ =  3 � �25

Period of 108 years
Variations of K ' 0.32�

No influence on BepiColombo



Wobble : �2
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�2 canonical variable associated
to ⇤2 = ⇤3 (1 � cos J)

Angle between Spin and Body
axes J ' 0
Associated to a period of 589
years
Uncoupled motion (first orders)
Pole motion on Mercury’s surface
: a few meters
Short periodic terms are
negligible
No resonance detected
Undetectable for BepiColombo



Conclusions

Effective non-linear stability of the equilibrium (Sansottera,
Lhotka, Lemaitre, MNRS 2015) : several physical
parameters, Birkhoff normal form, Nekhoroshev stability
theory
Long and short periodic contributions analyzed
Academic and practical views could be different and
complementary
Very promising features with core frequency
Better use of the phases of the short periodic contributions
Waiting for data : Messenger + radar
Juice mission : Galilean satellites
Many open mathematical problems



Gravitational resonances

Resonance between the orbital motion of a satellite and
the rotation of the primary
Primary is not anymore a point mass
Mainly for artificial satellites
Short lifetimes, permanent control and re-orbitation, real
time orbits
Space debris act as natural bodies: abandoned, for long
time, no control, perturbed
Explosion or collision : mass, spin, not necessary known
More "interesting" objects for CM

Anne LEMAITRE Resonances



Number of debris
1/11/12 17:15chart-historical-debris-growth.jpg 572 × 369 pixels

Page 1 sur 1http://www.scientificamerican.com/media/multimedia/0212-spacejunk/img/chart-historical-debris-growth.jpg
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Number of debris

Anne LEMAITRE Resonances



Chinese explosion : Fengyun 2007

New York Times 
Explosion of the chinese satellite 
Fengyun FY-1C  on January 11, 2007  

Anne LEMAITRE Resonances



Recent collision : Cosmos - Iridium 2009

Collision

• Iridium 33 (active American 

telecommunication satellite)

• Cosmos 2251 (non active 

military Russian satellite)

• Date : February 10, 2009

• Speed : 11.7 km/second

Anne LEMAITRE Resonances



What are Orbital Space Debris?

Definition
Orbital debris refers to material on orbit resulting from space
missions but no longer serving any function.

Launch vehicle upper stages
Abandoned satellites
Lens caps
Momentum flywheels
Core of nuclear reactors
Objects breakup
Paint flakes
Solid-fuel fragments

Anne LEMAITRE Resonances



Current debris population

There are about 18 000 objects larger than 10 cm
TLE Catalogue
About 350 000 objects larger than 1 cm
More than 3 ⇥ 108 objects larger than 1 mm

Catalogued objects (NASA)
6 % Operational spacecrafts
24% Non-operational spacecrafts
17% Upper stages of rockets
13% Mission related debris
40% Debris mostly generated by explosions & collisions

Anne LEMAITRE Resonances



Computer generated images

Figure: LEO image Figure: GEO image



LEO-MEO-GEO

LEO MEO GEO

400 km 20 000 km 36 000 km

ISS GPS METEOSAT

RES 1:1RES 1:2

resonance between the 
orbital period of the satellite 
and the rotation of the Earth

= gravitational resonance  

EARTH ENVIRONMENT 

Anne LEMAITRE Resonances



Rossi et al (2005)

Number of debris
3 PEAKS IN DENSITY 
MOST POPULAR ORBITS 

Rossi et al., Proceedings of the IAU Colloquium, No. 197, 2005 and MASTER 2009
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Figure 1. Density of objects as a function of altitude for three di�erent size thresholds:
objects with diameter larger than 1 mm, 1 cm and 10 cm.

space. This representation clearly highlights some features in the distribution of objects in
space with the spacecraft (and the resulting debris) being clearly grouped in “families”
or constellations, according to their di�erent purposes and to the di�erent launching
bases: e.g., we can distinguish the US GPS (Global Positioning System) satellites and
their Russian analogues GLONASS (a ' 26, 000 km, i ' 55� and i ' 63�, respectively),
the Russian communication satellites in Molniya–type orbits (a ' 26, 000 km, e ' 0.7,
i ' 63�), the geosynchronous satellites (a ' 42, 000 km, e ' 0, 15� � i � 0�), the
satellites in Sun-synchronous orbits (i ' 100�) , the satellites in polar orbits (i ' 90�),
some families of Russian COSMOS satellites between i ' 60� and i ' 80�, the LEO
satellites launched from the Kennedy Space Center (at i ' 27�) and the families of
objects in geosynchronous transfer orbits (GTO) (mostly upper stages) launched from
Kourou (ESA Ariane rockets, i ' 7�), from the Kennedy Space Center (i ' 27�) and
from Baikonour (i ' 48�).

To get data on the smaller objects not included in the catalog, di�erent sensors, or the
same sensors but operated in a di�erent way, are needed. Radar campaigns have been
carried out to detect objects of 1 cm and below in LEO by putting the radar in a “beam
park” mode, where the radar stares in a fixed direction and the debris randomly passing
through the field of view are detected. This allows a counting of the number of objects,
i.e., the determination of the objects flux and density, but only a rough determination of
their orbits.

These radar campaigns gave an explanation of the prominent peak of density of objects
around 900 km of altitude (see Fig. 1). It is mainly due to the presence in this altitude
band of a large number of sodium-potassium liquid metal droplets leaked outside a num-
ber of Russian ocean surveillance satellites (RORSAT) (Foster et al. 2003). This liquid
was used as a coolant for the nuclear reactor which generated the power on board and
was dispersed in space after the core of the reactor was ejected from the spacecraft in
order to prevent possible risks due to its reentry into the Earth atmosphere. About 70 000
drops with diameter between 0.5 mm and about 5.5 cm have been estimated to orbit the
observed region.

Figure 1.3 • Caption from Rossi (2005). Density of objects as a function of
altitude for objects diameter larger than 1 mm, 1 cm and 10 cm.

1.2 High area-to-mass ratio

Focus will be put in this thesis on the long term evolution of debris located in the
geostationary ring. At these altitudes, objects smaller than 1 m are extremely
difficult to detect. Lots of works from the Astronomical Institute of the Uni-
versity of Bern (AIUB) have already been dedicated to this task. In particular,
debris characterized by extremely high area-to-mass ratio (AMR) are presented
in Schildknecht et al. (2010). The AMR of 274 uncorrelated objects from the
AIUB/ESA catalogue is shown in Fig. 1.4. Surprisingly a significant population
of objects with AMR larger than 1 m2/kg and as high as 86.7 m2/kg can be
found. As a point of comparison, the AMR of a GPS (Block II) satellite is only
of 0.02 m2/kg. Such high AMR values correspond to particular debris types like
e.g. pieces of multi-layer insulation material or solar panels. Moreover, it turns
out that the majority of the objects with AMR larger than 1 m2/kg have a mean
motion near 1 revolution per day and eccentricities ranging from 0.05 to 0.5. Such
objects correspond to the red cloud dispersed around one revolution per day mean
motion in Fig. 1.5.

