Spin-orbit resonances

- Very common situation
- Resonance between the orbital motion of a body and its rotation spin : 87-88 days - 58 days
- Examples : Moon, Galilean satellites, Titan, ... and Mercury (3/2)
- Full system : orbital and rotational motion
- Known orbit (function of time) in the rotational dynamics
- Eccentricity role is essential for $3 / 2$, not for $1 / 1$ resonances
- Mercury blocked in a 3/2 Spin-Orbit resonance : 58 days / 88 days
- Mercury was the Forgotten Planet (Mariner 10)

The context

- Space missions : Messenger \& BepiColombo
- Complete model of rotation for MORE
- Academic and practical study
- Rigid body - Fluid core - Multi-layers core
- Long or Short periodic terms ?
- Resonances : classical and unexpected
- Suitable reference frames
- Namur : D’Hoedt, Dufey, Lhotka, Noyelles, Sansottera (from 04 to 16)
- King : Peale (+ Yseboodt + Margot) (65, 72, 74, 76, 97, 01, 05, 06, 07, 08, 09)

Capture of Mercury into the $3 / 2$ Spin-Orbit resonance

- The capture is assumed
- Only known case of capture in a $3 / 2$: why not a $1 / 1$?
- Connected to the long time evolution of the Solar System orbital and rotational motions
- A. Correia and J. Laskar : 2004, Nature 429, 884

Mercury's capture into the $3 / 2$ spin-orbit resonance as a result of its chaotic dynamics
Probability of capture in the $3 / 2: 52 \%$

- A. Correia and J. Laskar : 2009, Icarus 201, 1

Mercury's capture into the $3 / 2$ spin-orbit resonance including the effect of coreĐmantle friction cascade of captures - final capture in spin-orbit for 98\% $5 / 2: 22 \%, 2 / 1: 32 \%$ and $3 / 2: 26 \%$ increased to 55% if $e<0.025$, to 73% if $e<0.005$ in the past.

The first hypotheses

- Mercury is considered as a rigid body
- Two coefficients of the gravitational potential are known C_{0}^{2} and C_{2}^{2} with uncertainty of 50%
- Mercury's orbit is keplerian
- Hamiltonian formalism to describe the rotational dynamics
- Three dimensional problem : 3 Euler's angles with their proper frequencies
- Four reference frames - origin = center of mass of Mercury
- Inertial one (ecliptic at some epoch J2000)
- Orbital frame (orbit of the Sun around Mercury)
- Spin frame (rotational angular momentum)
- Figure or body frame (principal axes of inertia)

The orbital frame

The reference frames

- (h, K, g) between the ecliptic frame and the spin frame
- $(I, J,-)$ between the spin frame and the body frame
- \vec{G} angular momentum in the direction of Z_{2}
- Conventions
- Inertial : 0
- Orbital : 1
- Spin : 2
- Body : 3
- K ecliptic obliquity

The three dimensional Hamiltonian

$$
\mathcal{H}=T_{\text {rotational }}+V_{\text {gravitational }}
$$

Andoyer - Deprit set of canonical variables and momenta
Variables q_{i} Momenta p_{i}

$$
\begin{array}{ll}
l & L=G \cos J \quad(J \simeq 0) \\
g & G=\text { norm of the angular momentum } \vec{G} \\
h & H=G \cos K \quad(K \text { the ecliptic obliquity })
\end{array}
$$

a_{0} the semi-major axis
i_{0} the inclination
e_{o} the eccentricity
I_{0} the mean anomaly, linear function of time
v_{0} the true anomaly
ω_{0} the argument of the pericenter
h_{0} the longitude of the ascending node

Non singular variables and kinetic energy

I and h : slow variables
g spin : fast variable (58 days)

$$
\begin{array}{cl}
\lambda_{1}=I+g+h & \Lambda_{1}=G \\
\lambda_{2}=-l & \Lambda_{2}=G-L=G(1-\cos J) \\
\lambda_{3}=-h & \Lambda_{3}=G-H=G(1-\cos K) \\
T=\frac{\left(\Lambda_{1}-\Lambda_{2}\right)^{2}}{2 I_{3}}+\frac{1}{2}\left(\Lambda_{1}^{2}-\left(\Lambda_{1}-\Lambda_{2}\right)^{2}\right)\left(\frac{\sin ^{2} \lambda_{2}}{I_{1}}+\frac{\cos ^{2} \lambda_{2}}{I_{2}}\right)
\end{array}
$$

I_{1}, I_{2} and I_{3} : moments of inertia of the planet $I_{1}<I_{2}<I_{3}$.

$$
T=T\left(\Lambda_{1}, \lambda_{2}, \Lambda_{2}\right)
$$

Remark :
$J \simeq 0 \rightarrow$ Spin \equiv Body $\rightarrow \Lambda_{2} \simeq 0 \quad \rightarrow \quad T \simeq \frac{\Lambda_{1}^{2}}{21_{3}}$

The potential V_{G}

$$
V_{G}=-\frac{G M}{r}\left(\frac{R_{e}}{r}\right)^{2}\left[C_{2}^{0} P_{2}(\sin \theta)+C_{2}^{2} P_{2}^{2}(\sin \theta) \cos 2 \varphi\right]
$$

- $2 C_{2}^{0}=I_{1}+I_{2}-2 I_{3}$ and $4 C_{2}^{2}=I_{2}-l_{1}$
- P_{2} and P_{2}^{2} : Legendre's polynomials
- R_{e} : Mercury's equatorial radius,
- r, θ and φ : position of the Sun in the body frame (3).
- Corresponding normalized cartesian coordinates :

$$
\begin{gathered}
\bar{x}_{3}=\cos \varphi \cos \theta \quad \bar{y}_{3}=\sin \varphi \cos \theta \quad \bar{z}_{3}=\sin \theta \\
V_{G}=-\frac{G M}{r^{3}} R_{e}^{2}\left[\frac{C_{2}^{0}}{2}\left(2 \bar{z}_{3}^{2}-\bar{x}_{3}^{2}-\bar{y}_{3}^{2}\right)+3 C_{2}^{2}\left(\bar{x}_{3}^{2}-\bar{y}_{3}^{2}\right)\right]
\end{gathered}
$$

The rotations

$\left(\begin{array}{l}\bar{x}_{3} \\ \bar{y}_{3} \\ \bar{z}_{3}\end{array}\right)=R_{3}\left(-\lambda_{2}\right) R_{1}(J) R_{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) R_{1}(K) R_{3}\left(-\lambda_{3}\right) \times$

$$
R_{3}\left(-h_{o}\right) R_{1}\left(-i_{o}\right) R_{3}\left(-g_{o}\right)\left(\begin{array}{c}
\cos v_{o} \\
\sin v_{o} \\
0
\end{array}\right)
$$

Orbit frame \rightarrow Inertial frame \rightarrow Spin frame \rightarrow Body frame.
Keplerian orbit: $V_{G}=V_{G}\left(\lambda_{1}, \Lambda_{1}, \lambda_{2}, \Lambda_{2}, \lambda_{3}, \Lambda_{3}, l_{0}(t)\right)$

$$
\mathcal{H}=T\left(\Lambda_{1}, \lambda_{2}, \Lambda_{2}, \Lambda_{3}\right)+V_{G}\left(\lambda_{1}, \Lambda_{1}, \lambda_{2}, \Lambda_{2}, \lambda_{3}, \Lambda_{3}, I_{0}\right)+n_{0} L_{0}
$$

The resonant variables

The spin-orbit resonance: $\sigma=\frac{2 \lambda_{1}-3 I_{0}}{2}$ slow variable

\[

\]

- Truncature in e_{o} and i_{0}
- Average over the fast variable $I_{0}: \bar{\Lambda}_{O}$ is a constant
- First order averaging: $\overline{\mathcal{H}}=\overline{\mathcal{H}}\left(\bar{\sigma}_{1}, \bar{\Lambda}_{1}, \bar{\sigma}_{2}, \bar{\Lambda}_{2}, \bar{\sigma}_{3}, \bar{\Lambda}_{3}\right)$
- Equilibria : $\frac{\partial \mathcal{H}}{\partial \bar{\sigma}_{i}}=0=\frac{\partial \mathcal{H}}{\partial \bar{\Lambda}_{i}}$

The Cassini's equilibrium

Description of the equilibrium corresponding to Mercury

- $\bar{\sigma}_{1}=0$: spin-orbit resonance
- $\bar{\sigma}_{3}=0$: node commensurability (h and h_{o})
- $\bar{\Lambda}_{1}^{\star}$ and $\bar{\Lambda}_{3}^{\star}: K^{\star}=i_{0}$
- $\bar{\sigma}_{2}=0$ and $\Lambda_{2}=0$ or $J=0$: Spin axis \equiv axis of inertia

Small librations around the exact equilibrium

- Quadratic Taylor's development of \mathcal{H} in cartesian coordinates
- Apparition of crossed terms (1 and 3) : untangling transformation
- Rescaling of the variables and action-angle variables

$$
\mathcal{H}=\nu_{1} J_{1}+\nu_{2} J_{2}+\nu_{3} J_{3}+\ldots
$$

3 proper (free) frequencies:
ν_{1} (free) longitude of the libration
ν_{2} (free) wobble
ν_{3} (free) precession

Comments

- Model introduced by Peale (1973) :
- no wobble
- inertial frame = orbital frame + precession of the orbital node
- Introduction of a CONSTANT precession of the node (over some period of time) : $K^{\star}=i_{0}+\epsilon$,
1 Arcmin $\leq \epsilon \leq 2$ Arcmin.
- Introduction of a CONSTANT precession of the pericenter : less interesting
- D'Hoedt \& Lemaitre (2004) : data taken Anderson et al (1987)

$$
T_{1}=15.8573 \text { years, }
$$

- 3 proper periods: $T_{2}=583.989$ years
$T_{3}=1065.08$ years

Libration of Mercury about the exact $3 / 2$ resonance

- Is Mercury at the exact equilibrium or not ? Existence of proper (free) libration motions
- Toy model : harmonic oscillator + dissipation

$$
\ddot{x}-h^{2} \dot{x}+\nu^{2} x=0 \quad \rightarrow \quad x(t)=A(t) \cos \left(\nu^{\prime} t+\phi\right)
$$

