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2-D SFTs

o Today, we'll work with 2-dimensional shifts of finite type

@ As before, can assume WLOG nearest-neighbor

@ For most examples today, letters are unit squares with
labelings on edges

o Tiles may be adjacent if labels on edges match
@ Specific type of 2-D SFT called Wang tiling

@ In fact 2-D SFT can be assumed Wang tiling WLOG as well,
but we won't prove
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How to decide if a 2-D n.n. SFT X is nonempty

@ Basic question: given A, F, is X(F) # @7
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@ Basic question: given A, F, is X(F) # @7

@ Easy to demonstrate that X is empty; show that for some n,
every n X n pattern on A contains forbidden adjacency

@ To demonstrate that X is nonempty requires an INFINITE
array; impossible to do in finite time

@ ldea: use periodic configurations; existence can be
demonstrated via one finite pattern
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How to decide if a 2-D n.n. SFT X is nonempty

Basic question: given A, F, is X(F) # @7
Easy to demonstrate that X is empty; show that for some n,
every n X n pattern on A contains forbidden adjacency

To demonstrate that X is nonempty requires an INFINITE
array; impossible to do in finite time

Idea: use periodic configurations; existence can be
demonstrated via one finite pattern

In 1-D, this is simple. If a...a is legal, then can make
periodic point ...a...a...a...in X.
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@ Gives algorithm for d = 1:
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@ Gives algorithm for d = 1:

@ Try to construct a valid string of length |A| + 1
o If you can't, clearly there are no infinite configurations —
empty
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@ Gives algorithm for d = 1:
@ Try to construct a valid string of length |A| + 1
o If you can't, clearly there are no infinite configurations —
empty
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could use it to create an infinite configuration — nonempty
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@ Try to construct a valid string of length |A| + 1
o If you can't, clearly there are no infinite configurations —
empty
& If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration — nonempty
@ Clearly decides nonemptiness in finite time!

@ What about d = 27 More complicated, tiles can “interfere” in
more complicated ways
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Checking nonemptiness for d = 1

@ Gives algorithm for d = 1:

@ Try to construct a valid string of length |A| + 1
o If you can't, clearly there are no infinite configurations —
empty
& If you can, by Pigeonhole Principle some tile repeats; you
could use it to create an infinite configuration — nonempty
@ Clearly decides nonemptiness in finite time!

@ What about d = 27 More complicated, tiles can “interfere” in
more complicated ways

o (Totally) periodic configurations still come from finite patterns
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Checking nonemptiness

@ Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

@ Algorithm: For parameter n (start with n = 2), construct all
n X n patterns.

o If there are no legal n x n patterns, clearly there are no infinite
configurations — empty

o If there is a legal n x n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration — nonempty
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Checking nonemptiness

@ Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

@ Algorithm: For parameter n (start with n = 2), construct all
n X n patterns.

o If there are no legal n x n patterns, clearly there are no infinite
configurations — empty

o If there is a legal n x n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration — nonempty

o If neither is true, move to next n
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Checking nonemptiness

@ Idea (Hao Wang): Assume that every nonempty 2-D n.n. SFT
has a (totally) periodic configuration

@ Algorithm: For parameter n (start with n = 2), construct all
n X n patterns.

o If there are no legal n x n patterns, clearly there are no infinite
configurations — empty

o If there is a legal n x n pattern with identical left and right
edges and identical top and bottom edges, then you could use
this to create an infinite configuration — nonempty

o If neither is true, move to next n

@ By assumption, at some point algorithm will terminate (but
you don’t know when!)
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Checking nonemptiness

@ Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations
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Checking nonemptiness

@ Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

o If true, shows that one can decide nonemptiness in finite time

@ Theorem: (Berger, 1966) There exists a nonempty 2-D n.n.
SFT without (totally) periodic configurations!

@ Berger's original tiling had 20,426 tiles
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Checking nonemptiness

@ Conjecture: (Wang, 1961) Every nonempty n.n. SFT has
(totally) periodic configurations

o If true, shows that one can decide nonemptiness in finite time

@ Theorem: (Berger, 1966) There exists a nonempty 2-D n.n.
SFT without (totally) periodic configurations!

@ Berger's original tiling had 20,426 tiles

@ We'll use a later example of Robinson with only 56 tiles
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Robinson tiling
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Robinson tiling

@ Robinson SFT is nonempty; can continue forever
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Robinson tiling

@ Robinson SFT is nonempty; can continue forever

@ But points have a forced hierarchical structure; no periodic
points
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Checking nonemptiness

@ By itself, this only means that Wang's proposed algorithm
won't always work
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Checking nonemptiness

@ By itself, this only means that Wang's proposed algorithm
won't always work

@ But amazingly, the technique of the counterexample can show
more:
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Checking nonemptiness

@ By itself, this only means that Wang's proposed algorithm
won't always work

@ But amazingly, the technique of the counterexample can show
more:

@ Theorem: (Berger, 1966) The problem of deciding
nonemptiness of a 2-D n.n. SFT is undecidable; there
CANNOT exist an algorithm which will, on input A, F, decide
if it is nonempty
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@ Shift gears for now to computer science

Ronnie Pavlov Undecidability and computability for 2-D SFTs



The Halting Problem

@ Shift gears for now to computer science

@ Any computer program/algorithm will either halt at some
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@ Any computer program/algorithm will either halt at some
point
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The Halting Problem

@ Shift gears for now to computer science
@ Any computer program/algorithm will either halt at some
point
10 PRINT “HELLO WORLD”
20 END
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The Halting Problem

@ Shift gears for now to computer science
@ Any computer program/algorithm will either halt at some
point
10 PRINT “HELLO WORLD"
20 END
@ Or will run forever