LEO

MEO GEO
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Problematic situation

Situation and solutions 

Size (r) Characteristics Protection Number

r < 0.01 cm
cumulative effects

surface erosion not necessary 

0.01 < r < 1 cm 
significant damages 

perforation
armor plating 170 000 000 objects

1 < r < 10 cm important damages no solution 670 000 objects

r > 10 cm 
catastrophic events

catalogued (TLE)
manoeuvres < 20 000 objects
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Analogy with natural bodies

Natural and artificial objects 

Natural Artificial Debris

existing orbits chosen orbits existing orbits

no control control no control 

long times short times long times 

model and 
observations 

huge numerical 
integrations 

model and 
observations 

stability precision stability 

Anne LEMAITRE Resonances



Natural cleaning

Long term dynamics 
ESTIMATION OF LIFETIMES 

FOR USUAL OBJECTS

300 km 1 month

400 km 1 year

500 km 10 years

700 km 50 years

900 km 1 century

1200 km 1 millennium
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The forces for MEO and GEO8| Long term dynamics of space debris orbits

dimensional ecliptic spherical coordinates (kx,bx) of the
Sun instead of the before-mentioned rectangular coordi-
nates (Xx,Zx,Zx), the averaged potential expansion
defined in Eq. (5) up to degree 1 in Legendre polynomials
takes the form:

hHrpik ¼ " 3

2
CrP r

A
m

a#
r#

! "2

ae C1 cos g1 þ C2 cos g2½

þC3 cos g3 " C3 cos g4 þ C4 cos g5 þ C5 cos g6&:
ð9Þ

This potential formulation is consistent with the Gauss-
ian equations described in Chao (2005), where the coeffi-
cients Ci are defined by (we take the opportunity here to
correct misprints that occurred in them):

C1 ¼ cos2 i
2 cos

2 !
2 ;

C2 ¼ sin2 i
2 sin

2 !
2 ;

C3 ¼ 1
2 sin i sin !;

C4 ¼ sin2 i
2 cos

2 !
2 ;

C5 ¼ cos2 i
2 sin

2 !
2 ;

ð10Þ

and the angular values gi are given by:

g1 ¼ k# " -;

g2 ¼ k# " -þ 2X;

g3 ¼ k# " -þ X;

g4 ¼ k# þ -þ X;

g5 ¼ k# þ -" 2X;

g6 ¼ k# þ -:

ð11Þ

In Eqs. (10) and (11), as in Section 3, ! still denotes the
obliquity of the Earth with respect to the ecliptic and -
denotes the longitude of perigee. The potential formulation
defined in Eq. (9) is computed assuming that the relative
motion of the Sun around the Earth is circular because
of the small eccentricity of the orbit of the Earth. The
angular motion of the Sun on its orbit is therefore assumed
to be constant, that is nx = 2p/[year]. Moreover, we
assume that the Sun lies on the mean ecliptic, that is
bx = 0. This potential formulation may then be expressed
using the non-singular and non-dimensional Poincaré’s
variables of Eq. (7). After isolating the dominant terms
(first order approximation in eccentricity and in inclination
Oðe; sin i=2Þ), the averaged potential takes the form:

hHrpik ¼ "Z1 ðC#Y 1 " S#X 1Þ 1" 1

4
ðX 2

2 þ Y 2
2Þ

! "#

þ 1

4
ðY 2

2 " X 2
2ÞðC#Y 1 þ S#X 1Þ

$ %

"2X 2Y 2ðS#Y 1 " C#X 1Þg

" Z2 ðC#Y 1 þ S#X 1Þ 1" 1

4
ðX 2

2 þ Y 2
2Þ

! "#

þ 1

4
ðY 2

2 " X 2
2ÞðC#Y 1 " S#X 1Þ

$ %

þ2X 2Y 2ðS#Y 1 þ C#X 1Þg
" Z3 S#ðY 1X 2 " X 1Y 2Þf gþOðe2; sin2 i=2Þ;

ð12Þ

where
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Fig. 1. We show the order of magnitude of the main perturbations acting on space debris orbits (solid curves). Additionally, we plot the order of
magnitude of the direct radiation pressure perturbation for various area-to-mass ratios, namely A/m = 0.01, 1, 10, 40 m2/kg (dashed curves).

S. Valk et al. / Advances in Space Research 41 (2008) 1077–1090 1081

Figure 1.6 • Caption from Valk (2008). Order of magnitude of the main
perturbations acting on space debris orbits (red solid curves) and of the SRP for
AMR values equal to 0.01, 1, 10, 40 m2/kg (green dashed curves). The vertical
dotter line represents the GEO altitude.

A first aspect of space debris dynamics that we decided to take into account
in our analysis is their possible long lifetimes. While the efficiency of the drag
forces cleans lower LEO area in few years, it is different for higher orbits, especially
geostationary ones, on which the objects can stay for hundreds of years (see afore-
mentioned papers). Up to now the numerical simulations concerning debris have
been performed using a wide variety of numerical integrators for short timescales.
Resorting to a symplectic (or quasi-symplectic) integration scheme to compute the
orbit of space debris has rarely been done despite their excellent energy preser-
vation properties on long time scales and the fact of being less time-consuming
than non-symplectic schemes (mainly because of the possibility to use larger time
steps). To the best of our knowledge, only few authors have already discussed the
use of symplectic mappings to propagate the orbit of artificial satellites, among
which we can cite Jackson (1996), Breiter (1999) and Breiter et al. (2005a) for
applications of symplectic integrators of the Wisdom-Holman type, Mikkola and
Innanen (1999) for the presentation of time transformations in the framework of
symplectic integrators and Mikkola et al. (2002) for an implementation of the
logarithmic Hamiltonian method. In this work, we will describe a general high
order explicit symplectic scheme based on Laskar and Robutel (2001).

GEO
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The forces

Dynamics of a debris 
= Keplerian orbit around the Earth
+ rotation of the Earth 
+ shape of the Earth (geopotential - J2) 
+ third body perturbations (Moon and Sun) 
+ solar radiation pressure
+ shadowing effects 
+ atmospheric drag (LEO) : cleaner  

First contribution : forces  
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The Hamiltonian formulation

Hamiltonian formalism 
Hdeb(v,Λ,r,θ) = Hkep(v,r) + Hrot(Λ) + Hgeo(r,θ) + H3b(r) + Hsrp(r)
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The geopotential

U(r) = µ

Z

V

⇢(rp)

kr � rpk dV , µ = G m�

x = r cos� cos� xp = rp cos�p cos�p
y = r cos� sin� yp = rp cos�p sin�p
z = r sin� zp = rp sin�p

U(r ,�,�) = �µ

r

1X

n=0

nX

m=0

✓
Re

r

◆n
Pm

n (sin�)(Cnm cos m�+Snm sin m�)

Re : the equatorial Earth’s radius

Cnm =
2 � �0m

M�

(n � m)!

(n + m)!

Z

V

✓
rp

Re

◆n
Pm

n (sin�p) cos (m�p) ⇢(rp) dV

Snm =
2 � �0m

M�

(n � m)!

(n + m)!

Z

V

✓
rp

Re

◆n
Pm

n (sin�p) sin (m�p) ⇢(rp) dV
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The geopotential

J2 = �C20 =
2C � B � A

2 M� R2
e

and C22 =
B � A

4 M� R2
e

U(r ,�,�) = �µ

r
+

µ

r

1X

n=2

nX

m=0

✓
Re

r

◆n
Pm

n (sin�) Jnm cos m(���nm)

Cnm = �Jnm cos (m�nm)

Snm = �Jnm sin (m�nm)

Jnm =
q

C2
nm + S2

nm

m �nm = arctan
✓

�Snm

�Cnm

◆
.
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The geopotential: Kaula formulation

U = �µ

r
�

1X

n=2

nX

m=0

nX

p=0

+1X

q=�1

µ

a

✓
Re

a

◆n

Fnmp(i)Gnpq(e)Snmpq(⌦,!, M, ✓)

Snmpq(⌦,!, M, ✓) =


+Cnm
�Snm

�n�m even

n�m odd
cos ⇥nmpq(⌦,!, M, ✓)

+


+Snm
+Cnm

�n�m even

n�m odd
sin ⇥nmpq(⌦,!, M, ✓)

Kaula gravitational argument, ✓ the sidereal time :

⇥nmpq(⌦,!, M, ✓) = (n � 2p)! + (n � 2p + q)M + m(⌦� ✓)
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The luni-solar perturbations

The acceleration :

r̈ = �µi

✓
r � ri

kr � rik3 +
ri

krik3

◆
.