- Peale (2005) : dissipation over periods of 10^{5} to 10^{6} years
- 3 dissipation mechanisms
- Tidal dissipation
- Viscous core-mantle coupling (dominant)
- Recent excitation mechanism : impact of a small body Collisions could not explain a significant free libration
- Mercury is very, very close to the Cassini's equilibrium

Margot's results : radar data

Radar data compared with two models over 4.5 years A : at the exact Cassini's state (period of 88 days)
B : with a free libration (period of 88 days and 12 years)

Margot et al (2007), Science

Very long periods

- The (mean) orbit of Mercury is not keplerian
- Introduction of a secular motion of i_{o}, e_{o}, h_{o} and ω_{0}
- Periods of 10^{5} years
- Idea of Peale $(1976,2006)$: adiabaticity on the $\left(\sigma_{1}, \Lambda_{1}\right)$
- Slow evolution with time for the stable equilibrium (captured)
- Averaging process on proper angles (on periods of 10^{3} years)
- D'Hoedt \& Lemaitre (2008)
- Generalization to two degrees of freedom Adiabatic model : $\left(\sigma_{1}, \Lambda_{1}\right)$ and $\left(\sigma_{3}, \Lambda_{3}\right)$
- Confirmation of the behavior for the (2-degree of freedom) equilibrium for long periods of time

Adiabaticity of $\left(\sigma_{1}, \Lambda_{1}\right)$

Adiabaticity of $\left(\sigma_{3}, \Lambda_{3}\right)$

Laplace plane

- Cassini's equilibrium : function of i_{0} and of the precession rate
- Calculated with respect to a specific plane : Laplace plane
- Ideal Laplace plane = the plane about which the orbital inclination remains constant throughout a precessional cycle.
- Instantaneous Laplace plane : the plane about which variations in inclination are minimized.
- Dependence on the interval of time, the chosen approach, the set of ephemeris or synthetic theory
- Dependence on the goal (academic or practical)
- D'Hoedt et al (2009), ASR

Positions of the Laplace planes

- σ : the longitude of the
 ascending node of the Laplace plane on the inertial plane
- S : the inclination of the Laplace plane on the inertial plane.
- Ω^{\prime} : the longitude of the ascending node of the orbital plane on the Laplace plane
- j : the inclination of the orbital plane on the Laplace plane.

Unicity

- 4 papers
- Peale (2006) : numerical fit to ephemerides
- Yseboodt \& Margot (2006) : secular theory + numerical fit
- Rambaux \& Bois (2004) : principles but no values
- D'Hoedt et al (2009) : Henrard's simple formulation
- Y\&M : a unique instantaneous Laplace plane 20000 years, in intervals of 2000 years (JPL DE408)
- Namur : an infinity of instantaneous Laplace planes, best one interval of 6000 years (JPL DE406)
- Comparable results : | angle | $\mathrm{Y} \& \mathrm{M}$ | Namur | P |
| :--- | :--- | :--- | :--- |
| S | 3.3° | 2.7° | |
| j | 5.33° | 7.5° | 8.6° |
- Mercury is not a rigid body
- Old question treated by Peale
- 1976, Nature Does Mercury have a molten core ?
- 1981, IcaruS Measurement accuracies required for the determination of a Mercurian liquid core
- 1997, LPI characterizing the core of Mercury
- Existence of a molten or fluid core : influence on I_{3}
- I_{3} has to be C or C_{m} : simple introduction of two layers
- Peale et al (2007 and 2009) : viscous core
- Solidarity core-mantle only for very slow motions
- Slow motions or long periodic terms : $I_{3}=C$ (rigid planet)
- Fast motions or short periodic terms : $I_{3}=C_{m}$ (only the mantle)

$$
\mathcal{H}=\mathcal{H}\left(\sigma_{1}, \Lambda_{1}, \sigma_{2}, \Lambda_{2}, \sigma_{3}, \Lambda_{3}, I_{o}, \Lambda_{0}\right)
$$

- First order averaging over the fast variable I_{0} : $\overline{\mathcal{H}}=\overline{\mathcal{H}}\left(\bar{\sigma}_{1}, \bar{\Lambda}_{1},-,-, \bar{\sigma}_{3}, \bar{\Lambda}_{3}\right)$ - No wobble
- 2 proper periods : $T_{1}=15.8573$ years, $T_{3}=1065.08$ years
- Third or fourth order averaging over the fast variable I_{0} results of Sandrine's PhD : too small changes
- Margot + Peale : new set of data with a fluid core hypothesis

$$
C_{m}=0.579 C, C=0.34, J_{2}=610^{-5}, C_{22}=10^{-5}
$$

- 2 proper periods : $T_{1}=12.055$ years, $T_{3}=615.69$ years

$$
\mathcal{H}\left(\sigma_{1}, \Lambda_{1}, \sigma_{2}, \Lambda_{2}, \sigma_{3}, \Lambda_{3}, I_{0}, \Lambda_{0}\right) \rightarrow \overline{\mathcal{H}}\left(\bar{\sigma}_{1}, \bar{\Lambda}_{1}, \bar{\sigma}_{2}, \bar{\Lambda}_{2}, \bar{\sigma}_{3}, \bar{\Lambda}_{3}\right)
$$

- Canonical transformation, order by order, Lie triangle
- $\mathcal{H}=\sum_{i=0}^{n} H_{i}^{0} \frac{\epsilon^{i}}{i!}$ and $\overline{\mathcal{H}}=\sum_{i=0}^{n} H_{0}^{i} \frac{\epsilon^{i}}{i!}$
- H_{i}^{0} are data and H_{0}^{i} are results :

$$
\begin{array}{llll}
H_{0}^{0} & & & \\
H_{1}^{0} & H_{0}^{1} & & \\
H_{2}^{0} & H_{1}^{1} & H_{0}^{2} & \\
H_{3}^{0} & H_{2}^{1} & H_{1}^{2} & H_{0}^{3}
\end{array}
$$

- Homological equation : $H_{0}^{n}=H_{1}^{n-1}+\left(H_{0}^{n-1} ; W_{1}\right)$
- Recurrence formulae : $H_{j}^{n}=H_{j+1}^{n-1}+\sum_{i=0}^{j}\binom{j}{i}\left(H_{j-i}^{n-1} ; W_{1+i}\right)$
- W_{i} is the i th generator

Short periodic terms

Inverse algorithm : Deprit (1969) and Henrard (1970)

- Introduction of cartesian coordinates :

$$
\left(\sigma_{1}, \Lambda_{1}\right) \rightarrow\left(x_{1}, y_{1}\right) \text { and }\left(\sigma_{3}, \Lambda_{3}\right) \rightarrow\left(x_{3}, y_{3}\right)
$$

- $f\left(x_{1}, x_{3}, y_{1}, y_{3}\right)=$
$f\left(\bar{x}_{1}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{3}\right)+\sum_{i=1}^{\text {order }} \frac{\epsilon^{i}}{i!}\left(f\left(x_{1}, x_{3}, y_{1}, y_{3}\right) ; W_{i}\right)_{\left(\bar{x}_{1}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{3}\right)}$
Any function f (non averaged variables) can be expressed as a function of the averaged solution through an expansion using the generators W_{i}
- In particular : $f=x_{i}$ or $f=y_{i}$.
- ($\bar{x}_{1}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{3}$) evaluated at the equilibrium of the averaged model
Peale's results about the proximity of Mercury to the
Cassini's state
- Keplerian case : $\operatorname{var}_{o}=\operatorname{var}_{o}^{\star}+\mathcal{F}_{\text {var }}\left(I_{o}\right)$

Non Keplerian case

- Short periodic planetary perturbations : VSOP, IMCCE (courtesy of J.L. Simon)
- Orbital elements of Mercury: $a_{0}, e_{0}, i_{o}, g_{o}, h_{0}, I_{0}$
- Validity of more than 100 years
- Introduction of the mean longitudes of all the planets

$$
\operatorname{var}_{O}=\operatorname{var}_{O}^{\star}+\mathcal{F}_{\mathrm{var}}\left(I_{O}, I_{V}, I_{E}, I_{M a}, I_{J}, I_{S}, I_{U}, I_{N}\right)
$$

- $H=-\frac{\mu^{2}}{2 L_{o}^{2}}+n_{J} \Lambda_{J}+n_{V} \Lambda_{V}+n_{S} \Lambda_{S}+n_{E} \Lambda_{E}+\dot{\varpi}_{o} G_{0}+\dot{\Omega}_{0} H_{0}$

$$
+\frac{\Lambda_{1}^{2}}{2 C_{m}}+V_{G}\left(I_{o}, \varpi_{0}, \Omega_{0}, e_{o}, a_{0}, i_{o}, \sigma_{1}, \sigma_{3}, L_{o}, \Lambda_{1}, \Lambda_{3}, I_{V}, I_{E}, I_{J}, I_{S}\right)
$$

- Numerical integration- One degree of freedom: $\left(\sigma_{1}, \Lambda_{1}\right)$
- Complete two layers model : core - mantle dissociated
- Using JPL DE408 (20 000 years) for planetary contributions
- Damping factor : tidal effect - Elimination of proper (free) frequencies in the final spectrum

Short periodic terms on σ_{1}

Comparison between Namur and Peale et al (2007) : $C_{22}=1.510^{-5}$ (period of $\sigma_{1} \simeq 9$ years)

angle combination	Period (years)	Amplitude (rad)	Relative amplitude
NAMUR			
Mercury $\left(I_{O}\right)$	0.24084	0.19728510^{-3}	1
Jupiter $\left(\lambda_{J}\right)$	11.86200	0.64336710^{-4}	0.326110
Mercury $\left(2 I_{O}\right)$	0.12042	0.21996410^{-4}	0.111496
Venus $\left(2 I_{O}-5 \lambda_{V}\right)$	5.66608	0.21091810^{-4}	0.106910
Jupiter $\left(2 \lambda_{J}\right)$	5.93100	0.81108610^{-5}	0.041112
Saturn $\left(2 \lambda_{S}\right)$	14.7285	0.59789410^{-5}	0.030306
Earth $\left(I_{O}-4 \lambda_{E}\right)$	6.57966	0.34712210^{-5}	0.017595
PEALE			
Mercury $\left(\lambda_{M}-\varpi=I_{O}\right)$	0.24084	1	1
Venus $\left(2 I_{O}-5 \lambda_{V}+3 \varpi\right)$	5.66608	0.1427	0.1289
Mercury $\left(2\left(\lambda_{M}-\varpi\right)=2 I_{O}\right)$	0.12042	0.1028	0.1115
Jupiter $\left(\lambda_{J}\right)$	11.86200	not listed $(\simeq 0.04)$	0.0571
Jupiter $\left(2 \lambda_{J}-2 \varpi\right)$	5.93100	0.3483	0.0509
Saturn $\left(2 \lambda_{S}\right)$	14.7285	not listed $(\simeq 0.02)$	0.0138
Earth $\left(I_{O}-4 \lambda_{E}\right)$	6.57966	not listed $(\simeq 0.01)$	0.0239

