Perturbation theory, KAM theory and Celestial Mechanics 4. Perturbation theory

Alessandra Celletti

Department of Mathematics University of Roma "Tor Vergata"

Sevilla, 25-27 January 2016

1. Introduction

2. Nearly-integrable Hamiltonian systems

- 3. Classical perturbation theory
- 3.1 Trigonometric case
- 3.2 Harmonic oscillator case

1. Introduction

2. Nearly-integrable Hamiltonian systems

- 3. Classical perturbation theory
- 3.1 Trigonometric case
- 3.2 Harmonic oscillator case

• Perturbation theory is an efficient tool to investigate nearly-integrable Hamiltonian systems, like the restricted three-body problem: the integrable part is Keplerian, the perturbation is due to the gravitational influence of the other primary, the perturbing parameter is the mass-ratio.

• Asteroid–Sun–Jupiter: m_A is so small that Sun and Jupiter move on Keplerian orbits ("restricted" problem); Jupiter–Sun mass–ratio: 10^{-3} . The solution of the restricted three–body problem can be investigated through perturbation theories and are used nowadays from ephemeris computations to astrodynamics.

• Perturbation theory in Celestial Mechanics is based on the implementation of a canonical transformation, which allows to find the solution of a nearly–integrable system within a better degree of approximation.

1. Introduction

2. Nearly-integrable Hamiltonian systems

- 3. Classical perturbation theory
- 3.1 Trigonometric case
- 3.2 Harmonic oscillator case

- Let us consider an *n*-dimensional Hamiltonian system described in terms of a set of conjugated action-angle variables $(\underline{I}, \underline{\varphi})$ with $\underline{I} \in V$, V being an open set of \mathbb{R}^n , and $\varphi \in \mathbb{T}^n$.
- A nearly–integrable Hamiltonian function $\mathcal{H}(\underline{I},\underline{\varphi})$ can be written in the form

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi}) , \qquad (1)$$

where *h* and *f* are analytic functions called, respectively, the unperturbed (or integrable) Hamiltonian and the perturbing function, while ε is a small parameter measuring the strength of the perturbation.

• For $\varepsilon = 0$ the Hamiltonian function reduces to

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I})$$
.

• The associated Hamilton's equations are simply

$$\underline{I} = \underline{0}
\underline{\dot{\varphi}} = \underline{\omega}(\underline{I}) ,$$
(2)

where we have introduced the *frequency* or *rotation number*:

$$\underline{\omega}(\underline{I}) \equiv \frac{\partial h(\underline{I})}{\partial \underline{I}} \; .$$

• Equations (2) can be trivially integrated as

$$\underline{I}(t) = \underline{I}(0) \underline{\varphi}(t) = \underline{\omega}(\underline{I}(0))t + \underline{\varphi}(0) ,$$

thus showing that the actions are constants, while the angle variables vary linearly with the time.

• For $\varepsilon \neq 0$ the equations of motion

$$\begin{split} \dot{\underline{I}} &= -\varepsilon \frac{\partial f}{\partial \underline{\varphi}}(\underline{I}, \underline{\varphi}) \\ \dot{\underline{\varphi}} &= \underline{\omega}(\underline{I}) + \varepsilon \frac{\partial f}{\partial I}(\underline{I}, \underline{\varphi}) \end{split}$$

might no longer be integrable and chaotic motions could appear.

Figure: Portrait of the classical standard map, starting with $x_0 = \pi$ and varying 100 initial conditions y_0 within the interval [0, 3]. *a*) Case $\varepsilon = 0$; *b*) case $\varepsilon = 0.5$.

1. Introduction

2. Nearly-integrable Hamiltonian systems

- 3. Classical perturbation theory
- 3.1 Trigonometric case
- 3.2 Harmonic oscillator case

Classical perturbation theory

• The aim of *classical perturbation theory* is to construct a canonical transformation, which allows to push the perturbation to higher orders in ε .

• We introduce a canonical change of variables $\mathcal{C} : (\underline{I}, \underline{\phi}) \to (\underline{I}', \underline{\phi}')$, such that

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi})$$

in the transformed variables becomes

$$\mathcal{H}'(\underline{I}',\underline{\varphi}') = \mathcal{H} \circ \mathcal{C}(\underline{I},\underline{\varphi}) \equiv h'(\underline{I}') + \varepsilon^2 f'(\underline{I}',\underline{\varphi}') , \qquad (3)$$

where h' and f' denote, respectively, the new unperturbed Hamiltonian and the new perturbing function.