The potential (i=1 for the Sun, i=2 for the Moon):

Ri = µi

✓
1

kr � rik
� hr . rii

krik3

◆
.

Ri =
µi

ri

X

n�2

✓
r
ri

◆n
Pn(cos )

ri the geocentric distance
 the geocentric angle between the third body and the satellite
Pn the Legendre polynomial of degree n.
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The luni-solar perturbations

The three components (x , y , z) of the position vector r
expressed in Keplerian elements (a, e, i ,⌦,!, f )
The Cartesian coordinates Xi , Yi and Zi of the unit vector
pointing towards the third body.
Usual developments of f and r

a in series of e, sin i
2 and M

Ri =
µi

ri

+1X

n=2

X

k,l,j1,j2,j3

✓
a
ri

◆n

A(n)
k,l,j1,j2,j3(Xi , Yi , Zi) e|k|+2j2

✓
sin

i
2

◆|l|+2j3
cos �

� = j1 �+ j2$ + j3⌦, � = M + ! + ⌦, $ = ! + M
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Poincaré variables

Delaunay canonical momenta associated with �, $ and ⌦ :

L =
p

µ a, G =
q

µ a(1 � e2) , H =
q

µ a(1 � e2) cos i

Non singular Delaunay elements, keeping L and � :

P = L � G p = �! � ⌦
Q = G � H q = �⌦

Poincaré variables :

x1 =
p

2P sin p x4 =
p

2P cos p
x2 =

p
2Q sin q x5 =

p
2Q cos q

x3 = � = M + ⌦+ ! x6 = L
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Dimensionless Poincaré variables

U =

r
2P
L

V =

r
2Q
L

e = U
✓

1 � U2

4

◆ 1
2

= U � 1
8

U3 � 1
128

U5 + O(U7)

2 sin
i
2
= V


1 � U2

2

��
1
2

= V +
1
4

VU2 +
3

32
VU4 + O(U6)

Non canonical dimensionless cartesian coordinates

⇠1 = U sin p ⌘1 = U cos p
⇠2 = V sin q ⌘2 = V cos q
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Hamiltonian

Hpot = H2b + ✓̇ ⇤ +
nmaxX

n=2
R

(n)
pot +

2X

i=1
Hi

= �
µ2

2 L2
+ ✓̇ ⇤ +

nmaxX

n=2

1

L2n+2

NnX

j=1
A

(n)
j (⇠1, ⌘1, ⇠2, ⌘2)B

(n)
j (�, ✓)

+
2X

i=1

nmaxX

n=2

L2n

rn+1
i

NnX

j=1
C
(n)
j (⇠1, ⌘1, ⇠2, ⌘2, Xi , Yi , Zi )D

(n)
j (�)

Dynamical system

⇠̇i =
1
L
@H
@⌘i

⌘̇i = �1
L
@H
@⇠i

i = 1, 2

�̇ =
@H
@L

� 1
2L

" 2X

i=1

@H
@⇠i

⇠i +
2X

i=1

@H
@⌘i

⌘i

#
L̇ = �@H

@�
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Semi-analytical averaged method

Use of a series manipulator

� ✓ ⇠1 ⌘1 ⇠2 ⌘2 L X Y Z r X� Y� Z� r� Coefficient

cos (0 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.12386619D-04
cos (0 0) (0 0 0 2 -6 0 0 0 0 0 0 0 0) -0.18579928D-04
cos (0 0) (0 0 0 4 -6 0 0 0 0 0 0 0 0) 0.46449822D-05

Averaging process over the fast variable : �
Semi-analytical averaged solution
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Number of terms

Perturbation Number of terms
n-order expansion
⇠

i1
1 ⌘

i2
1 ⇠

i3
2 ⌘

i4
2 with i1 + i2 + i3 + i4  n n = 2 n = 4 n = 6 n = 8

Geopotential
HJ2

5 15 31 53
(33) (145) (410) (895)

External Body - Sun & Moon
up to degree 2 27 86 197 390

(205) (836) (2374) (5480)
up to degree 3 73 250 611 1227

(645) (2642) (7854) (18380)

See also STELA (Deleflie - CNRS)

Anne LEMAITRE Resonances



The geopotential: Kaula formulation

U = �µ

r
�

1X

n=2

nX

m=0

nX

p=0

+1X

q=�1

µ

a

✓
Re

a

◆n

Fnmp(i)Gnpq(e)Snmpq(⌦,!, M, ✓)

Snmpq(⌦,!, M, ✓) =


+Cnm
�Snm

�n�m even

n�m odd
cos ⇥nmpq(⌦,!, M, ✓)

+


+Snm
+Cnm

�n�m even

n�m odd
sin ⇥nmpq(⌦,!, M, ✓)

Kaula gravitational argument, ✓ the sidereal time :

⇥nmpq(⌦,!, M, ✓) = (n � 2p)! + (n � 2p + q)M + m(⌦� ✓)
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Gravitational resonances : resonances with the Earth
rotation

P�

Pobj
= q1

q2

P� : Earth’s rotational period : 2⇡/n� = 1 day (n� = ✓̇)
Pobj : body orbital period : 2⇡/n = Pobj day (n = Ṁ)
1/1 for GEO and 2/1 for MEO
⇥nmpq(⌦,!, M, ✓) = (n � 2p)!+ (n � 2p + q)M +m(⌦� ✓)

⇥̇nmpq(⌦̇, !̇, Ṁ, ✓̇) = (n�2p) !̇+(n�2p+q) Ṁ+m(⌦̇�✓̇) ' 0

q = 0 : Ṁ
✓̇

' �̇
✓̇

' q1
q2

Resonant Hamiltonian HJ22
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Geostationary model of resonance

Cartesian Hamiltonian coordinates for e, i , $, ⌦ : ⇠i and ⌘i

H = HJ22(⇠1, ⌘1, ⇠2, ⌘2,⇤,�, L, ✓) + ✓̇ ⇤

Resonant angle : � = �� ✓

Corrected momentum : L0 = L, ✓0 = ✓, ⇤0 = ⇤+ L
H = HJ22

�
⇠1, ⌘1, ⇠2, ⌘2,�, L0, ✓

�
+ ✓̇

�
⇤0 � L0

�

Resonant averaging

HJ22 (⇠1, ⌘1, ⇠2, ⌘2, L,⇤, ✓,�)??y
HJ22 (⇠1, ⌘1, ⇠2, ⌘2, L0,⇤0, ✓0,�)??y
HJ22

�
⇠̄1, ⌘̄1, ⇠̄2, ⌘̄2, L̄0, ⇤̄0, �, �̄

�
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Resonant averaged hamiltonian

Perturbation Number of terms
n-order expansion
⇠

i1
1 ⌘

i2
1 ⇠

i3
2 ⌘

i4
2 with i1 + i2 + i3 + i4  n n = 2 n = 4 n = 6 n = 8

Resonant disturbing function
HJ22

= HC22
+ HS22

10 40 104 206
(94) (468) (1392) (3178)