Dufey et al (2008), CM\&DA

Explanations

- Comparisons with SONYR (Rambaux \& Bois) : encouraging results
- Especially using a forced analytical orbital motion

Angle combination	Period (years) SONYR	Amplitude (rad) SONYR	Relative amplitude SONYR	Relative amplitude NAMUR
Mercury $\left(I_{O}\right)$	0.24084	0.20113510^{-3}	1	1
Jupiter $\left(\lambda_{J}\right)$	11.86200	0.63301510^{-4}	0.314721	0.326110
Mercury $\left(2 I_{O}\right)$	0.12042	0.19527210^{-4}	0.097085	0.111496
Venus $\left(2 I_{o}-5 \lambda_{V}\right)$	5.66608	0.21146210^{-4}	0.105134	0.106910
Jupiter $\left(2 \lambda_{J}\right)$	5.93100	0.81331510^{-5}	0.040436	0.041112
Saturn $\left(2 \lambda_{S}\right)$	14.7285	0.59609410^{-5}	0.029365	0.030306
Earth $\left(I_{O}-4 \lambda_{E}\right)$	6.57966	0.34824310^{-5}	0.017314	0.017595

- Differences with SONYR (full N-Body integration) : OK
- Main differences with Peale et al (2007) : no planetary perturbations on Mercury's mean anomaly
- $I_{O}=n_{0} t+I_{O}^{0}$ and not $I_{O}=I_{O}\left(I_{V}, I_{E}, I_{J}, I_{S}\right)$
- New results of Peale et al (2009): in agreement with Namur

Short periodic terms on σ_{1}

Coefficients : $\frac{C_{m}}{C}=0.579$ and $C_{22}=1.010^{-5}$
$T_{\sigma_{1}}=12.055$ years and $T_{\sigma_{3}}=615.69$ years
Comparisons with numerical integration and frequency analysis

N	I_{O}	I_{V}	I_{E}	I_{J}	I_{S}	ϖ_{0}	Period	Amplitude	Ratio	Phase at J2000
1	-	-	-	1	-	-1	11.862 y	43.712 as	1.2193	164.46°
2	1	-	-	-	-	-	87.970 d	35.849 as	1.0000	84.80°
3	2	-	-	-	-	-	43.985 d	3.754 as	0.1047	79.59°
4	2	-5	-	-	-	5	5.664 y	3.597 as	0.1003	166.85°
5	-	-	-	-	2	-2	14.729 y	1.568 as	0.0437	-85.96°
6	-	-	-	2	-	-2	5.931 y	1.379 as	0.0385	125.91°
7	1	-	-4	-	-	4	6.575 y	0.578 as	0.0161	-25.57°
8	3	-	-	-	-	-	29.323 d	0.386 as	0.0108	-105.62°
9	1	-	-	-2	-	2	91.692 d	0.201 as	0.0056	-58.69°
10	1	-	-	2	-	-2	84.537 d	0.191 as	0.0053	48.28°
11	-	-	-	2	-5	3	883.28 y	0.103 as	0.0029	-153.53°
12	2	-	-	-1	-	1	44.436 d	0.069 as	0.0019	-25.51°
13	2	-	-	1	-	-1	43.541 d	0.067 as	0.0019	4.71°
14	1	-	-	-1	-	1	89.793 d	0.044 as	0.0012	-17.94°
15	1	-	-	1	-	-1	86.217 d	0.043 as	0.0012	7.17°
16	2	-	-	-2	-	2	44.897 d	0.041 as	0.0011	-63.89°
17	2	-	-	2	-	-2	43.110 d	0.040 as	0.0011	43.07°

Dufey et al (2009), CM\&DA - calculation of the phase

Short periodic terms on σ_{3}

Coefficients : $\frac{C_{m}}{C}=0.579$ and $C_{22}=1.010^{-5}$
$T_{\sigma_{1}}=12.055$ years and $T_{\sigma_{3}}=615.69$ years
Comparisons with numerical integration and frequency analysis

N	I_{O}	I_{V}	I_{E}	I_{J}	I_{S}	ϖ_{O}	Ω_{O}	Period	Amplitude	Ratio	Phase
1	-	-	-	-	-	2	-2	63315 y	3.74 as	26.128	-56.84°
2	1	-	-	-	-	-	-	87.970 d	143.06 mas	1.0000	84.80°
3	2	-	-	-	-	2	-2	43.985 d	67.31 mas	0.4705	-67.25°
4	-	-	-	2	-5	3	-	883.280 y	65.44 mas	0.4574	15.01°
5	3	-	-	-	-	2	-2	29.323 d	45.02 mas	0.3147	107.55°
6	4	-	-	-	-	2	-2	21.992 d	14.71 mas	0.1028	-77.66°
7	-	-	-	2	-	-2	-	5.931 y	14.64 mas	0.1023	-117.10°
8	2	-	-	-	-	-	-	43.985 d	12.91 mas	0.0902	-100.41°
9	1	-	-	-	-	2	-2	87.970 d	8.20 mas	0.0573	-62.04°
11	-	-	-	1	-	-1	-	11.862 y	7.83 mas	0.0547	-148.63°
10	2	-5	-	-	-	5	-	5.664 y	6.00 mas	0.0420	100.24°
12	-	-	-	-	2	-2	-	14.729 y	4.43 mas	0.0309	-157.27°
13	1	-	-4	-	-	4	-	6.575 y	1.93 mas	0.0135	-66.00°

- Precessional motion : a long-period perturbation
- Limit of the model : core - mantle dissociated

Dufey et al (2009), CM\&DA - calculation of the phase

Resonances : 1) with Jupiter

- Main short periodic term
I_{0} with a period of 88 days
- As a function of C_{22} and of $\frac{C_{m}}{C}$: 8 years $<T_{\sigma_{1}}<16$ years
- Present best value : $T_{\sigma_{1}}=12.055$ years
- Other short periodic terms :
I_{J} with a period of 11.86 years
- Critical value of C_{22} : exact resonance
- Potential commensurability mentioned

- Peale et al (2009), Icarus
- Complete study of this resonance
- Potential (small) influence : BepiColombo

Resonances: 2) with the Great Inequality

- $\frac{C_{m}}{C}=0.579$ and $C_{22}=1.010^{-5}: T_{\sigma_{3}}=615.69$ years
- As a function of C_{22} and of $\frac{C_{m}}{C}$: 400 years $<T_{\sigma_{3}}<1100$ years
- A possible value of C_{22} and for $\frac{C_{m}}{C}=0.829$: $T_{\sigma_{3}}=883.28$ years
- Exact 1:1 resonance with the Great Inequality : $\sigma_{25}=2 I_{J}-5 I_{S}$
- Complete study of this resonance, resonant angle $\alpha=\psi_{3}-\sigma_{25}$
- Period of 10^{8} years
- Variations of $K \simeq 0.32^{\circ}$
- No influence on BepiColombo

Wobble : σ_{2}

- σ_{2} canonical variable associated to $\Lambda_{2}=\Lambda_{3}(1-\cos J)$
- Angle between Spin and Body axes $J \simeq 0$
- Associated to a period of 589 years
- Uncoupled motion (first orders)
- Pole motion on Mercury's surface
: a few meters
- Short periodic terms are negligible
- No resonance detected
- Undetectable for BepiColombo

Conclusions

- Effective non-linear stability of the equilibrium (Sansottera, Lhotka, Lemaitre, MNRS 2015) : several physical parameters, Birkhoff normal form, Nekhoroshev stability theory
- Long and short periodic contributions analyzed
- Academic and practical views could be different and complementary
- Very promising features with core frequency
- Better use of the phases of the short periodic contributions
- Waiting for data : Messenger + radar
- Juice mission : Galilean satellites
- Many open mathematical problems

Gravitational resonances

- Resonance between the orbital motion of a satellite and the rotation of the primary
- Primary is not anymore a point mass
- Mainly for artificial satellites
- Short lifetimes, permanent control and re-orbitation, real time orbits
- Space debris act as natural bodies: abandoned, for long time, no control, perturbed
- Explosion or collision : mass, spin, not necessary known
- More "interesting" objects for CM

Number of debris

Number of debris

Chinese explosion : Fengyun 2007

New York Times
Explosion of the chinese satellite Fengyun FY-1C on January 11, 2007

NEW DEBRIS ON JAN. 11,2007
The remnamis toon tre Clineste saleille
destructon are quidy dispersiog in Eoths

NEW DEARIS ON JAN. 11, 2007
The remnarit fram ine CO
(ve remnarts from the Clinees estielite
 now pess throwh ts dobris field.

Recent collision : Cosmos - Iridium 2009

Collision

- Iridium 33 (active American telecommunication satelife)
- Cosmos 2251 (non active military Russian satellite)
- Date : February 10, 2009
- Speed : 11.7 km/second

What are Orbital Space Debris?

Definition

Orbital debris refers to material on orbit resulting from space missions but no longer serving any function.

