
Undecidability and computability for 2-D SFTs

Ronnie Pavlov

University of Denver
www.math.du.edu/∼rpavlov

RTNS 2016
January 27, 2016

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

As before, can assume WLOG nearest-neighbor

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

As before, can assume WLOG nearest-neighbor

For most examples today, letters are unit squares with
labelings on edges

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

As before, can assume WLOG nearest-neighbor

For most examples today, letters are unit squares with
labelings on edges

Tiles may be adjacent if labels on edges match

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

As before, can assume WLOG nearest-neighbor

For most examples today, letters are unit squares with
labelings on edges

Tiles may be adjacent if labels on edges match

Specific type of 2-D SFT called Wang tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

2-D SFTs

Today, we’ll work with 2-dimensional shifts of finite type

As before, can assume WLOG nearest-neighbor

For most examples today, letters are unit squares with
labelings on edges

Tiles may be adjacent if labels on edges match

Specific type of 2-D SFT called Wang tiling

In fact 2-D SFT can be assumed Wang tiling WLOG as well,
but we won’t prove

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

?

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

?

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

?

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

??

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Example

Ronnie Pavlov Undecidability and computability for 2-D SFTs

How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F , is X (F) 6= ∅?

Ronnie Pavlov Undecidability and computability for 2-D SFTs

How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F , is X (F) 6= ∅?

Easy to demonstrate that X is empty; show that for some n,
every n × n pattern on A contains forbidden adjacency

Ronnie Pavlov Undecidability and computability for 2-D SFTs

How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F , is X (F) 6= ∅?

Easy to demonstrate that X is empty; show that for some n,
every n × n pattern on A contains forbidden adjacency

To demonstrate that X is nonempty requires an INFINITE
array; impossible to do in finite time

Ronnie Pavlov Undecidability and computability for 2-D SFTs

How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F , is X (F) 6= ∅?

Easy to demonstrate that X is empty; show that for some n,
every n × n pattern on A contains forbidden adjacency

To demonstrate that X is nonempty requires an INFINITE
array; impossible to do in finite time

Idea: use periodic configurations; existence can be
demonstrated via one finite pattern

Ronnie Pavlov Undecidability and computability for 2-D SFTs

How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F , is X (F) 6= ∅?

Easy to demonstrate that X is empty; show that for some n,
every n × n pattern on A contains forbidden adjacency

To demonstrate that X is nonempty requires an INFINITE
array; impossible to do in finite time

Idea: use periodic configurations; existence can be
demonstrated via one finite pattern

In 1-D, this is simple. If a . . . a is legal, then can make
periodic point . . . a . . . a . . . a . . . in X .

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1
If you can’t, clearly there are no infinite configurations →
empty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1
If you can’t, clearly there are no infinite configurations →
empty
If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration → nonempty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1
If you can’t, clearly there are no infinite configurations →
empty
If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration → nonempty

Clearly decides nonemptiness in finite time!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1
If you can’t, clearly there are no infinite configurations →
empty
If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration → nonempty

Clearly decides nonemptiness in finite time!

What about d = 2? More complicated, tiles can “interfere” in
more complicated ways

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness for d = 1

Gives algorithm for d = 1:

Try to construct a valid string of length |A|+ 1
If you can’t, clearly there are no infinite configurations →
empty
If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration → nonempty

Clearly decides nonemptiness in finite time!

What about d = 2? More complicated, tiles can “interfere” in
more complicated ways

(Totally) periodic configurations still come from finite patterns

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Periodic tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Periodic tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Periodic tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Algorithm: For parameter n (start with n = 2), construct all
n × n patterns.

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Algorithm: For parameter n (start with n = 2), construct all
n × n patterns.
If there are no legal n × n patterns, clearly there are no infinite
configurations → empty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Algorithm: For parameter n (start with n = 2), construct all
n × n patterns.
If there are no legal n × n patterns, clearly there are no infinite
configurations → empty
If there is a legal n × n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration → nonempty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Algorithm: For parameter n (start with n = 2), construct all
n × n patterns.
If there are no legal n × n patterns, clearly there are no infinite
configurations → empty
If there is a legal n × n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration → nonempty
If neither is true, move to next n

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

Algorithm: For parameter n (start with n = 2), construct all
n × n patterns.
If there are no legal n × n patterns, clearly there are no infinite
configurations → empty
If there is a legal n × n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration → nonempty
If neither is true, move to next n

By assumption, at some point algorithm will terminate (but
you don’t know when!)

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

If true, shows that one can decide nonemptiness in finite time

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

If true, shows that one can decide nonemptiness in finite time

Theorem: (Berger, 1966) There exists a nonempty 2-D n.n.
SFT without (totally) periodic configurations!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

If true, shows that one can decide nonemptiness in finite time

Theorem: (Berger, 1966) There exists a nonempty 2-D n.n.
SFT without (totally) periodic configurations!