� ✓ ⇠1 ⌘1 ⇠2 ⌘2 L X Y Z r X� Y� Z� r� Coefficient

cos (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.1077767255D-06
cos (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) 0.1080907167D-06
sin (2 0) (0 0 0 0 -6 0 0 0 0 0 0 0 0) -0.6204881922D-07
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Simple resonant model

H(L,�,⇤) = � µ2

2L2 + ✓̇(⇤� L) + 1
L6 [↵1 cos 2� + ↵2 sin 2�]

↵1 ' 0.1077 ⇥ 10�6, ↵2 ' �0.6204 ⇥ 10�7

Equilibria : @H

@L = 0 = @H

@�

Two stable equilibria (�⇤

11, L⇤

11), (�
⇤

12, L⇤

12)

Two unstable equilibria (�⇤

21, L⇤

21), (�
⇤

22, L⇤

22) are found to

�⇤

11 = �⇤ �⇤

12 = �⇤ + ⇡

�⇤

21 = �⇤ +
⇡

2
�⇤

22 = �⇤ +
3⇡
2

,

L⇤

11 = L⇤

12 = 0.99999971, L⇤

21 = L⇤

22 = 1.00000029,

L = 1 corresponds to 42 164 km.
�⇤ ' 75.07�
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Resonant phase space
60 Chapter 2. Semi-analytical theory – gravitational influence

Figure 2.14: Motion of a geostationary space debris near stable equilibria in a rotating ref-
erence frame as seen from the pole. The variations on the mean semi-major axis have been
amplified for the illustration by a factor 100.

chronous Earth’s orbit may considerably librate except if it is exactly located at the theoreti-
cal stable equilibrium point. As in the case of the first model of resonance (see for instance
Breiter, 2003; Henrard and Lemaître, 1983), the amplitudes of the perturbations affecting the
mean longitudes are observed to be 2 ��. Moreover, the perturbations seem to induce rele-
vant variations on the mean semi-major axis. Figure 2.13 shows the variations of the periods
as well as the mean variations observed on the semi-major axis as a function of the initial
mean longitude. The two stable equilibrium points as well as the two unstable ones appear
clearly. Near the first stable equilibrium, the period converges to the so-called fundamental
period. As a consequence, the variation on the mean semi-major axis converges to zero. On
the contrary, the periods diverge to infinity near the unstable equilibria and the variations on
the mean semi-major axis reach their maximum that is almost 70 km in the worst case, value
in agreement with our 69 km obtained analytically in Equation (2.24). These results seem to
be in agreements with Beutler (2005) where the libration period is found to be

P =
2�

�f

�K(k),

with k = sin 2 ��, �� is the mean longitude deviance with respect to �⇤ and �K(k) is the
normalized elliptic function of the first kind in k.
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Resonant period

x =
p

2L cos�, y =
p

2L sin� and consequently x⇤, y⇤.
Taylor series around (x⇤, y⇤)

X = (x � x⇤), Y = (y � y⇤)

H⇤(X , Y ,⇤) = ✓̇ ⇤+ 1
2(aX 2 + 2bXY + cY 2) + · · ·

Rotation : X = p cos + q sin and Y = �p sin + q cos 

Choice of  : (a � c) sin 2 + 2b cos 2 = 0
H⇤(p, q,⇤) = ✓̇ ⇤+ 1

2
⇥
A p2 + C q2⇤

Scaling : p = ↵ p0 and q = 1
↵ q0 by A↵2 =

C
↵2 ,

H(J,�,⇤) = ✓̇ ⇤+
p

AC J
Action-angle (J,�) : p0 =

p
2J cos� , q0 =

p
2J cos� .

⌫f =
@H

@J =
p

AC = 7.674 ⇥ 10�3/d , period of 818.7 days.
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Resonant motion
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Fig. 6. Semi-major axis a [left] and resonant angle � = � � ✓ [right] of several
geosynchronous space debris [a0 = 42164 km, e0 = 0, i0 = 0] the initial longitude
of which are �0 = 5�, 35�, 75�.

The mean semi-major axis as well as the resonant angle are subjected to very-
long period oscillations. Near the first stable equilibrium, namely � = �⇤, we
observe that the period of oscillation is about 800 days, which is very close to
our formal calculation of 818.7 days.

The periods increase as the deviation �� = |�0 � �⇤| increases with respect
to the equilibrium. As a consequence, an arbitrary space debris orbiting in
the geosynchronous Earth orbit may considerably librate except in the case of
the theoretical stable equilibria. As in the case of the first model of resonance
(see for instance [Lemâıtre & Henrard, 1983], [Breiter, 2003]), the amplitudes
of the perturbations a�ecting the mean longitudes are observed to be 2 ��.
Moreover, the perturbations seem to induce relevant variations on the mean
semi-major axis. Figure 7 shows the variations of the periods as well as the
mean variations observed on the semi-major axis as a function of the initial
mean longitude. The two stable equilibria as well as the two unstable ones
appear clearly. Near the first stable equilibrium, the period converges to the
so-called fundamental period. As a consequence, the variation on the mean
semi-major axis converges to zero. On the contrary, the periods diverge to
infinity near the unstable equilibria and the variations on the mean semi-
major axis reach their maximum that is almost 70 km in the worst case,
value in agreement with our 69 km obtained analytically in Equation (11).
These results seem to be in agreements with [Beutler, 2005] where the libration
period is found to be

P =
2�

�f

�K(k),

with k = sin 2��, �� is the mean longitude deviation with respect to �⇤ and
�K(k) is the normalized elliptic function of the first kind in k. �f is given by
(10).
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Fig. 7. Libration periods of 32 virtual space debris the initial longitude �0 of which
varied from 0 to 2⇡.

We also represent the phase space (a cos �, a sin �); Figure 8 shows clearly the
existence of three distinct regions: the internal region corresponds to orbital
motion the period of which is less than 24 h. In this case, the longitude of
the space debris is increasing that is the space debris seems to orbit eastward
around the Earth. The second region is characterized by mean motions ex-
actly synchronized with the Earth rotation, we deal with the so-called geosyn-
chronous orbits. When the object is near one of the two stable equilibria, the
space debris oscillates. As shown previously, this oscillation consists of a long
periodic libration around the equilibrium. The last region is external, and the
motion does not show anymore long periodic variations.

5.3 Long term precession of the orbital nodes of geosynchronous space debris

Figure 9 shows the dynamical evolution of a theoretical space debris placed
on the geosynchronous orbit. It illustrates the variation of the inclination and
of the eccentricity as well as the associated longitude of ascending node and
argument of perigee over a period of 65 years. The perturbations taken into
account are the oblateness of the Earth, the luni-solar perturbations and the
second degree and order tesseral harmonic. In this particular case, the luni-
solar perturbations mixed with the oblateness of the Earth are the major
perturbations acting on the inclination and the eccentricity. Indeed, the reso-
nance with the Earth rotation induces mainly e�ects on the mean semi-major
axis and the mean longitude. The perturbations involve an important and pe-
riodic variation of the inclination with values as high as 15� and a period of
approximatively 54 years. These observations are in agreement with the cur-
rent inclination distribution in the geosynchronous orbit as shown in Figure 2.
Both the longitude of the ascending node and the argument of perigee show
a well known precession rate. Let us note that another long period of about
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Width of the resonant zone

Hamiltonian level curve corresponding to one of the
unstable equilibria Lu and �u

H(Lu,�u,⇤) = � µ2

2L2 + ✓̇(⇤�L)+
1
L6 [↵1 cos 2� + ↵2 sin 2�]

Maxima and minima of this “banana curve”, corresponding
to the stable equilibria
Quadratic approximation about Lu : the width � of the
resonant zone