- Launch vehicle upper stages
- Abandoned satellites
- Lens caps
- Momentum flywheels
- Core of nuclear reactors
- Objects breakup
- Paint flakes
- Solid-fuel fragments

Current debris population

- There are about 18000 objects larger than 10 cm TLE Catalogue
- About 350000 objects larger than 1 cm
- More than 3×10^{8} objects larger than 1 mm

Catalogued objects (NASA)

- 6 \% Operational spacecrafts
- 24\% Non-operational spacecrafts
- 17\% Upper stages of rockets
- 13\% Mission related debris
- 40\% Debris mostly generated by explosions \& collisions

Computer generated images

Figure: LEO image

Figure: GEO image

LEO-MEO-GEO

EARTH ENVIRONMENT

 orbital period of the satellite and the rotation of the Earth= gravitational resonance

Rossi et al (2005)

Number of debris

 MOST POPULAR ORBITS

Problematic situation

Situation and solutions

Size (r)	Characteristics	Protection	Number
$r<0.01 \mathrm{~cm}$	cumulative effects surface erosion	not necessary	
$0.01<r<1 \mathrm{~cm}$	significant damages perforation	armor plating	170000000 objects
$1<r<10 \mathrm{~cm}$	important damages	no solution	670000 objects
$r>10 \mathrm{~cm}$	catastrophic events catalogued (TLE)	manoeuvres	<20000 objects

Analogy with natural bodies

Natural and artificial objects

Natural	Artificial	Debris
existing orbits	chosen orbits	existing orbits
no control	control	no control
long times	short times	long times
model and observations	huge numerical integrations	model and observations
stability	precision	stability

Long term dynamics

ESTIMATION OF LIFETIMES FOR USUAL OBJEGTS

300 km	1 month
400 km	1 year
500 km	10 years
700 km	50 years
900 km	1 century
1200 km	1 millennium

The forces for MEO and GEO

The forces

First contribution : forces

Dynamics of a debris
= Keplerian orbit around the Earth

+ rotation of the Earth
+ shape of the Earth (geopotential $-\mathrm{J}_{2}$)
+ third body perturbations (Moon and Sun)
+ solar radiation pressure
+ shadowing effects
+ atmospheric drag (LEO) : cleaner

The Hamiltonian formulation

Hamiltonian formalism

$H_{\text {deb }}(v, \Lambda, r, \theta)=H_{\text {kep }}(v, r)+H_{\text {rot }}(\Lambda)+H_{\text {geo }}(r, \theta)+H_{3 b}(r)+H_{\text {srp }}(r)$

The geopotential

$$
\begin{gathered}
U(\boldsymbol{r})=\mu \int_{V} \frac{\rho\left(\boldsymbol{r}_{\boldsymbol{p}}\right)}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{p}}\right\|} d V, \quad \mu=G m_{\oplus} \\
x=r \cos \phi \cos \lambda \quad x_{p}=r_{p} \cos \phi_{p} \cos \lambda_{p} \\
y=r \cos \phi \sin \lambda \quad y_{p}=r_{p} \cos \phi_{p} \sin \lambda_{p} \\
z=r \sin \phi \quad z_{p}=r_{p} \sin \phi_{p} \\
U(r, \lambda, \phi)=-\frac{\mu}{r} \sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\frac{R_{e}}{r}\right)^{n} \mathcal{P}_{n}^{m}(\sin \phi)\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right)
\end{gathered}
$$

R_{e} : the equatorial Earth's radius

$$
\begin{aligned}
C_{n m} & =\frac{2-\delta_{0 m}}{M_{\oplus}} \frac{(n-m)!}{(n+m)!} \int_{V}\left(\frac{r_{p}}{R_{e}}\right)^{n} \mathcal{P}_{n}^{m}\left(\sin \phi_{p}\right) \cos \left(m \lambda_{p}\right) \rho\left(\boldsymbol{r}_{\boldsymbol{p}}\right) d V \\
S_{n m} & =\frac{2-\delta_{0 m}}{M_{\oplus}} \frac{(n-m)!}{(n+m)!} \int_{V}\left(\frac{r_{p}}{R_{e}}\right)^{n} \mathcal{P}_{n}^{m}\left(\sin \phi_{p}\right) \sin \left(m \lambda_{p}\right) \rho\left(\boldsymbol{r}_{\boldsymbol{p}}\right) d V
\end{aligned}
$$

The geopotential

$$
\begin{gathered}
J_{2}=-C_{20}=\frac{2 C-B-A}{2 M_{\oplus} R_{e}^{2}} \quad \text { and } \quad C_{22}=\frac{B-A}{4 M_{\oplus} R_{e}^{2}} \\
U(r, \lambda, \phi)=-\frac{\mu}{r}+\frac{\mu}{r} \sum_{n=2}^{\infty} \sum_{m=0}^{n}\left(\frac{R_{e}}{r}\right)^{n} \mathcal{P}_{n}^{m}(\sin \phi) J_{n m} \cos m\left(\lambda-\lambda_{n m}\right) \\
C_{n m}=-J_{n m} \cos \left(m \lambda_{n m}\right) \\
S_{n m}=-J_{n m} \sin \left(m \lambda_{n m}\right) \\
J_{n m}=\sqrt{C_{n m}^{2}+S_{n m}^{2}} \\
m \lambda_{n m}=\arctan \left(\frac{-S_{n m}}{-C_{n m}}\right)
\end{gathered}
$$

The geopotential: Kaula formulation

$$
U=-\frac{\mu}{r}-\sum_{n=2}^{\infty} \sum_{m=0}^{n} \sum_{p=0}^{n} \sum_{q=-\infty}^{+\infty} \frac{\mu}{a}\left(\frac{R_{e}}{a}\right)^{n} F_{n m p}(i) G_{n p q}(e) S_{n m p q}(\Omega, \omega, M, \theta)
$$

$$
\begin{aligned}
S_{n m p q}(\Omega, \omega, M, \theta) & =\left[\begin{array}{l}
+C_{n m} \\
-S_{n m}
\end{array}\right]_{n-\text { modd }}^{n-\text { meven }} \cos \Theta_{n m p q}(\Omega, \omega, M, \theta) \\
& +\left[\begin{array}{l}
+S_{n m} \\
+C_{n m}
\end{array}\right]_{n-\text { modd }}^{n-m \text { even }} \sin \Theta_{n m p q}(\Omega, \omega, M, \theta)
\end{aligned}
$$

Kaula gravitational argument, θ the sidereal time :

$$
\Theta_{n m p q}(\Omega, \omega, M, \theta)=(n-2 p) \omega+(n-2 p+q) M+m(\Omega-\theta)
$$

The luni-solar perturbations

The acceleration :

$$
\ddot{\boldsymbol{r}}=-\mu_{i}\left(\frac{\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right\|^{3}}+\frac{\boldsymbol{r}_{\boldsymbol{i}}}{\left\|\boldsymbol{r}_{\boldsymbol{i}}\right\|^{3}}\right) .
$$

The potential ($\mathrm{i}=1$ for the Sun, $\mathrm{i}=2$ for the Moon):

$$
\begin{aligned}
\mathcal{R}_{i} & =\mu_{i}\left(\frac{1}{\left\|\boldsymbol{r}-\boldsymbol{r}_{\boldsymbol{i}}\right\|}-\frac{\left\langle\boldsymbol{r} \cdot \boldsymbol{r}_{\boldsymbol{i}}\right\rangle}{\left\|\boldsymbol{r}_{\boldsymbol{i}}\right\|^{3}}\right) . \\
\mathcal{R}_{i} & =\frac{\mu_{i}}{r_{i}} \sum_{n \geq 2}\left(\frac{r}{r_{i}}\right)^{n} \mathcal{P}_{n}(\cos \psi)
\end{aligned}
$$

r_{i} the geocentric distance
ψ the geocentric angle between the third body and the satellite \mathcal{P}_{n} the Legendre polynomial of degree n.

The luni-solar perturbations

- The three components (x, y, z) of the position vector \boldsymbol{r} expressed in Keplerian elements ($a, e, i, \Omega, \omega, f$)
- The Cartesian coordinates X_{i}, Y_{i} and Z_{i} of the unit vector pointing towards the third body.
- Usual developments of f and $\frac{r}{a}$ in series of $e, \sin \frac{i}{2}$ and M

$$
\begin{gathered}
\mathcal{R}_{i}=\frac{\mu_{i}}{r_{i}} \sum_{n=2}^{+\infty} \sum_{k, l, j_{1}, j_{2}, j_{3}}\left(\frac{a}{r_{i}}\right)^{n} A_{k, l, j_{1}, j_{2}, j_{3}}^{(n)}\left(X_{i}, Y_{i}, Z_{i}\right) e^{|k|+2 j_{2}}\left(\sin \frac{i}{2}\right)^{\left|| |+2 j_{3}\right.} \cos \Phi \\
\Phi=j_{1} \lambda+j_{2} \varpi+j_{3} \Omega, \quad \lambda=M+\omega+\Omega, \quad \varpi=\omega+M
\end{gathered}
$$

Poincaré variables

Delaunay canonical momenta associated with λ, ϖ and Ω :

$$
L=\sqrt{\mu \mathbf{a}}, \quad G=\sqrt{\mu a\left(1-e^{2}\right)}, \quad H=\sqrt{\mu a\left(1-e^{2}\right)} \cos i
$$

Non singular Delaunay elements, keeping L and λ :

$$
\begin{array}{ll}
P=L-G & p=-\omega-\Omega \\
Q=G-H & q=-\Omega
\end{array}
$$

Poincaré variables :

$$
\begin{array}{ll}
x_{1}=\sqrt{2 P} \sin p & x_{4}=\sqrt{2 P} \cos p \\
x_{2}=\sqrt{2 Q} \sin q & x_{5}=\sqrt{2 Q} \cos q \\
x_{3}=\lambda=M+\Omega+\omega & x_{6}=L
\end{array}
$$

Dimensionless Poincaré variables

$$
\begin{gathered}
U=\sqrt{\frac{2 P}{L}} \quad V=\sqrt{\frac{2 Q}{L}} \\
e=U\left(1-\frac{U^{2}}{4}\right)^{\frac{1}{2}}=U-\frac{1}{8} U^{3}-\frac{1}{128} U^{5}+\mathcal{O}\left(U^{7}\right) \\
2 \sin \frac{i}{2}=V\left[1-\frac{U^{2}}{2}\right]^{-\frac{1}{2}}=V+\frac{1}{4} V U^{2}+\frac{3}{32} V U^{4}+\mathcal{O}\left(U^{6}\right)
\end{gathered}
$$

Non canonical dimensionless cartesian coordinates

$$
\begin{array}{ll}
\xi_{1}=U \sin p & \eta_{1}=U \cos p \\
\xi_{2}=V \sin q & \eta_{2}=V \cos q
\end{array}
$$

