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Introduction

• Perturbation theory is an efficient tool to investigate nearly–integrable
Hamiltonian systems, like the restricted three–body problem: the integrable
part is Keplerian, the perturbation is due to the gravitational influence of the
other primary, the perturbing parameter is the mass–ratio.
• Asteroid–Sun–Jupiter: mA is so small that Sun and Jupiter move on
Keplerian orbits ("restricted" problem); Jupiter–Sun mass–ratio: 10−3. The
solution of the restricted three–body problem can be investigated through
perturbation theories and are used nowadays from ephemeris computations to
astrodynamics.
• Perturbation theory in Celestial Mechanics is based on the implementation
of a canonical transformation, which allows to find the solution of a
nearly–integrable system within a better degree of approximation.
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Nearly–integrable Hamiltonian systems

• Let us consider an n–dimensional Hamiltonian system described in terms of
a set of conjugated action–angle variables (I, ϕ) with I ∈ V , V being an open
set of Rn, and ϕ ∈ Tn.
• A nearly–integrable Hamiltonian functionH(I, ϕ) can be written in the
form

H(I, ϕ) = h(I) + εf (I, ϕ) , (1)

where h and f are analytic functions called, respectively, the unperturbed (or
integrable) Hamiltonian and the perturbing function, while ε is a small
parameter measuring the strength of the perturbation.
• For ε = 0 the Hamiltonian function reduces to

H(I, ϕ) = h(I) .
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• The associated Hamilton’s equations are simply

İ = 0

ϕ̇ = ω(I) , (2)

where we have introduced the frequency or rotation number:

ω(I) ≡ ∂h(I)
∂I

.

• Equations (2) can be trivially integrated as

I(t) = I(0)

ϕ(t) = ω(I(0))t + ϕ(0) ,

thus showing that the actions are constants, while the angle variables vary
linearly with the time.
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• For ε 6= 0 the equations of motion

İ = −ε ∂f
∂ϕ

(I, ϕ)

ϕ̇ = ω(I) + ε
∂f
∂I

(I, ϕ)

might no longer be integrable and chaotic motions could appear.
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Figure: Portrait of the classical standard map, starting with x0 = π and varying 100
initial conditions y0 within the interval [0, 3]. a) Case ε = 0; b) case ε = 0.5.
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Classical perturbation theory

• The aim of classical perturbation theory is to construct a canonical
transformation, which allows to push the perturbation to higher orders in ε.
•We introduce a canonical change of variables C : (I, ϕ)→ (I′, ϕ′), such that

H(I, ϕ) = h(I) + εf (I, ϕ)

in the transformed variables becomes

H′(I′, ϕ′) = H ◦ C(I, ϕ) ≡ h′(I′) + ε2f ′(I′, ϕ′) , (3)

where h′ and f ′ denote, respectively, the new unperturbed Hamiltonian and the
new perturbing function.

• The proof is completely constructive and allows to obtain the new
unperturbed Hamiltonian, the new perturbing function, the canonical
transformation.
• One can iterate the algorithm to higher orders, say to obtain

H′′(I′′, ϕ′′) = H ◦ C′(I, ϕ) ≡ h′′(I′′) + ε3f ′′(I′′, ϕ′′) ,

and so on, provided one checks for the convergence!
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• The result is obtained through the following steps:

� define a suitable canonical transformation close to the identity,

� perform a Taylor series expansion in ε,

� require that the change of variables removes the dependence on the angles
up to 2nd order terms,

� solve a normal form (homological) equation for the generating function,

� expand in Fourier series to construct the explicit form of the canonical
transformation.
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• Consider two cases:
(i) the perturbing function f is a trigonometric function, namely there exists
N > 0 such that

f (I, ϕ) =
∑

k∈Zn, 0≤|k|≤N

f̂k(I) eik·ϕ ;

(ii) the unperturbed Hamiltonian is a harmonic oscillator with frequency
ω0 ∈ Rn:

h(I) = ω0 · (I − I0) .
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Trigonometric case

Proposition (case (i)).
LetH(I, ϕ) = h(I) + εf (I, ϕ) with (I, ϕ) ∈ V × Tn for V ⊂ Rn open and f
analytic and trigonometric on V × Tn. Assume that for any I0 ∈ V , the
frequency satisfies

|ω(I0) · k| > 0 for all 0 < |k| ≤ N .