� =

s
�2 + 8��

�2 � =
↵1

L6
u cos 2�u

� = �3
2

µ2

L4
u

� =
µ2

L3
u
�✓̇

The numerical value is of the order of 69 km.
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Generalization

Similar approach : Rossi on MEO (resonance 2:1) CM&DA
Paper of Celletti and Gales : On the Dynamics of Space
Debris: 1:1 and 2:1 Resonances (JNS) 2014
Very complete paper :
Celest Mech Dyn Astr (2015) 123:203–222
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Abstract We study the dynamics of the space debris in regions corresponding to minor
resonances; precisely, we consider the resonances 3:1, 3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4, where
a j : ℓ resonance (with j , ℓ ∈ Z) means that the periods of revolution of the debris and of
rotation of the Earth are in the ratio j/ℓ. We consider a Hamiltonian function describing the
effect of the geopotential and we use suitable finite expansions of the Hamiltonian for the
description of the different resonances. In particular, we determine the leading terms which
dominate in a specific orbital region, thus limiting our computation to very few harmonics.
Taking advantage from the pendulum-like structure associated to each term of the expansion,
we are able to determine the amplitude of the islands corresponding to the different harmonics.
By means of simple mathematical formulae, we can predict the occurrence of splitting or
overlapping of the resonant islands for different values of the parameters. We also find
several cases which exhibit a transcritical bifurcation as the inclination is varied. These
results, which are based on a careful mathematical analysis of the Hamiltonian expansion,
are confirmed by a numerical study of the dynamical behavior obtained by computing the
so-called fast Laypunov indicators. Since theHamiltonian approach includes just the effect of
the geopotential, we validate our results by performing a numerical integration in Cartesian
variables of a more complete model including the gravitational attraction of Sun and Moon,
as well as the solar radiation pressure.
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Table 2 Value of the semimajor
axis corresponding to several
resonances

j : ℓ a (km) j : ℓ a (km)

1:1 42164.2 4:3 34805.8

2:1 26561.8 5:1 14419.9

3:1 20270.4 5:2 22890.2

3:2 32177.3 5:3 29994.7

4:1 16732.9 5:4 36336

terms of the orbital elements, one has:

ℓ Ṁ − j θ̇ = 0, j, ℓ ∈ N. (2.4)

Notice that (2.4) is satisfied in concrete astronomical cases within a certain degree of
approximation and cannot be obviously satisfied exactly.

By using Kepler’s third law, it follows that a j : ℓ resonance corresponds to the semimajor
axis a j :ℓ = ( j/ℓ)−2/3 ageo, where ageo = 42164.1696 km represents the semimajor axis
of the geosynchronous orbit. Table 2 provides the location of the resonances, that we shall
investigate in this work, as well as those of the 1:1 and 2:1 resonances for comparison.

For all resonances we write the same expression for the secular part, due to the fact
that the geopotential coefficient J2 = J20 is much larger than any other zonal coeffi-
cient (see Table 1): in the expansion of the secular part the most important role is played
by a term of order O(J2). On the other hand, the resonant parts of the development of
the geopotential are obtained adding different terms, say Tk for some k ∈ Z+; we will
need to compare the strength of such terms to reduce our study to a function composed
by the most significative contributing terms, defined as follows (see Celletti and Galeş
2014).

Definition 2 Let Rres j :ℓ
earth be the resonant part of Rearth , corresponding to the resonance

j : ℓ. Let λ( jℓ) be the associated stroboscopic mean angle. Given the orbital elements
(a, e, i), we say that a term Tk for some k ∈ Z+ of the expansion of Rres j :ℓ

earth , say
Tk = gk(a, e, i) cos(k λ( jℓ) + λk) for some function gk and some constant λk , is domi-
nant, if the size of |gk(a, e, i)| is bigger than the size of any other term of the expansion.

The analysis of the dominant terms allows us to reduce the discussion to a limited number
of terms as well as to provide an indication of the optimal degree of the expansions. More
precisely, for a given resonance j : ℓ we approximate the Hamiltonian function with

Hres j :ℓ = − µ 2
E

2L2 + Rsec
earth + Rres j :ℓ

earth ,

where Rres j :ℓ
earth is expanded up to an optimal degree N , which is determined by implementing

the algorithm described in Celletti and Galeş (2015). The optimal degree of expansion of
Rres j :ℓ
earth is N = j + 1, except for the resonance 4:1 whose optimal degree is N = j + 2.

The terms which contribute to form Rres j :ℓ
earth are listed in Table 3; explicit expressions for

the corresponding coefficients are given in Appendix (see the Electronic Supplementary
Material).

A plot of the dominant terms according to Definition 2 for each of the resonances consid-
ered in this work is provided in Fig. 1.
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Table 3 Terms whose sum
provides the expression of
Rres j :ℓ
earth up to the order N

j : ℓ N Terms

3:1 4 T330-2,T3310,T3322,T431-1,T4321
3:2 4 T330-1,T3311,T430-2,T4310,T4322
4:1 6 T441-1,T4421,T541-2,T5420,T5432,T642-1,T6431
4:3 5 T440-1,T4411,T540-2,T5410,T5422
5:1 6 T551-2,T5520,T5532,T652-1,T6531
5:2 6 T551-1,T5521,T651-2,T6520,T6532
5:3 6 T550-2,T5510,T5522,T651-1,T6521
5:4 6 T550-1,T5511,T650-2,T6510,T6522

Fig. 1 Dominant terms (indexes
reported in the plots) as a
function of eccentricity and
inclination for the resonances 3:1,
3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4
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Fig. 2 The amplitude of the
resonances for different values of
the eccentricity (within 0 and 0.5
on the x axis) and the inclination
(within 0◦ and 90◦ on the y axis)
for ω = 0◦, Ω = 0◦; the color
bar provides the measure of the
amplitude in kilometers. In order
from top left to bottom right: 3:1,
3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4
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Table 4 Amplitude in kilometers using (3.4) of the dominant terms associated to the 3:1 resonances for
e = 0.005, 0.5 and i = 10◦, 30◦

Dominant term e = 0.005, i = 10◦ e = 0.005, i = 30◦ e = 0.5, i = 10◦ e = 0.5, i = 30◦

T330-2 0.05 0.05 5.25 4.79

T3310 4.50 12.57 5.51 15.40

T3322 0 0.02 0.23 1.97

T431-1 0.33 0.46 3.35 4.65

T4321 0.11 0.52 1.14 5.25

However, increasing the eccentricity, other terms grow in magnitude showing a pendulum
structure, although they do not interact with the main resonance even for large eccentricities,
provided the inclination is small (compare with Fig. 3 top right). In this case, the estimate
(3.4) still provides a good value for the amplitude of the resonant island associated to the
dominant terms.