Hamiltonian

$$
\begin{aligned}
\mathcal{H}_{p o t} & =\mathcal{H}_{2 b}+\dot{\theta} \Lambda+\sum_{n=2}^{n_{\max }} \mathcal{R}_{p o t}^{(n)}+\sum_{i=1}^{2} \mathcal{H}_{i} \\
& =-\frac{\mu^{2}}{2 L^{2}}+\dot{\theta} \Lambda+\sum_{n=2}^{n_{\max }} \frac{1}{L^{2 n+2}} \sum_{j=1}^{N_{n}} \mathcal{A}_{j}^{(n)}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}\right) \mathcal{B}_{j}^{(n)}(\lambda, \theta) \\
& +\sum_{i=1}^{2} \sum_{n=2}^{n_{\max }} \frac{L^{2 n}}{r_{i}^{n+1}} \sum_{j=1}^{N_{n}} \mathcal{C}_{j}^{(n)}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, X_{i}, Y_{i}, Z_{i}\right) \mathcal{D}_{j}^{(n)}(\lambda)
\end{aligned}
$$

Dynamical system

$$
\begin{gathered}
\dot{\xi}_{i}=\frac{1}{L} \frac{\partial \mathcal{H}}{\partial \eta_{i}} \quad \dot{\eta}_{i}=-\frac{1}{L} \frac{\partial \mathcal{H}}{\partial \xi_{i}} \quad i=1,2 \\
\dot{\lambda}=\frac{\partial \mathcal{H}}{\partial L}-\frac{1}{2 L}\left[\sum_{i=1}^{2} \frac{\partial \mathcal{H}}{\partial \xi_{i}} \xi_{i}+\sum_{i=1}^{2} \frac{\partial \mathcal{H}}{\partial \eta_{i}} \eta_{i}\right] \quad \dot{L}=-\frac{\partial \mathcal{H}}{\partial \lambda}
\end{gathered}
$$

Semi-analytical averaged method

- Use of a series manipulator

λ	θ	ξ_{1}	η_{1}	ξ_{2}	η_{2}	L	X	Y	Z	r	X_{\odot}	Y_{\odot}	Z_{\odot}	r_{\odot}	
$\cos (0$	$0)$	$(0$	0	0	0	-6	0	0	0	0	0	0	0	$0)$	$0.12386619 \mathrm{D}-04$
$\cos (0$	$0)$	$(0$	0	0	2	-6	0	0	0	0	0	0	0	$0)$	$-0.18579928 \mathrm{D}-04$
$\cos (0$	$0)$	$(0$	0	0	4	-6	0	0	0	0	0	0	0	$0)$	$0.46449822 \mathrm{D}-05$

- Averaging process over the fast variable : λ
- Semi-analytical averaged solution

Number of terms

Perturbation	Number of terms			
n-order expansion	$n=2$	$n=4$	$n=6$	$n=8$
$\xi_{1}^{i_{1}} \eta_{1}^{i_{2}} \xi_{2}^{i_{3}} \eta_{2}^{i_{4}}$ with $i_{1}+i_{2}+i_{3}+i_{4} \leq n$				
Geopotential	5	15	31	53
$\mathcal{H}_{J_{2}}$	(33)	(145)	(410)	(895)
External Body - Sun \& Moon				
up to degree 2	27	86	197	390
	(205)	(836)	(2374)	(5480)
up to degree 3	73	250	611	1227
	(645)	(2642)	(7854)	(18380)

See also STELA (Deleflie - CNRS)

The geopotential: Kaula formulation

$$
U=-\frac{\mu}{r}-\sum_{n=2}^{\infty} \sum_{m=0}^{n} \sum_{p=0}^{n} \sum_{q=-\infty}^{+\infty} \frac{\mu}{a}\left(\frac{R_{e}}{a}\right)^{n} F_{n m p}(i) G_{n p q}(e) S_{n m p q}(\Omega, \omega, M, \theta)
$$

$$
\begin{aligned}
S_{n m p q}(\Omega, \omega, M, \theta) & =\left[\begin{array}{l}
+C_{n m} \\
-S_{n m}
\end{array}\right]_{n-\text { modd }}^{n-\text { meven }} \cos \Theta_{n m p q}(\Omega, \omega, M, \theta) \\
& +\left[\begin{array}{l}
+S_{n m} \\
+C_{n m}
\end{array}\right]_{n-\text { modd }}^{n-m \text { even }} \sin \Theta_{n m p q}(\Omega, \omega, M, \theta)
\end{aligned}
$$

Kaula gravitational argument, θ the sidereal time :

$$
\Theta_{n m p q}(\Omega, \omega, M, \theta)=(n-2 p) \omega+(n-2 p+q) M+m(\Omega-\theta)
$$

Gravitational resonances : resonances with the Earth rotation

- $\frac{P_{\oplus}}{P_{o b j}}=\frac{q_{1}}{q_{2}}$
- P_{\oplus} : Earth's rotational period : $2 \pi / n_{\oplus}=1$ day $\left(n_{\oplus}=\dot{\theta}\right)$
- $P_{o b j}$: body orbital period : $2 \pi / n=P_{o b j}$ day $(n=\dot{M})$
- $1 / 1$ for GEO and $2 / 1$ for MEO
- $\Theta_{n m p q}(\Omega, \omega, M, \theta)=(n-2 p) \omega+(n-2 p+q) M+m(\Omega-\theta)$
- $\dot{\Theta}_{n m p q}(\dot{\Omega}, \dot{\omega}, \dot{M}, \dot{\theta})=(n-2 p) \dot{\omega}+(n-2 p+q) \dot{M}+m(\dot{\Omega}-\dot{\theta}) \simeq 0$
- $q=0: \frac{\dot{M}}{\dot{\theta}} \simeq \frac{\dot{\lambda}}{\dot{\theta}} \simeq \frac{q_{1}}{q_{2}}$
- Resonant Hamiltonian $\mathcal{H}_{J_{22}}$

Geostationary model of resonance

- Cartesian Hamiltonian coordinates for e, i, $\varpi, \Omega: \xi_{i}$ and η_{i}
- $\mathcal{H}=\mathcal{H}_{J_{22}}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, \Lambda, \lambda, L, \theta\right)+\dot{\theta} \wedge$
- Resonant angle : $\sigma=\lambda-\theta$
- Corrected momentum : $L^{\prime}=L, \quad \theta^{\prime}=\theta, \quad \Lambda^{\prime}=\Lambda+L$
- $\mathcal{H}=\mathcal{H}_{J_{22}}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, \sigma, L^{\prime}, \theta\right)+\dot{\theta}\left(\Lambda^{\prime}-L^{\prime}\right)$

Resonant averaging

$$
\begin{aligned}
& \mathcal{H}_{J_{22}}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, L, \Lambda, \theta, \lambda\right) \\
& \mathcal{H}_{J_{22}}\left(\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}, L^{\prime}, \Lambda^{\prime}, \theta^{\prime}, \sigma\right) \\
& \overline{\mathcal{H}}_{J_{22}}\left(\bar{\xi}_{1}, \bar{\eta}_{1}, \bar{\xi}_{2}, \bar{\eta}_{2}, \bar{L}^{\prime}, \bar{\Lambda}^{\prime},-, \bar{\sigma}\right)
\end{aligned}
$$

Resonant averaged hamiltonian

Perturbation	Number of terms									
n-order expansion										
$\xi_{1}^{i_{1}} \eta_{1}^{i_{2}} \xi_{2}^{i_{3}} \eta_{2}^{i_{4}}$ with $i_{1}+i_{2}+i_{3}+i_{4} \leq n$	$n=2$	$n=4$	$n=6$	$n=8$						
Resonant disturbing function										
$\mathcal{H}_{J_{22}}=\mathcal{H}_{C_{22}}+\mathcal{H}_{S_{22}}$	10	40	104	206						

σ	θ	ξ_{1}	η_{1}	ξ_{2}	η_{2}	L	X	Y	Z	r	X_{\odot}	Y_{\odot}	Z_{\odot}	r_{\odot}	
$\cos (2$	$0)$	$(0$	0	0	0	-6	0	0	0	0	0	0	0	$0)$	$0.1077767255 D-06$
$\cos (2$	$0)$	$(0$	0	0	0	-6	0	0	0	0	0	0	0	$0)$	$0.1080907167 D-06$
$\sin (2$	$0)$	$(0$	0	0	0	-6	0	0	0	0	0	0	0	$0)$	$-0.6204881922 D-07$

Simple resonant model

- $\mathcal{H}(L, \sigma, \Lambda)=-\frac{\mu^{2}}{2 L^{2}}+\dot{\theta}(\Lambda-L)+\frac{1}{L^{6}}\left[\alpha_{1} \cos 2 \sigma+\alpha_{2} \sin 2 \sigma\right]$
- $\alpha_{1} \simeq 0.1077 \times 10^{-6}, \quad \alpha_{2} \simeq-0.6204 \times 10^{-7}$
- Equilibria: $\frac{\partial \mathcal{H}}{\partial L}=0=\frac{\partial \mathcal{H}}{\partial \sigma}$
- Two stable equilibria $\left(\sigma_{11}^{*}, L_{11}^{*}\right),\left(\sigma_{12}^{*}, L_{12}^{*}\right)$
- Two unstable equilibria $\left(\sigma_{21}^{*}, L_{21}^{*}\right),\left(\sigma_{22}^{*}, L_{22}^{*}\right)$ are found to

$$
\begin{array}{ll}
\sigma_{11}^{*}=\lambda^{*} & \sigma_{12}^{*}=\lambda^{*}+\pi \\
\sigma_{21}^{*}=\lambda^{*}+\frac{\pi}{2} & \sigma_{22}^{*}=\lambda^{*}+\frac{3 \pi}{2},
\end{array}
$$

- $L_{11}^{*}=L_{12}^{*}=0.99999971, \quad L_{21}^{*}=L_{22}^{*}=1.00000029$,
- $L=1$ corresponds to 42164 km .
- $\lambda^{*} \simeq 75.07^{\circ}$

Resonant phase space

Resonant period

- $x=\sqrt{2 L} \cos \sigma, y=\sqrt{2 L} \sin \sigma$ and consequently x^{*}, y^{*}.
- Taylor series around $\left(x^{*}, y^{*}\right)$
- $X=\left(x-x^{*}\right), \quad Y=\left(y-y^{*}\right)$
- $\mathcal{H}^{*}(X, Y, \Lambda)=\dot{\theta} \Lambda+\frac{1}{2}\left(a X^{2}+2 b X Y+c Y^{2}\right)+\cdots$
- Rotation : $X=p \cos \psi+q \sin \psi$ and $Y=-p \sin \psi+q \cos \psi$
- Choice of $\Psi:(a-c) \sin 2 \Psi+2 b \cos 2 \Psi=0$
- $\mathcal{H}^{*}(p, q, \Lambda)=\dot{\theta} \Lambda+\frac{1}{2}\left[A p^{2}+C q^{2}\right]$
- Scaling : $p=\alpha p^{\prime}$ and $q=\frac{1}{\alpha} q^{\prime}$ by $A \alpha^{2}=\frac{C}{\alpha^{2}}$,
- $\mathcal{H}(J, \phi, \Lambda)=\dot{\theta} \Lambda+\sqrt{A C} J$
- Action-angle $(J, \phi): p^{\prime}=\sqrt{2 J} \cos \phi, \quad q^{\prime}=\sqrt{2 J} \cos \phi$.
- $\nu_{f}=\frac{\partial \mathcal{H}}{\partial J}=\sqrt{A C}=7.674 \times 10^{-3} / d$, period of 818.7 days.