10 PRINT “HELLO WORLD"
20 GOTO 10

Ronnie Pavlov Undecidability and computability for 2-D SFTs



The Halting Problem

@ Shift gears for now to computer science
@ Any computer program/algorithm will either halt at some
point
10 PRINT “HELLO WORLD"
20 END
@ Or will run forever
10 PRINT “HELLO WORLD"
20 GOTO 10
@ We will say that a halting oracle is a computer
program /algorithm which, when given the code of an arbitrary
computer program P, decides whether P halts or runs forever
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The Halting Problem

@ Shift gears for now to computer science
@ Any computer program/algorithm will either halt at some
point
10 PRINT “HELLO WORLD"
20 END
@ Or will run forever

10 PRINT “HELLO WORLD"

20 GOTO 10
We will say that a halting oracle is a computer
program /algorithm which, when given the code of an arbitrary
computer program P, decides whether P halts or runs forever

Can a halting oracle exist?
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The Halting Problem

@ Suppose a halting oracle exists, call it H
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@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:
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The Halting Problem

@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever
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The Halting Problem

@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:
@ First R runs the halting oracle H to decide whether P halts or
runs forever
@ If P halts, R begins an infinite loop, thus running forever
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The Halting Problem

@ Suppose a halting oracle exists, call it H
@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:
@ First R runs the halting oracle H to decide whether P halts or
runs forever
@ If P halts, R begins an infinite loop, thus running forever
o If P runs forever, R halts immediately

Ronnie Pavlov Undecidability and computability for 2-D SFTs



The Halting Problem

@ Suppose a halting oracle exists, call it H
@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever

@ If P halts, R begins an infinite loop, thus running forever

o If P runs forever, R halts immediately

@ R, on input P, exhibits halting behavior which is the
OPPOSITE of P
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@ Suppose a halting oracle exists, call it H
@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever

@ If P halts, R begins an infinite loop, thus running forever

o If P runs forever, R halts immediately

@ R, on input P, exhibits halting behavior which is the
OPPOSITE of P

@ Contradiction: try running R with input R!
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The Halting Problem

@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever

@ If P halts, R begins an infinite loop, thus running forever

o If P runs forever, R halts immediately

@ R, on input P, exhibits halting behavior which is the
OPPOSITE of P

@ Contradiction: try running R with input R!

@ If R halts, then R runs forever; if R runs forever, then R halts
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The Halting Problem

@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever

@ If P halts, R begins an infinite loop, thus running forever

o If P runs forever, R halts immediately

@ R, on input P, exhibits halting behavior which is the
OPPOSITE of P

@ Contradiction: try running R with input R!
@ If R halts, then R runs forever; if R runs forever, then R halts
@ A halting oracle cannot exist!
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The Halting Problem

@ Suppose a halting oracle exists, call it H

@ Create a new program R, called a halting reverser, whose
input is the code of an arbitrary computer program P:

@ First R runs the halting oracle H to decide whether P halts or
runs forever

@ If P halts, R begins an infinite loop, thus running forever

o If P runs forever, R halts immediately

@ R, on input P, exhibits halting behavior which is the
OPPOSITE of P

@ Contradiction: try running R with input R!
@ If R halts, then R runs forever; if R runs forever, then R halts

@ A halting oracle cannot exist!
& Similar to Russell’'s paradox, Godel's Incompleteness Theorem
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@ Simplistic model of computing
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Turing machines

@ Simplistic model of computing

@ A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape
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Turing machines

@ Simplistic model of computing

@ A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape

@ Some internal states are “halting” states; when the machine
reaches those, it will not do further computation
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Turing machines

@ Simplistic model of computing

@ A head moves back and forth on a tape, moving, erasing, and
copying symbols dependent on its “internal state” (not
written down) and the symbol it sees on the tape

@ Some internal states are “halting” states; when the machine
reaches those, it will not do further computation

@ Can define a n.n. SFT which implements a Turing machine as
a space-time diagram; rows show successive steps in
computation
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Implementation tiles
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Fig, 12, Alphabet tile Fig, 13. Merging tiles
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Fig 14. Action tiles
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Turing machines

@ Problem: can't force the head to appear! There will always be
points consisting of unchanging tape with no head
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Turing machines

@ Problem: can't force the head to appear! There will always be
points consisting of unchanging tape with no head

@ Solution: Robinson SFT!
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Turing machines

@ Problem: can't force the head to appear! There will always be
points consisting of unchanging tape with no head

@ Solution: Robinson SFT!

@ Points of Robinson SFT can separate the plane into disjoint
“boards”
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Turing machines

@ Initialize computations on center of lower edge of each
“board”

Ronnie Pavlov Undecidability and computability for 2-D SFTs



Turing machines

@ Initialize computations on center of lower edge of each
“board”

@ Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it
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Turing machines

@ Initialize computations on center of lower edge of each
“board”

@ Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

@ Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty
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Turing machines

@ Initialize computations on center of lower edge of each
“board”

@ Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

@ Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

@ If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty
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Turing machines

@ Initialize computations on center of lower edge of each
“board”

@ Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

@ Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

@ If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty

@ If the nonemptiness problem was decidable, the halting
problem would be decidable!
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Turing machines

@ Initialize computations on center of lower edge of each
“board”

@ Use “transmission signals” to run computation in larger board
without intersecting smaller boards inside it

@ Since there exist boards of arbitrary size, if Turing machine
halts, X will eventually not be able to fill a board, so X will
be empty

@ If the Turing machine runs forever, then all boards can be
filled, and so X will be nonempty

@ If the nonemptiness problem was decidable, the halting
problem would be decidable!

@ So, nonemptiness of a 2-D n.n. SFT is not decidable
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