For higher inclinations and larger eccentricities, the main resonance increases a lot in
amplitude and it interacts with the other resonances, leading to chaotic motions (Fig. 3,
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Solar Radiation pressure

Solar radiation pressure is a quite complicated force with
different components
Theory of Orbit determination : Milani and Gronchi - ch 14
New solar Radiation Pressure Force Model for navigation :
McMahon and Scheeres - 2010
Direct radiation pressure acceleration
Starting point : simplified models
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Scheeres and Rosengren : Averaged model, based on e and
angular momentum
Long-term Dynamics of HAMR Objects in HEO

Aaron Rosengren, Daniel Scheeres
University of Colorado at Boulder, Boulder, CO 80309

The dynamics of high area-to-mass ratio (HAMR) objects in high-Earth orbit
have been explored in recent years, finding that extreme variations occur in eccen-
tricity and inclination due to the combined effects of solar radiation pressure, higher
harmonics of the Earth gravity field, and lunisolar perturbations. A sound under-
standing of their nature, orbital evolution, and possible origin is critical for space
situational awareness. We explore a new averaged model for the orbital evolution
of HAMR objects, explicitly given in terms of the eccentricity and angular momen-
tum vectors. This new formulation accounts for all relevant perturbations and pro-
vides predictions of the long-term orbital evolution of HAMR objects that compare
well with non-averaged numerical integrations over many decades. In this paper we
present the force models for each perturbation, their fundamental predictions, and
make comparisons with explicit long-term numerical integrations of HAMR objects
in GEO space. We find that many of the extreme dynamical behaviors reported for
these objects are attributable to the complex coupling between SRP, J2 and lunisolar
perturbations. The dynamical configuration of the Earth-Moon-Sun system, and in
particular the regression of the lunar node in the ecliptic plane, was found to have a
significant resonant effect on the long-term dynamics of HAMR orbits.

I. Introduction

THE motion of high area-to-mass ratio (HAMR) objects in high-Earth orbits (HEO) has been studied extensively
since the discovery of this debris population in near GEO orbits by Schildknecht and colleagues (ca. 2004).

Anselmo and Pardini have made several numerical investigations of this problem, mapping out the dynamics of these
objects over long timespans with all relevant perturbations included. Their most recent work1 presents a detailed analy-
sis concerning the long-term evolution of HAMR debris in HEO subject to solar radiation pressure (SRP), geopotential
harmonics up to degree and order eight, and third-body gravitational interactions induced by the Sun and the Moon.
Valk et al.22 study this problem using techniques from classical perturbation analysis, and are able to analytically ap-
proximate the solutions to the SRP averaged equations and then successfully include terms due to the Earth oblateness
(J2), and potentially to include other perturbations.

In the framework of orbit propagation, the evolution of space debris objects, taking into account both short-period
and long-period terms, requires numerical integration of the precise set of differential equations, and the investigation
of a broad range of possible parameter values. However, such computations become very costly when continuously
applied over a period of several decades, as is necessary in the case of HAMR debris. It therefore seems reasonable to
investigate the equations that govern the long-term behavior of orbits; such equations can be derived by the method of
averaging. The method of averaging, developed by Krylov and Bogoliubov7 in the analysis of nonlinear oscillations,
and generalized by Bogoliubov and Mitropolsky,2 was first applied to problems in celestial mechanics and satellite
theory in the early 1960s.9, 11, 21 The averaged equations of motion capture the secular evolution of the system and
can be numerically integrated, with significantly reduced computational requirements, or in some cases, solved in
closed form (cf.,13, 16, 17). The advantage of this approach is that it is possible to easily capture the qualitative effect of

Graduate Research Associate, H. Joseph Smead Fellow, Department of Aerospace Engineering Sciences, 429 UCB, Boulder, CO, 80309,
Student Member AIAA

A. Richard Seebass Endowed Chair Professor, Department of Aerospace Engineering Sciences, 429 UCB, Boulder, CO, 80309, Associate
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Abstract The long-term dynamics of the geostationary Earth orbits (GEO) is revisited
through the application of canonical perturbation theory. We consider a Hamiltonian model
accounting for all major perturbations: geopotential at order and degree two, lunisolar per-
turbations with a realistic model for the Sun and Moon orbits, and solar radiation pressure.
The long-term dynamics of the GEO region has been studied both numerically and analyti-
cally, in view of the relevance of such studies to the issue of space debris or to the disposal
of GEO satellites. Past studies focused on the orbital evolution of objects around a nom-
inal solution, hereafter called the forced equilibrium solution, which shows a particularly
strong dependence on the area-to-mass ratio. Here, we (i) give theoretical estimates for the
long-term behavior of such orbits, and (ii) we examine the nature of the forced equilibrium
itself. In the lowest approximation, the forced equilibrium implies motion with a constant
non-zero average ‘forced eccentricity’, as well as a constant non-zero average inclination,
otherwise known in satellite dynamics as the inclination of the invariant ‘Laplace plane’.
Using a higher order normal form, we demonstrate that this equilibrium actually represents
not a point in phase space, but a trajectory taking place on a lower-dimensional torus. We
give analytical expressions for this special trajectory, and we compare our results to those
found by numerical orbit propagation. We finally discuss the use of proper elements, i.e.,
approximate integrals of motion for the GEO orbits.

Keywords Secular dynamics · Normal forms · Geostationary earth orbits · Space debris
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Direct radiation pressure acceleration

The acceleration due to the direct radiation pressure can be
written in the form:

arp = Cr Pr


a�

kr � r�k

�2 A
m

r � r�

kr � r�k ,

Cr is the non-dimensional reflectivity coefficient
(0 < Cr < 2),
Pr = 4.56 · 10�6 N/m2 is the radiation pressure per unit of
mass for an object located at a distance of a� = 1 AU,
r is the geocentric position of the space debris; r� is the
geocentric position of the Sun,
A is the exposed area to the Sun of the space debris,
m is the mass of the space debris.

Non-gravitational influence
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Perturbations & A/m distribution

A/m distribution

Object A/m m2/kg

Lageos 1 and 2 0.0007
Starlette 0.001
GPS (Block II) 0.02

Moon 1.3 ·10�10

Space debris 0 < A/m < ?



GEO debris with very high eccentricity
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Figure 1.4 • Caption from Schildknecht et al. (2010). Distribution of the AMR
of 274 uncorrelated objects in the AIUB/ESA catalogue.
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Figure 1.5 • Caption from Schildknecht et al. (2010). Eccentricity as a function
of the mean motion for 1217 objects for which 6-parameter orbits were determined.
UCT and CT respectively denote the number of correlated and uncorrelated ob-
jects.

Historically, Liou and Weaver (2005) was the first work to point out that
such high AMR could possibly originate from the GEO ring and see their orbits
strongly perturbed by the solar radiation pressure (SRP), resulting in periodi-
cally varying eccentricities and inclinations. Shortly thereafter Schildknecht et al.
(2005) confirmed that guess by determining the first AMR values for 28 objects,
surprisingly ranged from 1 to 28 m2/kg. Following that discovery, a lot of papers

Schildknecht et al, 2010
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Order of magnitude of radiation pressure
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Hamiltonian formulation

H (v, r) = Hkepl (v, r) + Hsrp (r)

fixed inertial equatorial geocentric frame

r = geocentric position of the satellite
v = velocity of the satellite
Hkepl (v, r) = attraction of the Earth
Hsrp (r) = direct solar radiation pressure potential

Hkepl =
kvk2

2
� µ

krk

Hsrp = �Cr
1

kr � r�k Pr
A
m

a2
�

µ = GM�, Cr ' 1, r� position of the Sun, Pr = 4.56 ⇥ 10�6 N/m2,
A/m area-to-mass ratio, a� = 1 AU.
Polynômes de Legendre : first order
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The toy model

H = � µ2

2L2 + Cr Pr
A
m

r r� cos(�)

� the angle between r and r�, L =
p

µa, r� = r�
a�

.

H = � µ2

2L2 + Cr Pr
A
m

a (u ⇠ + v ⌘)

= H(L, G, H, M,!,⌦, r�)

Debris orbital motion : u = cos E�e and v = sin E
p

1 � e2.

