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Introduction

e Perturbation theory is an efficient tool to investigate nearly—integrable
Hamiltonian systems, like the restricted three—body problem: the integrable
part is Keplerian, the perturbation is due to the gravitational influence of the
other primary, the perturbing parameter is the mass—ratio.

e Asteroid—Sun—Jupiter: my is so small that Sun and Jupiter move on
Keplerian orbits ("restricted" problem); Jupiter—Sun mass—ratio: 1073, The
solution of the restricted three—body problem can be investigated through
perturbation theories and are used nowadays from ephemeris computations to
astrodynamics.

e Perturbation theory in Celestial Mechanics is based on the implementation
of a canonical transformation, which allows to find the solution of a
nearly—integrable system within a better degree of approximation.
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2. Nearly—integrable Hamiltonian systems
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Nearly—integrable Hamiltonian systems

e Let us consider an n—dimensional Hamiltonian system described in terms of
a set of conjugated action—angle variables (I, ¢) with [ € V, V being an open
set of R”, and ¢ € T". B

e A nearly—integrable Hamiltonian function (I, ) can be written in the

form

H(L,p) = h(l) +ef (L, ) (D)
where 4 and f are analytic functions called, respectively, the unperturbed (or
integrable) Hamiltonian and the perturbing function, while ¢ is a small
parameter measuring the strength of the perturbation.

e For ¢ = (0 the Hamiltonian function reduces to

H(L, ) = h(I) .
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e The associated Hamilton’s equations are simply

I~
|
[

p = w(), 2
where we have introduced the frequency or rotation number:

w()zag(ll).

e Equations (2) can be trivially integrated as

I(r) = I(0)

o(t) = w(0))r+ ¢(0),

thus showing that the actions are constants, while the angle variables vary
linearly with the time.
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e For ¢ # 0 the equations of motion

. d
I = —88{;( %)

b = wD+eZie)

might no longer be integrable and chaotic motions could appear.

Figure: Portrait of the classical standard map, starting with xo = 7 and varying 100
initial conditions yo within the interval [0, 3]. a) Case € = 0; b) case ¢ = 0.5.
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3. Classical perturbation theory
3.1 Trigonometric case
3.2 Harmonic oscillator case

lletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial S 7 January 2016 9/23



Classical perturbation theory

e The aim of classical perturbation theory is to construct a canonical
transformation, which allows to push the perturbation to higher orders in €.
e We introduce a canonical change of variables C : (1, @) — (I, ¢'), such that

H(L, @) = h(I) +<f (L, )
in the transformed variables becomes
H (L, ¢) = HoC(l,p) = W)+ (I¢), 3)

where /' and f’ denote, respectively, the new unperturbed Hamiltonian and the
new perturbing function.
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Classical perturbation theory

e The aim of classical perturbation theory is to construct a canonical
transformation, which allows to push the perturbation to higher orders in €.
e We introduce a canonical change of variables C : (1, @) — (I, ¢'), such that

H(L, o) = h(I) +ef (L, )
in the transformed variables becomes
H(I',¢) = HoCllp) = H(I)+F(I,¢), (3)
where /' and f’ denote, respectively, the new unperturbed Hamiltonian and the

new perturbing function.

e The proof is completely constructive and allows to obtain the new
unperturbed Hamiltonian, the new perturbing function, the canonical
transformation.

e One can iterate the algorithm to higher orders, say to obtain

H”(l’l,fﬂ) — Hocl(l,f) = h,/(l//)+€3f//(l//,£/,),

and so on, provided one checks for the convergence!
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e The result is obtained through the following steps:
¢ define a suitable canonical transformation close to the identity,
o perform a Taylor series expansion in €,

o require that the change of variables removes the dependence on the angles
up to 21 order terms,

¢ solve a normal form (homological) equation for the generating function,

¢ expand in Fourier series to construct the explicit form of the canonical
transformation.
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e Consider two cases:
(i) the perturbing function f is a trigonometric function, namely there exists
N > 0 such that

fLe)y= > fh)ere;

C kemr, 0<IKEN
(if) the unperturbed Hamiltonian is a harmonic oscillator with frequency
wp € R™:
W) = wo - (I~ 1)
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Trigonometric case

Proposition (case (i)).

Let H(L, ) = h(I) + f (I, ) with (I, ) € V x T" for V C R”" open and f
analytic and trigonometric on V x T”. Assume that for any /, € V, the
frequency satisfies

w(lp) k| >0 forall 0< |k <N.