Resonant motion

Fig. 6. Semi-major axis a [left] and resonant angle $\sigma=\lambda-\theta$ [right] of several geosynchronous space debris $\left[a_{0}=42164 \mathrm{~km}, e_{0}=0, i_{0}=0\right]$ the initial longitude of which are $\lambda_{0}=5^{\circ}, 35^{\circ}, 75^{\circ}$.

Resonant motion

Fig. 7. Libration periods of 32 virtual space debris the initial longitude λ_{0} of which varied from 0 to 2π.

- Hamiltonian level curve corresponding to one of the unstable equilibria L_{u} and σ_{u}
$\mathcal{H}\left(L_{u}, \sigma_{u}, \Lambda\right)=-\frac{\mu^{2}}{2 L^{2}}+\dot{\theta}(\Lambda-L)+\frac{1}{L^{6}}\left[\alpha_{1} \cos 2 \sigma+\alpha_{2} \sin 2 \sigma\right]$
- Maxima and minima of this "banana curve", corresponding to the stable equilibria
- Quadratic approximation about L_{u} : the width Δ of the resonant zone

$$
\Delta=\sqrt{\frac{\gamma^{2}+8 \delta \beta}{\beta^{2}}} \quad \delta=\frac{\alpha_{1}}{L_{u}^{6} \cos 2 \sigma_{u}} \quad \beta=-\frac{3}{2} \frac{\mu^{2}}{L_{u}^{4}} \quad \gamma=\frac{\mu^{2}}{L_{u}^{3}}-\dot{\theta}
$$

- The numerical value is of the order of 69 km .

Generalization

- Similar approach : Rossi on MEO (resonance 2:1) CM\&DA
- Paper of Celletti and Gales: On the Dynamics of Space Debris: 1:1 and 2:1 Resonances (JNS) 2014
- Very complete paper :

Celest Mech Dyn Astr (2015) 123:203-222
DOI 10.1007/s10569-015-9636-1
ORIGINAL ARTICLE

Dynamical investigation of minor resonances for space debris

Alessandra Celletti ${ }^{1}$ - Cătălin Galeş ${ }^{2}$

Resonant motion

Table 2 Value of the semimajor axis corresponding to several resonances

$j: \ell$	$a(\mathrm{~km})$	$j: \ell$	$a(\mathrm{~km})$
$1: 1$	42164.2	$4: 3$	34805.8
$2: 1$	26561.8	$5: 1$	14419.9
$3: 1$	20270.4	$5: 2$	22890.2
$3: 2$	32177.3	$5: 3$	29994.7
$4: 1$	16732.9	$5: 4$	36336

Resonant motion

Table 3 Terms whose sum provides the expression of $R_{\text {earth }}^{\text {res } j: \ell}$ up to the order N

$j: \ell$	N	Terms
$3: 1$	4	$\mathcal{T}_{330-2}, \mathcal{T}_{3310}, \mathcal{T}_{3322}, \mathcal{T}_{431-1}, \mathcal{T}_{4321}$
$3: 2$	4	$\mathcal{T}_{330-1}, \mathcal{T}_{3311}, \mathcal{T}_{430-2}, \mathcal{T}_{4310}, \mathcal{T}_{4322}$
$4: 1$	6	$\mathcal{T}_{441-1}, \mathcal{T}_{4421}, \mathcal{T}_{541-2}, \mathcal{T}_{5420}, \mathcal{T}_{5432}, \mathcal{T}_{642-1}, \mathcal{T}_{6431}$
$4: 3$	5	$\mathcal{T}_{440-1}, \mathcal{T}_{4411}, \mathcal{T}_{540-2}, \mathcal{T}_{5410}, \mathcal{T}_{5422}$
$5: 1$	6	$\mathcal{T}_{551-2}, \mathcal{T}_{5520}, \mathcal{T}_{5532}, \mathcal{T}_{652-1}, \mathcal{T}_{6531}$
$5: 2$	6	$\mathcal{T}_{551-1}, \mathcal{T}_{5521}, \mathcal{T}_{651-2}, \mathcal{T}_{6520}, \mathcal{T}_{6532}$
$5: 3$	6	$\mathcal{T}_{550-2}, \mathcal{T}_{5510}, \mathcal{T}_{5522}, \mathcal{T}_{651-1}, \mathcal{T}_{6521}$
$5: 4$	6	$\mathcal{T}_{550-1}, \mathcal{T}_{5511}, \mathcal{T}_{650-2}, \mathcal{T}_{6510}, \mathcal{T}_{6522}$

Fig. 2 The amplitude of the resonances for different values of the eccentricity (within 0 and 0.5 on the x axis) and the inclination (within 0° and 90° on the y axis) for $\omega=0^{\circ}, \Omega=0^{\circ}$; the color bar provides the measure of the amplitude in kilometers. In order from top left to bottom right: $3: 1$, $3: 2,4: 1,4: 3,5: 1,5: 2,5: 3,5: 4$

Solar Radiation pressure

- Solar radiation pressure is a quite complicated force with different components
- Theory of Orbit determination : Milani and Gronchi - ch 14
- New solar Radiation Pressure Force Model for navigation : McMahon and Scheeres - 2010
- Direct radiation pressure acceleration
- Starting point : simplified models

Solar Radiation pressure with high A/M

Scheeres and Rosengren : Averaged model, based on e and angular momentum

Long-term Dynamics of HAMR Objects in HEO

Aaron Rosengren*, Daniel Scheeres ${ }^{\dagger}$
University of Colorado at Boulder, Boulder, CO 80309

Gachet, Celletti, Pucacco, Efthymiopoulos: Complete perturbation theory with planetary motion

 DOI 10.1007/s 10569-016-9746-4 -Geostationary secular dynamics revisited: application to high area-to-mass ratio objects

Fabien Gachet ${ }^{1}{ }^{(D)}$. Alessandra Celletti ${ }^{1}$
Giuseppe Pucacco ${ }^{3}$. Christos Efthymiopoulos ${ }^{2}$

Direct radiation pressure acceleration

The acceleration due to the direct radiation pressure can be written in the form:

$$
\mathbf{a}_{\mathbf{r p}}=C_{r} P_{r}\left[\frac{a_{\odot}}{\left\|\mathbf{r}-\mathbf{r}_{\odot}\right\|}\right]^{2} \frac{A}{m} \frac{\mathbf{r}-\mathbf{r}_{\odot}}{\left\|\mathbf{r}-\mathbf{r}_{\odot}\right\|}
$$

- C_{r} is the non-dimensional reflectivity coefficient $\left(0<C_{r}<2\right)$,
- $P_{r}=4.56 \cdot 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$ is the radiation pressure per unit of mass for an object located at a distance of $a_{\odot}=1 A U$,
- \mathbf{r} is the geocentric position of the space debris; \mathbf{r}_{\odot} is the geocentric position of the Sun,
- A is the exposed area to the Sun of the space debris,
- m is the mass of the space debris.

Non-gravitational influence

A / m distribution

Object	$A / \mathrm{m}^{2} / \mathrm{kg}$
Lageos 1 and 2	0.0007
Starlette	0.001
GPS (Block II)	0.02
Moon	$1.3 \cdot 10^{-10}$
Space debris	$0<A / m<?$

GEO debris with very high eccentricity

Schildknecht et al, 2010

Order of magnitude of radiation pressure

Chao 2009

$$
\mathcal{H}(\mathbf{v}, \mathbf{r})=\mathcal{H}_{\text {kepl }}(\mathbf{v}, \mathbf{r})+\mathcal{H}_{\text {srp }}(\mathbf{r})
$$

fixed inertial equatorial geocentric frame
$\mathbf{r} \quad=$ geocentric position of the satellite
$\mathbf{v} \quad=$ velocity of the satellite
$\mathcal{H}_{\text {kepl }}(\mathbf{v}, \mathbf{r})=$ attraction of the Earth
$\mathcal{H}_{s r p}(\mathbf{r})=$ direct solar radiation pressure potential

$$
\begin{aligned}
\mathcal{H}_{\text {kepl }} & =\frac{\|\mathbf{v}\|^{2}}{2}-\frac{\mu}{\|\mathbf{r}\|} \\
\mathcal{H}_{\text {srp }} & =-C_{r} \frac{1}{\left\|\mathbf{r}-\mathbf{r}_{\odot}\right\|} \operatorname{Pr} \frac{A}{m} a_{\odot}^{2}
\end{aligned}
$$

$\mu=\mathcal{G} M_{\oplus}, C_{r} \simeq 1, \mathbf{r}_{\odot}$ position of the Sun, $P_{r}=4.56 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$,
A / m area-to-mass ratio, $a_{\odot}=1 \mathrm{AU}$.
Polynômes de Legendre : first order

The toy model

$$
\mathcal{H}=-\frac{\mu^{2}}{2 L^{2}}+C_{r} P_{r} \frac{A}{m} r \bar{r}_{\odot} \cos (\phi)
$$

ϕ the angle between \mathbf{r} and $\mathbf{r}_{\odot}, \quad L=\sqrt{\mu \mathrm{a}}, \quad \bar{r}_{\odot}=\frac{r_{\odot}}{a_{\odot}}$.

$$
\begin{aligned}
\mathcal{H} & =-\frac{\mu^{2}}{2 L^{2}}+C_{r} P_{r} \frac{A}{m} a(u \xi+v \eta) \\
& =H\left(L, G, H, M, \omega, \Omega, r_{\odot}\right)
\end{aligned}
$$