Debris orbit orientation and Sun orbital motion :

⇠ = ⇠1 r�,1 + ⇠2 r�,2 + ⇠3 r�,3

⌘ = ⌘1 r�,1 + ⌘2 r�,2 + ⌘3 r�,3

⇠1 = cos⌦ cos ! � sin⌦ cos i sin !
⇠2 = sin⌦ cos ! + cos⌦ cos i sin !
⇠3 = sin i sin !

⌘1 = � cos⌦ sin ! � sin⌦ cos i cos !
⌘2 = � sin⌦ sin ! + cos⌦ cos i cos !
⌘3 = sin i cos !
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Averaging over the short periods : 1 day

Periods : 1 day (Orbital motion E) and 1 year (Sun r�,i)
Averaging over the fast variable (M the mean anomaly) :

H =
1

2⇡

Z 2⇡

0
H dM

= � µ2

2L2 +
1

2⇡
Cr Pr

A
m

a
Z 2⇡

0
(u ⇠ + v ⌘) dM

dM = (1 � e cos E) dE

H = � µ2

2L2 � 3
2

Cr Pr
A
m

L2

µ
e ⇠

= H(L, G, H, �,!,⌦, r�)
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The development

H = � µ2

2L2 � 3
2

Cr Pr
A
m

L2

µ
e ⇠

Poincaré variables :

p = �$ P = L � G
q = �⌦ Q = G � H
x1 =

p
2P sin p y1 =

p
2P cos p

x2 =
p

2Q sin q y2 =
p

2Q cos q

Approximations : e '
q

2P
L , cos2 i

2 = 1 � Q
2L , sin i

2 '
q

Q
2L

Circular orbit for the Sun (obliquity ✏)

r̄�,1 = cos��

r̄�,2 = sin�� cos ✏
r̄�,3 = sin�� sin ✏

with �� = n�t + ��,0.
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The truncated Hamiltonian in e and i

H = H(x1, y1, x2, y2,��)

' �n�  r̄�,1 (x1 R2 + y1 R1)

+ n�  r̄�,2 (x1 R3 + y1 R2)

+ n�  r̄�,3 (x1 R5 � y1 R4)

 = 3
2 Cr Pr

A
m

a
p

L
Ri(x2, y2) are second degree polynomials in x2 and y2.
Dynamical system associated :

ẋ1 = @H

@y1
ẏ1 = � @H

@x1

ẋ2 = @H

@y2
ẏ2 = � @H

@x2
.
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The eccentricity - pericenter motion : x1 and y1

x2 = 0 = y2

ẋ1 = �n� r̄�,1

ẏ1 = �n� r̄�,2

Solution explicitly given by

x1 = � sin�� + Cx = � (sin�� � Dx)
y1 =  cos�� cos ✏+ Cy =  (cos�� cos ✏+ Dy ).

e and $ : a periodic motion (1 year)
 increases, emax increases

Explanation of the behavior of GEO space debris (high e)
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The eccentricity - pericenter motion : 1 year

A/m = 5 m2/kg A/m = 10 m2/kg A/m = 20 m2/kg

78 Chapter 3. Geosynchronous space debris with high area-to-mass ratios
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Figure 3.5: Mid-term variations (yearly oscillations) of the eccentricity and the corresponding
eccentricity vector as a function of various area-to-mass ratios (A/m = 5, 10, 20 m2/kg –
red, green, blue line, respectively) for a fixed initial condition (a0 = 42 164 km, e0 = 0, i0 =
0 rad, �0 = �0 = �0 = 0 rad). Time at epoch is 21 March 2000.
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The inclination - node motion : x2 and y2

x2 6= 0 6= y2

H = H(x1(��), y1(��), Ri(x2, y2),��)

Averaged equations over �� : system of mean linear equations

˙̄x2 = ⌫ ȳ2 � ⇢
˙̄y2 = �⌫ x̄2

⌫ = n� 2 cos ✏ 1
2L , ⇢ = n� 2 sin ✏ 1

2
p

L

Solution :
⇢

x̄2 = A sin 
ȳ2 = A cos � ⇢

⌫ = A cos � tan ✏
p

L

 = ⌫ t +  0

i and ⌦ : a periodic motion (dozens of years) with imax ' 2✏
 increases, ⌫ increases and the period decreases.
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The inclination - node motion : dozens of years

A/m = 5 m2/kg A/m = 10 m2/kg A/m = 20 m2/kg A/m = 40 m2/kg

84 Chapter 3. Geosynchronous space debris with high area-to-mass ratios
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Figure 3.8: Long-term evolution of the inclination for various area-to-mass ratios (A/m =
5, 10, 15, 20 m2/kg, a0 = 42 164 km, e0 = 0, i0 = 0 rad, �0 = �0 = �0 = 0 rad) [top].
Long-term evolution of the inclination vector for a couple of initial conditions in inclination
and area-to-mass ratios (A/m = 10, 30 m2/kg) [bottom].
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The inclination and eccentricity combined motion

Back to the averaging process

K = n� ⇤� � n� 2 f0(x2, y2) � n� 2 f1(x2, y2,��)

f0(x2, y2) =
1
2
(R1 cos ✏+ R3 cos ✏+ R5 sin ✏)

f1(x2, y2,��) = g1 cos�� + g2 sin�� + g3 cos 2�� + g4 sin 2��

with gi = gi(x2, y2) and Ri = Ri(x2, y2).

The homological equation : H̄1 = H1 + {H0;W} = H1 � @H0
@⇤�

@W

@��

W = �2 (g1 sin�� � g2 cos�� +
1
2

g3 sin 2�� � 1
2

g4 cos 2��)

x2 = x̄2 +
@W
@y2

(��) y2 = ȳ2 � @W
@x2

(��)
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Order of magnitude of radiation pressure

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 10000  15000  20000  25000  30000  35000  40000  45000  50000

Ac
ce

le
ra

tio
n 

[k
m

/s
2 ]

Distance ftom the Earth’s center [km]

Order of magnitude of the perturbations

GM

J2

Jupiter

A/m 0.01 m2/kg

Sun

J22

J3

A/m 40 m2/kg
A/m 10 m2/kg

Moon
A/m 1 m2/kg

Anne LEMAITRE Resonances



Other perturbations

J2

HJ2(~r) =
µ

r
J2

⇣ r�
r

⌘2
P2 (sin�sat)

=
µ

r
J2

⇣ r�
r

⌘2 1
2

✓
3

⇣z
r

⌘2
� 1

◆

where �sat represents the latitude of the satellite, and
consequently sin�sat = z/r .

SRP second order

HSRP(~r ,~r�) = �Cr Pr
A
m

a2
�

1
||~r �~r�||

' �Cr Pr
A
m

a2
�

n=2X

n=1

✓
r

a�

◆n
Pn(cos�)
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Third body : Sun on a circular orbit

H3bS(~r ,~r�) = �µ�

1
||~r �~r�||

+ µ�

~r ·~r�
||~r�||3

' �µ�

a�

X

n�0

✓
r

a�

◆n
Pn(cos�) + µ�

ra� cos(�)
a3

�

' �µ�

a�

(1 +

✓
r

a�

◆2
P2(cos�)),

where µ� = GM� with M� the mass of the Sun.