Then, there exists ρ0 > 0, ε0 > 0 and for |ε| < ε0 there exists a canonical
transformation (I, ϕ)→ (I′, ϕ′) defined in S ρ0

2
(I0)× Tn ⊂ V × Tn and with

values in Sρ0(I0)× Tn, which transformsH as

H′(I′, ϕ′) = h′(I′) + ε2f ′(I′, ϕ)′ .
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Proof.
• Define a change of variables through a close–to–identity generating function
of the form I′ · ϕ+ εΦ(I′, ϕ) providing

I = I′ + ε
∂Φ(I′, ϕ)

∂ϕ

ϕ′ = ϕ+ ε
∂Φ(I′, ϕ)

∂I′
, (4)

where Φ = Φ(I′, ϕ) is an unknown function, which is determined in order that
H is transformed toH′.

• Split the perturbing function as

f (I, ϕ) = f (I) + f̃ (I, ϕ) ,

where
� f (I) is the average over the angle variables,
� f̃ (I, ϕ) is the remainder function defined as f̃ (I, ϕ) ≡ f (I, ϕ)− f (I).
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• Inserting the transformation inH and expanding in Taylor series around
ε = 0 up to the second order, one gets

h(I′ + ε
∂Φ(I′, ϕ)

∂ϕ
) + εf (I′ + ε

∂Φ(I′, ϕ)

∂ϕ
, ϕ)

= h(I′) + ω(I′) · ε
∂Φ(I′, ϕ)

∂ϕ
+ εf (I′) + εf̃ (I′, ϕ) + O(ε2) .

• The transformed Hamiltonian is integrable up to the second order in ε
provided that the function Φ satisfies the normal form equation:

ω(I′) ·
∂Φ(I′, ϕ)

∂ϕ
+ f̃ (I′, ϕ) = 0 . (5)

• The new unperturbed Hamiltonian becomes

h′(I′) = h(I′) + εf (I′) ,

which provides a better integrable approximation with respect to that
associated toH.
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• Explicit expression of the generating function: obtained solving the normal
form equation as follows. Expand Φ and f̃ in Fourier series as

Φ(I′, ϕ) =
∑

m∈Zn\{0}

Φ̂m(I′) eim·ϕ ,

f̃ (I′, ϕ) =
∑

0<|m|≤N

f̂m(I′) eim·ϕ . (6)

• Inserting in ω(I′) · ∂Φ(I′,ϕ)

∂ϕ + f̃ (I′, ϕ) = 0 one obtains

i
∑

m∈Zn\{0}

ω(I′) · m Φ̂m(I′) eim·ϕ = −
∑

0<|m|≤N

f̂m(I′) eim·ϕ ,

which provides

Φ̂m(I′) = −
f̂m(I′)

i ω(I′) · m
. (7)
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• Summing over the Fourier coefficients, the generating function is given by

Φ(I′, ϕ) = i
∑

0<|m|≤N

f̂m(I′)
ω(I′) · m

eim·ϕ . (8)

The normal form equation is solvable, provided |I′ − I0| ≤ ρ1 with ρ1 small
such that Sρ1(I0) ⊂ V and therefore

ω(I′) · k 6= 0 for all 0 < |k| ≤ N .

From the implicit function theorem, if |ε| < ε0 small, we can uniquely invert

ϕ′ = ϕ+ ε
∂Φ(I′,ϕ)

∂I′ w.r.t. ϕ and I = I′ + ε
∂Φ(I′,ϕ)

∂ϕ w.r.t. I′ to get

I′ = I + Ξ′(I, ϕ)

ϕ = ϕ′ + ∆(I′, ϕ′)

with Ξ′, ∆ regular in Sρ1(I0)× Tn. This ends the proof.
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Remarks.
• The algorithm described above is constructive in the sense that it provides
an explicit expression for the generating function and for the transformed
Hamiltonian.
•We stress that (8) is well defined unless there exists an integer vector
0 < |m| ≤ N such that

ω(I′) · m = 0 . (9)

On the contrary if, for a given value of the actions, ω = ω(I) is rationally
independent (which means that (9) is satisfied only for m = 0), then there do
not appear zero divisors, though the divisors can become arbitrarily small
with a proper choice of the vector m.
• For this reason, terms of the form ω(I′) ·m are called small divisors and they
can prevent the implementation of perturbation theory.
•Moreover, the new HamiltonianH′ has no longer the trigonometric form
and therefore the Proposition might not be applicable.