Classical perturbation theory

• The aim of *classical perturbation theory* is to construct a canonical transformation, which allows to push the perturbation to higher orders in ε .

• We introduce a canonical change of variables $C : (\underline{I}, \underline{\phi}) \to (\underline{I}', \underline{\phi}')$, such that

$$\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi})$$

in the transformed variables becomes

$$\mathcal{H}'(\underline{I}',\underline{\varphi}') = \mathcal{H} \circ \mathcal{C}(\underline{I},\underline{\varphi}) \equiv h'(\underline{I}') + \varepsilon^2 f'(\underline{I}',\underline{\varphi}') , \qquad (3)$$

where h' and f' denote, respectively, the new unperturbed Hamiltonian and the new perturbing function.

• The proof is completely constructive and allows to obtain the new unperturbed Hamiltonian, the new perturbing function, the canonical transformation.

• One can iterate the algorithm to higher orders, say to obtain

$$\mathcal{H}''(\underline{I}'',\underline{\varphi}'') \;=\; \mathcal{H} \circ \mathcal{C}'(\underline{I},\underline{\varphi}) \;\equiv\; h''(\underline{I}'') + \varepsilon^3 f''(\underline{I}'',\underline{\varphi}'') \;,$$

and so on, provided one checks for the convergence!

- The result is obtained through the following steps:
- define a suitable canonical transformation close to the identity,
- \diamond perform a Taylor series expansion in ε ,
- \diamond require that the change of variables removes the dependence on the angles up to 2^{nd} order terms,
- \diamond solve a normal form (homological) equation for the generating function,
- ♦ expand in Fourier series to construct the explicit form of the canonical transformation.

• Consider two cases:

(*i*) the perturbing function f is a trigonometric function, namely there exists N > 0 such that

$$f(\underline{I},\underline{\varphi}) = \sum_{\underline{k}\in\mathbb{Z}^n,\ 0\leq |\underline{k}|\leq N} \widehat{f}_{\underline{k}}(\underline{I})\ e^{i\underline{k}\cdot\underline{\varphi}} \ ;$$

(*ii*) the unperturbed Hamiltonian is a harmonic oscillator with frequency $\underline{\omega}_0 \in \mathbb{R}^n$:

$$h(\underline{I}) = \underline{\omega}_0 \cdot (\underline{I} - \underline{I}_0) .$$

Proposition (case (i)).

Let $\mathcal{H}(\underline{I},\underline{\varphi}) = h(\underline{I}) + \varepsilon f(\underline{I},\underline{\varphi})$ with $(\underline{I},\underline{\varphi}) \in V \times \mathbb{T}^n$ for $V \subset \mathbb{R}^n$ open and f analytic and trigonometric on $V \times \mathbb{T}^n$. Assume that for any $\underline{I}_0 \in V$, the frequency satisfies

 $|\underline{\omega}(\underline{I}_0) \cdot \underline{k}| > 0$ for all $0 < |\underline{k}| \le N$.

Then, there exists $\rho_0 > 0$, $\varepsilon_0 > 0$ and for $|\varepsilon| < \varepsilon_0$ there exists a canonical transformation $(\underline{I}, \underline{\varphi}) \to (\underline{I}', \underline{\varphi}')$ defined in $S_{\frac{\rho_0}{2}}(\underline{I}_0) \times \mathbb{T}^n \subset V \times \mathbb{T}^n$ and with values in $S_{\rho_0}(\underline{I}_0) \times \mathbb{T}^n$, which transforms \mathcal{H} as

$$\mathcal{H}'(\underline{I}', \underline{\varphi}') = h'(\underline{I}') + \varepsilon^2 f'(\underline{I}', \underline{\varphi})' .$$

Proof.

• Define a change of variables through a close–to–identity generating function of the form $\underline{I}' \cdot \underline{\varphi} + \varepsilon \Phi(\underline{I}', \underline{\varphi})$ providing

$$\underline{I} = \underline{I}' + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}}
\underline{\varphi}' = \underline{\varphi} + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{I}'},$$
(4)

where $\Phi = \Phi(\underline{I}', \underline{\varphi})$ is an unknown function, which is determined in order that \mathcal{H} is transformed to \mathcal{H}' .