Then, there exists pgp > 0, £9 > 0 and for || < g there exists a canonical

transformation (1, p) — (I, ¢’) defined in Sp (1)) x T" C V x T" and with
- - 2

values in S, () x T", which transforms H as

Hl(l/’fl) _ h/(l/)+52f/(l,7£)/-
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Proof.
e Define a change of variables through a close—to—identity generating function
of the form I' - ¢ 4+ e®(I’, ) providing

aB(I',
g o= predie) )

where ® = ®(I’, p) is an unknown function, which is determined in order that
H is transformed to H'.
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Proof.
e Define a change of variables through a close—to—identity generating function
of the form I' - ¢ 4+ e®(I’, ) providing

, o0 (I', )

e T “4)

where ® = ®(I’, p) is an unknown function, which is determined in order that
H is transformed to H'.
e Split the perturbing function as

where
of(l ) is the average over the angle variables,
o f(L, p) is the remainder function defined as f (I, ¢) = f (I, ) — f(I).
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e Inserting the transformation in H and expanding in Taylor series around
€ = 0 up to the second order, one gets

, . 00(L,¢) , 00l p)
(r +€T) ef (I +€T,80)
= )+ o) 220D L F b )+ 0.

dp

e The transformed Hamiltonian is integrable up to the second order in &
provided that the function @ satisfies the normal form equation:

o0(I' ) -

wll) 5 = AT 9) =0 )

e The new unperturbed Hamiltonian becomes
H(I') = h(I) +<f(I)

which provides a better integrable approximation with respect to that
associated to H.

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial Sevilla, 25-27 January 2016 15/23



e Explicit expression of the generating function: obtained solving the normal
form equation as follows. Expand ® and f in Fourier series as

Ol p) = > D) e,

B mezm\ {0}

[T = > full)e™2. 6)

0<|m|<N

o Inserting in w(l') - —5-= +f(I', ¢) = 0 one obtains

meZ"\{0} 0<|m|<N

which provides

(7
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e Summing over the Fourier coefficients, the generating function is given by

o
L) =i ) wfa())m e ®)
0<|m|<N — 7 —

The normal form equation is solvable, provided |I’ — 1| < p; with p; small
such that S, (1) C V and therefore

w(l') - k#0 forall 0 < |k| <N.

From the implicit function theorem, if |¢| < & small, we can uniquely invert

=0+ 86@5/,@ wrt. pand [ =1' + Sa(bé{p’f) w.r.t. I’ to get

I~

"= I+E(Ly)
o = <P/+A(l,,£/)

with 2/, A regular in S, (I,) x T". This ends the proof.
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Remarks.
e The algorithm described above is constructive in the sense that it provides
an explicit expression for the generating function and for the transformed
Hamiltonian.
e We stress that (8) is well defined unless there exists an integer vector
0 < |m| < N such that

w(l') - m=0. )

On the contrary if, for a given value of the actions, w = w(I) is rationally
independent (which means that (9) is satisfied only for m = 0), then there do
not appear zero divisors, though the divisors can become arbitrarily small
with a proper choice of the vector m.

e For this reason, terms of the form w(’) - m are called small divisors and they
can prevent the implementation of perturbation theory.

e Moreover, the new Hamiltonian ' has no longer the trigonometric form
and therefore the Proposition might not be applicable.
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Harmonic oscillator case

Proposition (case (if)).

Let H(L, ¢) = wq - (L — Iy) + &f (L, o) with (I, o) € V x T" for V.C R" open
and f analyticon V x T".
Assume that wy, satisfies the Diophantine condition:

|lwo - k|7 < Clk|* forall k € Z"\{0}

for some C > 0, o > 0.

Then, for any j there exists pg > 0, £; > 0 and for || < ¢; there exists a
canonical transformation ®. ; with (1, ) — (I, ¢') defined in

S 2 (I,) x T" C V x T", which transforms 7 into the Birkhoff normal form;

H (L, ¢) = hej(l')+ef L, ¢),

where h. j, f. j are analyticin €, I, ¢'.

A. Celletti (Univ. Roma Tor Vergata) Perturbation theory, KAM theory and Celestial Sevilla, 25-27 January 2016 19/23



Proof.
Define

J
(PE j l/7s0 = gé(P(Z) 1/790 9
J x r
(=1

so that the transformed Hamiltonian is

aq)s j I,v aq)s j l/7
‘é(@ E)) +ef(l' + 0%l 9)

h(l' +
with A(I) = wy - (I — ).
e Expanding in € and using the analyticity of &, f, one needs to impose that
the resulting series does not depend on  up to the order j. This amounts to
solve j normal form equations, which determine ®(1), ..., ®() like in case (i).
e Using the implicit function theorem, one can invert the transformation with
invertibility conditions depending on j.
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e Let us show how the <I>(1), s ®) can be determined.

e Since f is analytic, we can expand in Taylor series to get:

oM (1’ 2d@ (1, 9o (I,
(1’+ (,,90)+€2 (, o, 00

dp
oo 1’ 0DV (1,
+ (I )+ ( ...+518(¢90)
1 () [ 92T, ) ,080(1, )\
—+ 25 8[2 € f + ...+ 78£
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e Order in powers of ¢:

wo - (I' = Iy) +efo(L')

ooM(r, .
+ 5(% : 8;@) +f(l',£))

0301 p)  Of(l.p) 0BT, p)
2 ) LY LH¥ ¥
e (go Oy + ol Op )
9PN ) Of (', p) 0PI, )
3 . = = =71
+ 2 dp ol dp
10%(I', ) o0M(I,
Ll f(2£) ( ‘P))2)+
2 oI Oy
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e Equate same orders of €. First order:

Generic order /¢: ®
02 (I, -

where Ry depends on ®(), ..., ®(~1) (the average is part of the new
unperturbed Hamiltonian!). This equation can be solved as

o~

Ol p) =~ > ) i
) l@o -k 9
kez"\{0}

which is well defined provided w is Diophantine.
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