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial MechanicsSevilla, 25-27 January 2016 18 / 23



Harmonic oscillator case

Proposition (case (ii)).
LetH(I, ϕ) = ω0 · (I − I0) + εf (I, ϕ) with (I, ϕ) ∈ V × Tn for V ⊂ Rn open
and f analytic on V × Tn.
Assume that ω0 satisfies the Diophantine condition:

|ω0 · k|−1 ≤ C|k|α for all k ∈ Zn\{0}

for some C > 0, α > 0.
Then, for any j there exists ρ0 > 0, εj > 0 and for |ε| < εj there exists a
canonical transformation Φε,j with (I, ϕ)→ (I′, ϕ′) defined in
S ρ0

2
(I0)× Tn ⊂ V × Tn, which transformsH into the Birkhoff normal form;

H′(I′, ϕ′) = hε,j(I′) + εjfε,j(I′, ϕ′) ,

where hε,j, fε,j are analytic in ε, I′, ϕ′.
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Proof.
Define

Φε,j(I′, ϕ) =

j∑
`=1

ε`Φ(`)(I′, ϕ) ,

so that the transformed Hamiltonian is

h(I′ +
∂Φε,j(I′, ϕ)

∂ϕ
) + εf (I′ +

∂Φε,j(I′, ϕ)

∂ϕ
, ϕ)

with h(I) = ω0 · (I − I0).
• Expanding in ε and using the analyticity of h, f , one needs to impose that
the resulting series does not depend on ϕ up to the order j. This amounts to
solve j normal form equations, which determine Φ(1), ..., Φ(n) like in case (i).
• Using the implicit function theorem, one can invert the transformation with
invertibility conditions depending on j.
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• Let us show how the Φ(1), ..., Φ(n) can be determined.

• Since f is analytic, we can expand in Taylor series to get:

ω0 ·

(
I′ + ε

∂Φ(1)(I′, ϕ)

∂ϕ
+ ε2∂Φ(2)(I′, ϕ)

∂ϕ
+ . . .+ εj∂Φ(j)(I′, ϕ)

∂ϕ
− I0

)

+ εf (I′, ϕ) + ε
∂f (I′, ϕ)

∂I

(
ε
∂Φ(1)(I′, ϕ)

∂ϕ
+ . . .+ εj∂Φ(j)(I′, ϕ)

∂ϕ

)

+
1
2
ε
∂2f (I′, ϕ)

∂I2

(
ε
∂Φ(1)(I′, ϕ)

∂ϕ
+ . . .+ εj∂Φ(j)(I′, ϕ)

∂ϕ

)2

+ . . .
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• Order in powers of ε:

ω0 · (I′ − I0) + εf0(I′)

+ ε
(
ω0 ·

∂Φ(1)(I′, ϕ)

∂ϕ
+ f̃ (I′, ϕ)

)
+ ε2

(
ω0 ·

∂Φ(2)(I′, ϕ)

∂ϕ
+
∂f (I′, ϕ)

∂I
∂Φ(1)(I′, ϕ)

∂ϕ

)
+ ε3

(
ω0 ·

∂Φ(3)(I′, ϕ)

∂ϕ
+
∂f (I′, ϕ)

∂I
∂Φ(2)(I′, ϕ)

∂ϕ

+
1
2
∂2f (I′, ϕ)

∂I2 (
∂Φ(1)(I′, ϕ)

∂ϕ
)2
)

+ . . .
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• Equate same orders of ε. First order:

ω0 ·
∂Φ(1)(I′, ϕ)

∂ϕ
+ f̃ (I′, ϕ) = 0 .

Generic order `:

ω0 ·
∂Φ(`)(I′, ϕ)

∂ϕ
+ R̃`(I′, ϕ) = 0 ,

where R̃` depends on Φ(1), ..., Φ(`−1) (the average is part of the new
unperturbed Hamiltonian!). This equation can be solved as

Φ(`)(I′, ϕ) = −
∑

k∈Zn\{0}

R̂`,k(I′)
i ω0 · k

eik·ϕ,

which is well defined provided ω0 is Diophantine.
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