Proof.

• Define a change of variables through a close–to–identity generating function of the form $\underline{I}' \cdot \varphi + \varepsilon \Phi(\underline{I}', \varphi)$ providing

$$\underline{I} = \underline{I}' + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}}
\underline{\varphi}' = \underline{\varphi} + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{I}'},$$
(4)

where $\Phi = \Phi(\underline{I}', \underline{\varphi})$ is an unknown function, which is determined in order that \mathcal{H} is transformed to \mathcal{H}' .

• Split the perturbing function as

$$f(\underline{I},\underline{\varphi}) = \overline{f}(\underline{I}) + \widetilde{f}(\underline{I},\underline{\varphi}) ,$$

where

 $\diamond \overline{f}(\underline{I})$ is the average over the angle variables, $\diamond \widetilde{f}(\underline{I}, \underline{\varphi})$ is the remainder function defined as $\widetilde{f}(\underline{I}, \underline{\varphi}) \equiv f(\underline{I}, \underline{\varphi}) - \overline{f}(\underline{I})$. • Inserting the transformation in \mathcal{H} and expanding in Taylor series around $\varepsilon = 0$ up to the second order, one gets

$$\begin{split} h(\underline{l}' + \varepsilon \frac{\partial \Phi(\underline{l}', \underline{\varphi})}{\partial \underline{\varphi}}) + \varepsilon f(\underline{l}' + \varepsilon \frac{\partial \Phi(\underline{l}', \underline{\varphi})}{\partial \underline{\varphi}}, \varphi) \\ = & h(\underline{l}') + \underline{\omega}(\underline{l}') \cdot \varepsilon \frac{\partial \Phi(\underline{l}', \underline{\varphi})}{\partial \underline{\varphi}} + \varepsilon \overline{f}(\underline{l}') + \varepsilon \widetilde{f}(\underline{l}', \underline{\varphi}) + O(\varepsilon^2) \;. \end{split}$$

• The transformed Hamiltonian is integrable up to the second order in ε provided that the function Φ satisfies the normal form equation:

$$\underline{\omega}(\underline{I}') \cdot \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \tilde{f}(\underline{I}', \underline{\varphi}) = \underline{0} .$$
(5)

• The new unperturbed Hamiltonian becomes

$$h'(\underline{I}') = h(\underline{I}') + \varepsilon \overline{f}(\underline{I}') ,$$

which provides a better integrable approximation with respect to that associated to \mathcal{H} .

• Explicit expression of the generating function: obtained solving the normal form equation as follows. Expand Φ and \tilde{f} in Fourier series as

$$\Phi(\underline{I}', \underline{\varphi}) = \sum_{\underline{m} \in \mathbb{Z}^n \setminus \{\underline{0}\}} \hat{\Phi}_{\underline{m}}(\underline{I}') e^{i\underline{m} \cdot \underline{\varphi}}, \\
\tilde{f}(\underline{I}', \underline{\varphi}) = \sum_{0 < |\underline{m}| \le N} \hat{f}_{\underline{m}}(\underline{I}') e^{i\underline{m} \cdot \underline{\varphi}}.$$
(6)

• Inserting in $\underline{\omega}(\underline{I}') \cdot \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \tilde{f}(\underline{I}', \underline{\varphi}) = \underline{0}$ one obtains

$$i \sum_{\underline{m} \in \mathbb{Z}^n \setminus \{\underline{0}\}} \underline{\omega}(\underline{I}') \cdot \underline{m} \, \hat{\Phi}_{\underline{m}}(\underline{I}') \, e^{i\underline{m} \cdot \underline{\varphi}} = -\sum_{0 < |\underline{m}| \le N} \hat{f}_{\underline{m}}(\underline{I}') \, e^{i\underline{m} \cdot \underline{\varphi}} \, ,$$

which provides

$$\hat{\Phi}_{\underline{m}}(\underline{I}') = -\frac{f_{\underline{m}}(\underline{I}')}{i\,\underline{\omega}(\underline{I}')\cdot\underline{m}}\,.$$
(7)

• Summing over the Fourier coefficients, the generating function is given by

$$\Phi(\underline{I}',\underline{\varphi}) = i \sum_{0 < |\underline{m}| \le N} \frac{\hat{f}_{\underline{m}}(\underline{I}')}{\underline{\omega}(\underline{I}') \cdot \underline{m}} e^{i\underline{m} \cdot \underline{\varphi}} .$$
(8)

The normal form equation is solvable, provided $|\underline{I}' - \underline{I}_0| \le \rho_1$ with ρ_1 small such that $\overline{S_{\rho_1}(\underline{I}_0)} \subset V$ and therefore

$$\underline{\omega}(\underline{I}') \cdot \underline{k} \neq 0$$
 for all $0 < |\underline{k}| \le N$.