Debris orbital motion : $u=\cos E-e$ and $v=\sin E \sqrt{1-e^{2}}$.
Debris orbit orientation and Sun orbital motion :

$$
\begin{aligned}
& \xi=\xi_{1} \bar{r}_{\odot, 1}+\xi_{2} \bar{r}_{\odot, 2}+\xi_{3} \bar{r}_{\odot, 3} \\
& \eta=\eta_{1} \bar{r}_{\odot, 1}+\eta_{2} \bar{r}_{\odot, 2}+\eta_{3} \bar{r}_{\odot, 3} \\
& \begin{array}{l}
\xi_{1}=\cos \Omega \cos \omega-\sin \Omega \cos i \sin \omega \\
\xi_{2}=\operatorname{lin} \Omega \cos \omega+\cos \Omega \cos i \sin \omega \\
\xi_{3}=\operatorname{lin} i \sin \omega
\end{array}
\end{aligned}
$$

Averaging over the short periods : 1 day

Periods : 1 day (Orbital motion E) and 1 year (Sun $\bar{r}_{\odot, i}$) Averaging over the fast variable (M the mean anomaly) :

$$
\begin{aligned}
\overline{\mathcal{H}} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathcal{H} d M \\
& =-\frac{\mu^{2}}{2 \bar{L}^{2}}+\frac{1}{2 \pi} C_{r} P_{r} \frac{A}{m} \bar{a} \int_{0}^{2 \pi}(u \xi+v \eta) d M
\end{aligned}
$$

$d M=(1-e \cos E) d E$

$$
\begin{aligned}
\overline{\mathcal{H}} & =-\frac{\mu^{2}}{2 \bar{L}^{2}}-\frac{3}{2} C_{r} P_{r} \frac{A}{m} \frac{\bar{L}^{2}}{\mu} \bar{e} \xi \\
& =\overline{\mathcal{H}}\left(\bar{L}, \bar{G}, \bar{H},-, \bar{\omega}, \bar{\Omega}, r_{\odot}\right)
\end{aligned}
$$

The development

$$
\overline{\mathcal{H}}=-\frac{\mu^{2}}{2 L^{2}}-\frac{3}{2} C_{r} P_{r} \frac{A}{m} \frac{L^{2}}{\mu} e \xi
$$

Poincaré variables:

$$
\begin{array}{lll}
p=-\varpi & P & =L-G \\
q & =-\Omega & Q \\
=-\sqrt{2 P} \sin p & y_{1}=\sqrt{2 P} \cos p \\
x_{1}=\sqrt{2 P} & =\sqrt{2 Q} \cos q
\end{array}
$$

Approximations : $e \simeq \sqrt{\frac{2 P}{L}}, \cos ^{2} \frac{i}{2}=1-\frac{Q}{2 L}, \sin \frac{i}{2} \simeq \sqrt{\frac{Q}{2 L}}$
Circular orbit for the Sun (obliquity ϵ)

$$
\begin{aligned}
\bar{r}_{\odot, 1} & =\cos \lambda_{\odot} \\
\bar{r}_{\odot, 2} & =\sin \lambda_{\odot} \cos \epsilon \\
\bar{r}_{\odot, 3} & =\sin \lambda_{\odot} \sin \epsilon
\end{aligned}
$$

with $\lambda_{\odot}=n_{\odot} t+\lambda_{\odot, 0}$.

$$
\begin{aligned}
\mathcal{H} & =\mathcal{H}\left(x_{1}, y_{1}, x_{2}, y_{2}, \lambda_{\odot}\right) \\
& \simeq-n_{\odot} \kappa \bar{r}_{\odot, 1}\left(x_{1} R_{2}+y_{1} R_{1}\right) \\
& +n_{\odot} \kappa \bar{r}_{\odot, 2}\left(x_{1} R_{3}+y_{1} R_{2}\right) \\
& +n_{\odot} \kappa \bar{r}_{\odot, 3}\left(x_{1} R_{5}-y_{1} R_{4}\right)
\end{aligned}
$$

$\kappa=\frac{3}{2} C_{r} \operatorname{Pr} \frac{A}{m} \frac{a}{\sqrt{L}}$
$R_{i}\left(x_{2}, y_{2}\right)$ are second degree polynomials in x_{2} and y_{2}. Dynamical system associated:

$$
\begin{array}{ll}
\dot{x}_{1}=\frac{\partial \mathcal{H}}{\partial y_{1}} & \dot{y}_{1}=-\frac{\partial \mathcal{H}}{\partial x_{1}} \\
\dot{x}_{2}=\frac{\partial \mathcal{H}_{2}}{\partial y_{2}} & \dot{y}_{2}=-\frac{\partial \mathcal{H}}{\partial x_{2}} .
\end{array}
$$

The eccentricity - pericenter motion : x_{1} and y_{1}

$$
x_{2}=0=y_{2}
$$

$$
\begin{aligned}
& \dot{x}_{1}=-n_{\odot} \kappa \bar{r}_{\odot, 1} \\
& \dot{y}_{1}=-n_{\odot} \kappa \bar{r}_{\odot, 2}
\end{aligned}
$$

Solution explicitly given by

$$
\begin{aligned}
& x_{1}=-\kappa \sin \lambda_{\odot}+C_{x} \\
& y_{1}=\kappa \cos \lambda_{\odot} \cos \epsilon+C_{y}=\kappa\left(\sin \lambda_{\odot}-D_{x}\right) \\
& =\kappa\left(\cos \lambda_{\odot} \cos \epsilon+D_{y}\right) .
\end{aligned}
$$

e and ϖ : a periodic motion (1 year)
κ increases, $e_{\text {max }}$ increases
Explanation of the behavior of GEO space debris (high e)

The eccentricity - pericenter motion : 1 year

$$
A / m=5 m^{2} / \mathrm{kg} \quad A / m=10 m^{2} / \mathrm{kg} \quad A / m=20 \mathrm{~m}^{2} / \mathrm{kg}
$$

$x_{2} \neq 0 \neq y_{2}$

$$
\mathcal{H}=\mathcal{H}\left(x_{1}\left(\lambda_{\odot}\right), y_{1}\left(\lambda_{\odot}\right), R_{i}\left(x_{2}, y_{2}\right), \lambda_{\odot}\right)
$$

Averaged equations over λ_{\odot} : system of mean linear equations

$$
\begin{aligned}
& \dot{\bar{x}}_{2}=\nu \bar{y}_{2}-\rho \\
& \dot{\bar{y}}_{2}=-\nu \bar{x}_{2}
\end{aligned}
$$

$\nu=n_{\odot} \kappa^{2} \cos \epsilon \frac{1}{2 L}, \quad \rho=n_{\odot} \kappa^{2} \sin \epsilon \frac{1}{2 \sqrt{L}}$
Solution : $\left\{\begin{array}{l}\bar{x}_{2}=\mathcal{A} \sin \psi \\ \bar{y}_{2}=\mathcal{A} \cos \psi-\frac{\rho}{\nu}=\mathcal{A} \cos \psi-\tan \epsilon \sqrt{L}\end{array}\right.$
$\psi=\nu t+\psi_{0}$
i and Ω : a periodic motion (dozens of years) with $i_{\max } \simeq 2 \epsilon$ κ increases, ν increases and the period decreases.

The inclination - node motion : dozens of years

$$
A / m=5 \mathrm{~m}^{2} / \mathrm{kg} \quad A / m=10 \mathrm{~m}^{2} / \mathrm{kg} \quad A / m=20 \mathrm{~m}^{2} / \mathrm{kg} \quad A / m=40 \mathrm{~m}^{2} / \mathrm{kg}
$$

The inclination and eccentricity combined motion

Back to the averaging process

$$
\begin{aligned}
& \mathcal{K}=n_{\odot} \Lambda_{\odot}-n_{\odot} \kappa^{2} f_{0}\left(x_{2}, y_{2}\right)-n_{\odot} \kappa^{2} f_{1}\left(x_{2}, y_{2}, \lambda_{\odot}\right) \\
& \qquad \begin{aligned}
& f_{0}\left(x_{2}, y_{2}\right)=\frac{1}{2}\left(R_{1} \cos \epsilon+R_{3} \cos \epsilon+R_{5} \sin \epsilon\right) \\
& f_{1}\left(x_{2}, y_{2}, \lambda_{\odot}\right)=g_{1} \cos \lambda_{\odot}+g_{2} \sin \lambda_{\odot}+g_{3} \cos 2 \lambda_{\odot}+g_{4} \sin 2 \lambda_{\odot} \\
& \text { with } g_{i}=g_{i}\left(x_{2}, y_{2}\right) \text { and } R_{i}=R_{i}\left(x_{2}, y_{2}\right)
\end{aligned}
\end{aligned}
$$

The homological equation : $\overline{\mathcal{H}}_{1}=\mathcal{H}_{1}+\left\{\mathcal{H}_{0} ; \mathcal{W}\right\}=\mathcal{H}_{1}-\frac{\partial \mathcal{H}_{0}}{\partial \Lambda_{\odot}} \frac{\partial \mathcal{W}}{\partial \lambda_{\odot}}$

$$
\begin{gathered}
\mathcal{W}=-\kappa^{2}\left(g_{1} \sin \lambda_{\odot}-g_{2} \cos \lambda_{\odot}+\frac{1}{2} g_{3} \sin 2 \lambda_{\odot}-\frac{1}{2} g_{4} \cos 2 \lambda_{\odot}\right) \\
x_{2}=\bar{x}_{2}+\frac{\partial \mathcal{W}}{\partial y_{2}}\left(\lambda_{\odot}\right) \quad y_{2}=\bar{y}_{2}-\frac{\partial \mathcal{W}}{\partial x_{2}}\left(\lambda_{\odot}\right)
\end{gathered}
$$

Order of magnitude of radiation pressure

Other perturbations

J_{2}

$$
\begin{aligned}
H_{J_{2}}(\vec{r}) & =\frac{\mu}{r} J_{2}\left(\frac{r_{\oplus}}{r}\right)^{2} P_{2}\left(\sin \phi_{s a t}\right) \\
& =\frac{\mu}{r} J_{2}\left(\frac{r_{\oplus}}{r}\right)^{2} \frac{1}{2}\left(3\left(\frac{z}{r}\right)^{2}-1\right)
\end{aligned}
$$

where $\phi_{\text {sat }}$ represents the latitude of the satellite, and consequently $\sin \phi_{\text {sat }}=z / r$.