Berger’s original tiling had 20, 426 tiles

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

If true, shows that one can decide nonemptiness in finite time

Theorem: (Berger, 1966) There exists a nonempty 2-D n.n.
SFT without (totally) periodic configurations!

Berger’s original tiling had 20, 426 tiles

We’ll use a later example of Robinson with only 56 tiles

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

crosscross

cross cross cross

cross

crosscrosscross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross cross cross

cross

crosscrosscross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross cross cross

cross

crosscrosscross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

cross cross cross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

cross cross cross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

crosscrosscross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

crosscrosscross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

cross cross cross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

cross

cross cross cross

cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

crosscross

cross cross

crosscross

cross cross crosscross

cross cross

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Robinson SFT is nonempty; can continue forever

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Robinson SFT is nonempty; can continue forever

But points have a forced hierarchical structure; no periodic
points

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

By itself, this only means that Wang’s proposed algorithm
won’t always work

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

By itself, this only means that Wang’s proposed algorithm
won’t always work

But amazingly, the technique of the counterexample can show
more:

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Checking nonemptiness

By itself, this only means that Wang’s proposed algorithm
won’t always work

But amazingly, the technique of the counterexample can show
more:

Theorem: (Berger, 1966) The problem of deciding
nonemptiness of a 2-D n.n. SFT is undecidable; there
CANNOT exist an algorithm which will, on input A,F , decide
if it is nonempty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Or will run forever

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Or will run forever

10 PRINT “HELLO WORLD”

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Or will run forever

10 PRINT “HELLO WORLD”
20 GOTO 10

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Or will run forever

10 PRINT “HELLO WORLD”
20 GOTO 10

We will say that a halting oracle is a computer
program/algorithm which, when given the code of an arbitrary
computer program P , decides whether P halts or runs forever

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Shift gears for now to computer science

Any computer program/algorithm will either halt at some
point

10 PRINT “HELLO WORLD”
20 END

Or will run forever

10 PRINT “HELLO WORLD”
20 GOTO 10

We will say that a halting oracle is a computer
program/algorithm which, when given the code of an arbitrary
computer program P , decides whether P halts or runs forever

Can a halting oracle exist?

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

R , on input P , exhibits halting behavior which is the
OPPOSITE of P

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

R , on input P , exhibits halting behavior which is the
OPPOSITE of P

Contradiction: try running R with input R!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

R , on input P , exhibits halting behavior which is the
OPPOSITE of P

Contradiction: try running R with input R!

If R halts, then R runs forever; if R runs forever, then R halts

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

R , on input P , exhibits halting behavior which is the
OPPOSITE of P

Contradiction: try running R with input R!

If R halts, then R runs forever; if R runs forever, then R halts

A halting oracle cannot exist!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

The Halting Problem

Suppose a halting oracle exists, call it H

Create a new program R , called a halting reverser, whose
input is the code of an arbitrary computer program P :

First R runs the halting oracle H to decide whether P halts or
runs forever
If P halts, R begins an infinite loop, thus running forever
If P runs forever, R halts immediately

R , on input P , exhibits halting behavior which is the
OPPOSITE of P

Contradiction: try running R with input R!

If R halts, then R runs forever; if R runs forever, then R halts

A halting oracle cannot exist!

Similar to Russell’s paradox, Gödel’s Incompleteness Theorem

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Simplistic model of computing

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Simplistic model of computing

A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Simplistic model of computing

A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape

Some internal states are “halting” states; when the machine
reaches those, it will not do further computation

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Simplistic model of computing

A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape

Some internal states are “halting” states; when the machine
reaches those, it will not do further computation

Can define a n.n. SFT which implements a Turing machine as
a space-time diagram; rows show successive steps in
computation

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Implementation tiles

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Problem: can’t force the head to appear! There will always be
points consisting of unchanging tape with no head

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Problem: can’t force the head to appear! There will always be
points consisting of unchanging tape with no head

Solution: Robinson SFT!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Problem: can’t force the head to appear! There will always be
points consisting of unchanging tape with no head

Solution: Robinson SFT!

Points of Robinson SFT can separate the plane into disjoint
“boards”

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Robinson tiling

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty

If the nonemptiness problem was decidable, the halting
problem would be decidable!

Ronnie Pavlov Undecidability and computability for 2-D SFTs

Turing machines

Initialize computations on center of lower edge of each
“board”

Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty

If the nonemptiness problem was decidable, the halting
problem would be decidable!

So, nonemptiness of a 2-D n.n. SFT is not decidable

Ronnie Pavlov Undecidability and computability for 2-D SFTs