From the implicit function theorem, if $|\varepsilon| < \varepsilon_0$ small, we can uniquely invert $\underline{\varphi}' = \underline{\varphi} + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \underline{I}'}$ w.r.t. $\underline{\varphi}$ and $\underline{I} = \underline{I}' + \varepsilon \frac{\partial \Phi(\underline{I}', \underline{\varphi})}{\partial \varphi}$ w.r.t. \underline{I}' to get

$$\underline{I}' = \underline{I} + \Xi'(\underline{I}, \underline{\varphi})$$

$$\underline{\varphi} = \underline{\varphi}' + \Delta(\underline{I}', \underline{\varphi}')$$

with Ξ' , Δ regular in $\overline{S_{\rho_1}(\underline{I}_0)} \times \mathbb{T}^n$. This ends the proof.

Remarks.

• The algorithm described above is constructive in the sense that it provides an explicit expression for the generating function and for the transformed Hamiltonian.

• We stress that (8) is well defined unless there exists an integer vector $0 < |\underline{m}| \le N$ such that

$$\underline{\omega}(\underline{I}') \cdot \underline{m} = 0 . \tag{9}$$

On the contrary if, for a given value of the actions, $\underline{\omega} = \underline{\omega}(\underline{I})$ is rationally independent (which means that (9) is satisfied only for $\underline{m} = \underline{0}$), then there do not appear zero divisors, though the divisors can become arbitrarily small with a proper choice of the vector \underline{m} .

- For this reason, terms of the form $\underline{\omega}(\underline{I}') \cdot \underline{m}$ are called *small divisors* and they can prevent the implementation of perturbation theory.
- Moreover, the new Hamiltonian \mathcal{H}' has no longer the trigonometric form and therefore the Proposition might not be applicable.

Proposition (case (ii)).

Let $\mathcal{H}(\underline{I},\underline{\varphi}) = \underline{\omega}_0 \cdot (\underline{I} - \underline{I}_0) + \varepsilon f(\underline{I},\underline{\varphi})$ with $(\underline{I},\underline{\varphi}) \in V \times \mathbb{T}^n$ for $V \subset \mathbb{R}^n$ open and f analytic on $V \times \mathbb{T}^n$.

Assume that $\underline{\omega}_0$ satisfies the Diophantine condition:

 $|\underline{\omega}_0 \cdot \underline{k}|^{-1} \le C |\underline{k}|^{\alpha}$ for all $\underline{k} \in \mathbb{Z}^n \setminus \{\underline{0}\}$

for some C > 0, $\alpha > 0$.

Then, for any *j* there exists $\rho_0 > 0$, $\varepsilon_j > 0$ and for $|\varepsilon| < \varepsilon_j$ there exists a canonical transformation $\Phi_{\varepsilon,j}$ with $(\underline{I}, \underline{\varphi}) \rightarrow (\underline{I}', \underline{\varphi}')$ defined in $S_{\frac{\rho_0}{2}}(\underline{I}_0) \times \mathbb{T}^n \subset V \times \mathbb{T}^n$, which transforms \mathcal{H} into the Birkhoff normal form;

$$\mathcal{H}'(\underline{I}',\underline{\varphi}') \;=\; h_{\varepsilon,j}(\underline{I}') + \varepsilon^j f_{\varepsilon,j}(\underline{I}',\underline{\varphi}') \;,$$

where $h_{\varepsilon,j}, f_{\varepsilon,j}$ are analytic in $\varepsilon, \underline{I}', \underline{\varphi}'$.