SRP second order

$$
\begin{aligned}
H_{S R P}\left(\vec{r}, \vec{r}_{\odot}\right) & =-C_{r} P_{r} \frac{A}{m} a_{\odot}^{2} \frac{1}{\left\|\vec{r}-\vec{r}_{\odot}\right\|} \\
& \simeq-C_{r} P_{r} \frac{A}{m} a_{\odot}^{2} \sum_{n=1}^{n=2}\left(\frac{r}{a_{\odot}}\right)^{n} P_{n}(\cos \phi)
\end{aligned}
$$

Third body : Sun on a circular orbit

$$
\begin{aligned}
H_{3 b s}\left(\vec{r}, \vec{r}_{\odot}\right) & =-\mu_{\odot} \frac{1}{\left\|\vec{r}-\vec{r}_{\odot}\right\|}+\mu_{\odot} \frac{\vec{r} \cdot \vec{r}_{\odot}}{\left\|\vec{r}_{\odot}\right\|^{3}} \\
& \simeq-\frac{\mu_{\odot}}{a_{\odot}} \sum_{n \geq 0}\left(\frac{r}{a_{\odot}}\right)^{n} P_{n}(\cos \phi)+\mu_{\odot} \frac{r a_{\odot} \cos (\phi)}{a_{\odot}^{3}} \\
& \simeq-\frac{\mu_{\odot}}{a_{\odot}}\left(1+\left(\frac{r}{a_{\odot}}\right)^{2} P_{2}(\cos \phi)\right)
\end{aligned}
$$

where $\mu_{\odot}=G M_{\odot}$ with M_{\odot} the mass of the Sun.

Third body : Moon on a circular orbit

$$
H_{3 b M}\left(\vec{r}, \vec{r}_{\mathbb{C}}\right)=-\frac{\mu_{\mathbb{C}}}{a_{\mathbb{C}}}\left(1+\sum_{n \geq 2}\left(\frac{r}{a_{\mathbb{C}}}\right)^{n} P_{n}\left(\cos \phi_{M}\right)\right)
$$

where $\mu_{\mathbb{C}}=G M_{\mathbb{C}}$ with $M_{\mathbb{C}}$ the mass of the Moon, and ϕ_{M} the angle between the satellite and the Moon

$$
\begin{aligned}
& H_{S R P}\left(\vec{r}, \vec{r}_{\odot}\right)+H_{3 b S}\left(\vec{r}, \vec{r}_{\odot}\right) \\
\simeq & H_{S R P_{1}}\left(\vec{r}, \vec{r}_{\odot}\right)+H_{S R P_{2}}\left(\vec{r}, \vec{r}_{\odot}\right)+H_{3 b S}\left(\vec{r}, \vec{r}_{\odot}\right) \\
\simeq & C_{r} P_{r} \frac{A}{m} a_{\odot} r \cos (\phi) \\
+ & {\left[C_{r} P_{r} \frac{A}{m} a_{\odot}-\frac{\mu_{\odot}}{a_{\odot}}\right]\left(\frac{r}{a_{\odot}}\right)^{2} P_{2}(\cos \phi) }
\end{aligned}
$$

Averaging over daily period :

$$
\begin{aligned}
\bar{H}\left(x_{1}, y_{1}, x_{2}, y_{2}\right) & =\bar{H}_{\text {kepler }}+\bar{H}_{J_{2}}\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \\
& +\bar{H}_{S R P_{1}}\left(x_{1}, y_{1}, x_{2}, y_{2}, \vec{r}_{\odot}\right) \\
& +\bar{H}_{S R P_{2}+3 b S}\left(x_{1}, y_{1}, x_{2}, y_{2}, \vec{r}_{\odot}\right) \\
& +\bar{H}_{3 b M}\left(x_{1}, y_{1}, x_{2}, y_{2}, \vec{r}_{\overparen{C}}\right)
\end{aligned}
$$

Averaging results

$$
\begin{aligned}
& \bar{H}_{J_{2}}=C_{p} P+C_{q} Q=\frac{C_{p}}{2}\left(x_{1}^{2}+y_{1}^{2}\right)+\frac{C_{q}}{2}\left(x_{2}^{2}+y_{2}^{2}\right) \\
& \bar{H}_{S R P_{1}}=-\frac{3}{2} C_{r} P_{r} \frac{A}{m} a e \xi \\
& \bar{H}_{S R P_{2}+3 b S}=-\left[C_{r} P_{r} \frac{A}{m} a_{\odot}-\frac{\mu_{\odot}}{a_{\odot}}\right] \frac{3 a^{2}}{4 a_{\odot}^{2}} w^{2} \\
& =-\beta \frac{3 a^{2}}{4 a_{\odot}^{2}} w^{2} \\
& \bar{H}_{3 B M}=\frac{\mu_{\mathbb{G}}}{a_{\mathbb{G}}} \frac{3 a^{2}}{4 a_{\mathbb{G}}^{2}} w_{M}^{2} \\
& w=-\sin q \sin i \vec{r}_{\odot, 1}-\cos q \sin i \vec{r}_{\odot, 2}+\cos i \vec{r}_{\odot, 3} \\
& w_{M}=-\sin q \sin i \vec{r}_{\mathbb{1}, 1}-\cos q \sin i \vec{r}_{\mathbb{1}, 2}+\cos i \vec{r}_{\mathbb{1}, 3}
\end{aligned}
$$

$$
\begin{gathered}
\dot{x}_{1}(t)=-C_{2} y_{1}-n_{\odot} k r_{\odot, 1}, \\
\dot{y}_{1}(t)=C_{2} x_{1}-n_{\odot} k r_{\odot, 2}, \\
C_{2}=\frac{3}{2} \sqrt{\frac{\mu}{a^{3}}} J_{2} \frac{r_{\oplus}^{2}}{a^{2}} \\
x_{1}(t)=C_{x}+\frac{k \sin \left(n_{\odot} t+\lambda_{\odot, 0}\right)}{1-e t a^{2}}[\eta \cos \epsilon+1], \\
y_{1}(t)=C_{y}+\frac{k \cos \left(n_{\odot} t+\lambda_{\odot, 0}\right)}{1-\eta^{2}}[\cos \epsilon+\eta],
\end{gathered}
$$

$$
\begin{aligned}
\dot{x}_{2}(t) & =C_{q} y_{2}-n_{\odot} k\left[r_{\odot, 1}\left(\frac{x_{1} x_{2}}{2 L}\right)-r_{\odot, 2}\left(\frac{-2 x_{1} y_{2}}{2 L}+\frac{y_{1} x_{2}}{2 L}\right)-r_{\odot, 3}\left(\frac{x_{1}}{\sqrt{L}}\right)\right. \\
& +\frac{\partial \bar{H}_{S R P_{2}+3 b S}}{\partial y_{2}}+\frac{\partial \bar{H}_{3 b M}}{\partial y_{2}} \\
\dot{y}_{2}(t) & =-C_{q} x_{2}+n_{\odot} k\left[r_{\odot, 1}\left(\frac{-2 x_{2} y_{1}}{2 L}+\frac{x_{1} y_{2}}{2 L}\right)-r_{\odot, 2}\left(\frac{y_{1} y_{2}}{2 L}\right)-r_{\odot, 3}(-\right. \\
& -\frac{\partial \bar{H}_{S R P_{2}+3 b S}}{\partial x_{2}}-\frac{\partial \bar{H}_{3 b M}}{\partial x_{2}} .
\end{aligned}
$$

Averaging over the motion of the Sun and of the Moon

$$
\begin{aligned}
& \dot{x}_{2}(t)=d_{1} y_{2}+d_{3}, \\
& \dot{y_{2}}(t)=-d_{2} x_{2}, \\
& d_{1}=n_{\odot} \frac{k^{2}}{4 L} \cos \epsilon+\frac{C_{q}}{2}-\delta-\delta \cos ^{2} \epsilon-\gamma-\gamma \cos ^{2} \epsilon_{M} \\
& d_{2}=n_{\odot} \frac{k^{2}}{4 L} \cos \epsilon+\frac{C_{q}}{2}-2 \delta \cos ^{2} \epsilon-2 \gamma \cos ^{2} \epsilon_{M} \\
& d_{3}=-n_{\odot} \frac{k^{2}}{2 \sqrt{L}} \sin \epsilon+2 \delta \sqrt{L} \sin ^{2} \epsilon+2 \gamma \sqrt{L} \sin ^{2} \epsilon_{M}
\end{aligned}
$$

where $\delta=\beta \frac{3 a^{2}}{16 L a_{\odot}^{2}}$ and $\gamma=-\frac{\mu_{\mathbb{G}}}{a_{\mathbb{C}}} \frac{3 a^{2}}{16 L a_{\mathbb{G}}^{2}}$.
We write the corresponding solution for $x_{2}(t)$ and $y_{2}(t)$:

$$
\begin{aligned}
& x_{2}(t)=\mathcal{D} \sin \left(\sqrt{d_{1} d_{2}} t-\psi\right) \\
& y_{2}(t)=\mathcal{D} \sqrt{\frac{d_{2}}{d_{1}}} \cos \left(\sqrt{d_{1} d_{2}} t-\psi\right)-\frac{d_{3}}{d_{1}}
\end{aligned}
$$

Introduction of J_{2}, Sun and Moon in the description (Casanova)

Inclination motion

$$
\begin{aligned}
& \text { SRP } \\
& \text { SRP }+J_{2} \\
& \text { SRP }+J_{2}+\text { Sun } \\
& \text { SRP }+J_{2}+\text { Sun }+ \text { Moon }
\end{aligned}
$$

$\mathrm{A} / \mathrm{M}=20 \mathrm{~m}^{2} / \mathrm{kg}$ - comparison with numerical integration

(a)

(b)

Mathematical work

- Presence of mathematical challenges
- Model of resonance + perturbations + averaging
- Comparisons between several models of atmosphere (< 1000 km)
- Research for stability zones (chaos) : churchyard or concentration orbits
- Use of the right integrator : symplectic
- Yarkovsky effect on space debris : negligible over 200 years
- Presence of secondary resonance, affecting the semi-major axis (period of 13000 years)