Third body : Moon on a circular orbit

H3bM(~r ,~r$) = �
µ$
a$

(1 +
X

n�2

✓
r

a$

◆n
Pn(cos�M))

where µ$ = GM$ with M$ the mass of the Moon, and �M the
angle between the satellite and the Moon
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The Sun contributions

HSRP(~r ,~r�) + H3bS(~r ,~r�)
' HSRP1(~r ,~r�) + HSRP2(~r ,~r�) + H3bS(~r ,~r�)

' Cr Pr
A
m

a� r cos(�)

+


Cr Pr

A
m

a� � µ�

a�

� ✓
r

a�

◆2
P2(cos�)

Averaging over daily period :

H(x1, y1, x2, y2) = Hkepler + HJ2(x1, y1, x2, y2)

+ HSRP1(x1, y1, x2, y2,~r�)
+ HSRP2+3bS(x1, y1, x2, y2,~r�)
+ H3bM(x1, y1, x2, y2,~r$)
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Averaging results

HJ2 = Cp P + Cq Q =
Cp

2
(x2

1 + y2
1 ) +

Cq

2
(x2

2 + y2
2 )

HSRP1 = �3
2

Cr Pr
A
m

a e ⇠

HSRP2+3bS = �

Cr Pr

A
m

a� � µ�

a�

�
3a2

4a2
�

w2

= �� 3a2

4a2
�

w2

H3bM =
µ$
a$

3a2

4a2$
w2

M

w = � sin q sin i ~r�,1 � cos q sin i ~r�,2 + cos i ~r�,3
wM = � sin q sin i ~r$,1 � cos q sin i ~r$,2 + cos i ~r$,3
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Short periodic motion : Kepler + J2 + SRP1

ẋ1(t) = �C2 y1 � n� k r�,1,

ẏ1(t) = C2 x1 � n� k r�,2,

C2 = 3
2

q
µ
a3 J2

r2
�

a2

x1(t) = Cx +
k sin(n�t + ��,0)

1 � eta2 [⌘ cos ✏+ 1] ,

y1(t) = Cy +
k cos(n�t + ��,0)

1 � ⌘2 [cos ✏+ ⌘] ,

Anne LEMAITRE Resonances



Long periodic motion

ẋ2(t) = Cq y2 � n�k

r�,1(

x1x2
2L

) � r�,2(
�2x1y2

2L
+

y1x2
2L

) � r�,3(
x1p

L
)

�

+
@H̄SRP2+3bS

@y2
+
@H̄3bM

@y2

ẏ2(t) = �Cq x2 + n�k

r�,1(

�2x2y1
2L

+
x1y2
2L

) � r�,2(
y1y2
2L

) � r�,3(�
y1p

L
)

�

�
@H̄SRP2+3bS

@x2
� @H̄3bM

@x2
.

Averaging over the motion of the Sun and of the Moon
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ẋ2(t) = d1 y2 + d3,

ẏ2(t) = �d2 x2,

d1 = n�

k2

4L
cos ✏+

Cq

2
� � � � cos2 ✏� � � � cos2 ✏M ,

d2 = n�

k2

4L
cos ✏+

Cq

2
� 2 � cos2 ✏� 2 � cos2 ✏M ,

d3 = �n�

k2

2
p

L
sin ✏+ 2 �

p
L sin2 ✏+ 2 �

p
L sin2 ✏M ,

where � = � 3a2

16 L a2
�

and � = �
µ$
a$

3a2

16 L a2$
.

We write the corresponding solution for x2(t) and y2(t):

x2(t) = D sin(
p

d1d2 t �  ),

y2(t) = D

s
d2
d1

cos(
p

d1d2 t �  ) � d3
d1

,
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Eccentricity and inclination motions

Introduction of J2, Sun and Moon in the description (Casanova)

226 D. Casanova et al.

Fig. 2 Evolution of the
eccentricity of a piece of space
debris over 200 years with
A/m = 1, considering the J2
effect and the solar radiation
pressure (red curve) and with the
solar and lunar perturbations
(blue curve)

Fig. 3 Evolution of the
inclination of two pieces of space
debris with A/m = 1 and
A/m = 20, with the J2 effect and
the Sun perturbation, with or
without the lunar perturbation

values of A/m, the error is only about a few percent, but for A/m = 1 it is much more
important, modifying the amplitude and the period.

We propose to build a simple model, averaged over different periods, explaining the
behaviour of the eccentricity over a period of 10 years and of the inclination over 200
years. Further comments about longer periods in the eccentricity and modified periods in the
inclination will complete this analysis.

Our analytical model neglects the effect of the tesseral terms. This decision has been
motivated by a previous analysis (see Valk et al. 2008) in which the authors show the orders
of magnitude of the radial components of the acceleration due to different perturbations (see
their Fig. 1). At the altitude of the geostationary orbit, it is obvious that the tesseral terms are
two orders of magnitude smaller than the other perturbations. They also show the classical
presence of two stable and two unstable equilibria, due to the gravitational 1:1 resonance,
they calculate the libration period and show its presence on the evolution of the semi-major
axis.

Nevertheless, to check this hypothesis, we have performed several simulations. In Fig. 4a,
b we show the evolution of the eccentricity and of the inclination during 10 years and 200

123
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Inclination motion

236 D. Casanova et al.

Fig. 9 The long period
associated with the motion of the
inclination, as a function of A/m,
with the Moon (red curve) and
without the Moon (green curve)
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5 Results

To compare the influence of the different perturbations, we represent the motion of the
inclination in four cases: SRP, SRP + J2, SRP + J2 + Sun, and SRP + J2 + Sun + Moon,
for a piece of debris with A/m = 1 in Fig. 11a and with A/m = 20 in Fig. 12a. Numerical
integrations have been performed with the same assumptions in Figs. 11b and 12b. The
agreement is very good, except for the highest amplitudes, due to the second order truncation
in i .

123

SRP
SRP + J2
SRP + J2 + Sun
SRP + J2 + Sun + Moon
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Inclination motion : results

A/M = 20 m2/kg - comparison with numerical integration
Long-term evolution of space debris 237

Fig. 12 Evolution of the
inclination over 200 years by
using four different models for
one piece of space debris with
A/m = 20, obtained by our
model (a) and obtained by
numerical integration (b)

6 Conclusion and future work

In this paper, we present an analytical model to propagate space debris in the geostationary
ring, which includes the effect of the J2 due to the Earth oblateness, the solar radiation
pressure, and the solar and lunar perturbations. The solution provided by this model has
been tested through the numerical integrator NIMASTEP proving its reliability. This model
improves the previous one presented by Hubaux and Lemaître (2013), which only considers
the solar radiation pressure. We justify the importance of considering the J2 effect when
propagating space debris independently of the ratio A/m for short and long-term propagation.
The lunar and solar perturbations play an important role in the period and amplitude of the
inclination, especially for values of A/m close to unity. For higher values of A/m the solar
radiation pressure remains the dominant dynamics.

This work helps to improve the knowledge of space debris evolution for short and long-
term propagation, to design future missions and also to avoid space debris collisions (Rossi
andValsecchi 2006).However, our final goal is to use a simple but reliable analytical approach
to propagate thousands of pieces of space debris at the same time, to get reliable statistical
results concerning the location of this population of space debris (see Casanova et al. 2015)

Finally, this new model can also be applied to design satellite constellations, especially to
improve the lattice-preserving Flower Constellations (Casanova et al. 2015; Avendaño et al.
2013). This particular satellite constellations are characterized by maintaining the initial
configuration under the J2 effect. If solar sails are included in the satellites, the analytical
model presented in this paper can be easily applied to reproduce the time evolution of this
kind of satellite constellation.
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Mathematical work

Presence of mathematical challenges
Model of resonance + perturbations + averaging
Comparisons between several models of atmosphere (<
1000 km)
Research for stability zones (chaos) : churchyard or
concentration orbits
Use of the right integrator : symplectic
Yarkovsky effect on space debris : negligible over 200
years
Presence of secondary resonance, affecting the
semi-major axis (period of 13 000 years)
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