Proof. Define

$$\Phi_{\varepsilon,j}(\underline{I}',\underline{\varphi}) = \sum_{\ell=1}^{j} \varepsilon^{\ell} \Phi^{(\ell)}(\underline{I}',\underline{\varphi}) ,$$

so that the transformed Hamiltonian is

$$h(\underline{I}' + \frac{\partial \Phi_{\varepsilon,j}(\underline{I}',\underline{\varphi})}{\partial \underline{\varphi}}) + \varepsilon f(\underline{I}' + \frac{\partial \Phi_{\varepsilon,j}(\underline{I}',\underline{\varphi})}{\partial \underline{\varphi}},\underline{\varphi})$$

with $h(\underline{I}) = \underline{\omega}_0 \cdot (\underline{I} - \underline{I}_0).$

Expanding in ε and using the analyticity of h, f, one needs to impose that the resulting series does not depend on <u>φ</u> up to the order j. This amounts to solve j normal form equations, which determine Φ⁽¹⁾, ..., Φ⁽ⁿ⁾ like in case (i).
Using the implicit function theorem, one can invert the transformation with invertibility conditions depending on j.

- Let us show how the $\Phi^{(1)}$, ..., $\Phi^{(n)}$ can be determined.
- Since f is analytic, we can expand in Taylor series to get:

$$\begin{split} \underline{\omega}_{0} \cdot \left(\underline{I}' + \varepsilon \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \varepsilon^{2} \frac{\partial \Phi^{(2)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \dots + \varepsilon^{j} \frac{\partial \Phi^{(j)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} - \underline{I}_{0} \right) \\ + \quad \varepsilon f(\underline{I}', \underline{\varphi}) + \varepsilon \frac{\partial f(\underline{I}', \underline{\varphi})}{\partial \underline{I}} \left(\varepsilon \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \dots + \varepsilon^{j} \frac{\partial \Phi^{(j)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} \right) \\ + \quad \frac{1}{2} \varepsilon \frac{\partial^{2} f(\underline{I}', \underline{\varphi})}{\partial \underline{I}^{2}} \left(\varepsilon \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \dots + \varepsilon^{j} \frac{\partial \Phi^{(j)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} \right)^{2} + \dots \end{split}$$

• Order in powers of ε :

$$\begin{split} & \underline{\omega}_{0} \cdot (\underline{I}' - \underline{I}_{0}) + \varepsilon f_{0}(\underline{I}') \\ + & \varepsilon \Big(\underline{\omega}_{0} \cdot \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \widetilde{f}(\underline{I}', \underline{\varphi}) \Big) \\ + & \varepsilon^{2} \Big(\underline{\omega}_{0} \cdot \frac{\partial \Phi^{(2)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \frac{\partial f(\underline{I}', \underline{\varphi})}{\partial \underline{I}} \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} \Big) \\ + & \varepsilon^{3} \Big(\underline{\omega}_{0} \cdot \frac{\partial \Phi^{(3)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \frac{\partial f(\underline{I}', \underline{\varphi})}{\partial \underline{I}} \frac{\partial \Phi^{(2)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} \Big) \\ + & \frac{1}{2} \frac{\partial^{2} f(\underline{I}', \underline{\varphi})}{\partial \underline{I}^{2}} \left(\frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} \right)^{2} \Big) + \dots \end{split}$$

• Equate same orders of ε . First order:

$$\underline{\omega}_{0} \cdot \frac{\partial \Phi^{(1)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \widetilde{f}(\underline{I}', \underline{\varphi}) = 0 \; .$$

Generic order ℓ :

$$\underline{\omega}_{0} \cdot \frac{\partial \Phi^{(\ell)}(\underline{I}', \underline{\varphi})}{\partial \underline{\varphi}} + \widetilde{R}_{\ell}(\underline{I}', \underline{\varphi}) = 0 ,$$

where \widetilde{R}_{ℓ} depends on $\Phi^{(1)}$, ..., $\Phi^{(\ell-1)}$ (the average is part of the new unperturbed Hamiltonian!). This equation can be solved as

$$\Phi^{(\ell)}(\underline{I}',\underline{\varphi}) = -\sum_{\underline{k}\in\mathbb{Z}^n\setminus\{0\}} \frac{\widehat{R}_{\ell,\underline{k}}(\underline{I}')}{i\,\underline{\omega}_0\cdot\underline{k}}\,e^{i\underline{k}\cdot\underline{\varphi}},$$

which is well defined provided $\underline{\omega}_0$ is Diophantine.