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Overview

• Equilibria and periodic orbits of PDEs

• Newton-Krylov continuation methods

• Inexact Newton methods

• Iterative linear solvers and GMRES

• Stability

• Subspace iteration and Arnoldi methods

• Examples and exercises

• Continuation of codimension-one bifurcation points of equilibria and periodic

orbits

• Continuation of invariant tori

• Periodic orbits by multiple shooting.
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Equilibria and periodic orbits of PDEs
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Equilibria and periodic orbits of ODEs

Suppose

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R

is a large-scale (n� 1) autonomous system of ODEs obtained after the spatial discretization of a

system of parabolic PDEs and that

ϕ(t, x, p)

is its solution with initial condition x at t = 0 for a fixed value of p, that is, ϕ(0, x, p) = x.

We will assume that this system has been obtained as the discretization of a systems of evolutionary

parabolic PDEs (reaction-diffusion or Navier-Stokes equations, for instance).

We are interested in the computation of its equilibria x satisfying

f(x, p) = 0,

their dependence on the parameter p and their stability.

We are also interested in the periodic regimes of the system given by the equations

x− ϕ(T, x, p) = 0,

g(x, p) = 0,

x being a point of the periodic orbit selected by the phase condition g(x, p) = 0 and T > 0 its

period.

In both cases one has to solve large-scale nonlinear systems of equations and to study the stability of

the resulting equilibria or periodic orbits.
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Newton-Krylov continuation methods
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Continuation of zeros of a nonlinear system of equations

Consider a system of nonlinear equations depending on a parameter p

H(x, p) = 0, (x, p) ∈ U ⊂ Rm × R

with m� 1. We are interested in its solutions and their dependence on p.

Parameter and pseudo-arclength-like continuation methods are used to obtain the curves

(x(s), p(s)) of solutions. They admit an unified formulation by adding an equation

h(x, p) = 0.

If h(x, p) = p− p0 the equation fixes the parameter p.

If h(x, p) = h>x (x − x0) + hp(p − p0), with (x0, p0)

and (hx, hp) being the predicted point and the tangent

to the curve of solutions, the hyperplane is transverse

to the curve of solutions if the prediction is not far away

from the previous point, and the algorithm allows passing

turning points.

The system that determines a unique solution,

(x, p) ∈ Rm+1, is then

H̃(x, p) =

 H(x, p)

h(x, p)

 = 0 ∈ Rm+1 .
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The system H̃(x, p) = 0 is solved by an inexact Newton’s method:

starting from the initial (x0, p0),

(xi+1, pi+1) = (xi, pi) + (∆xi,∆pi),

where (∆xi,∆pi) satisfies the linear systemDxH(xi, pi) DpH(xi, pi)

h>x hp

∆xi

∆pi

 =

−H(xi, pi)

−h(xi, pi)


which is solved iteratively by matrix-free methods (GMRES(m), BiCGStab, FOM, TFQMR, etc.)

which only require the computation of matrix products, i.e., products of the formDxH(xi, pi) DpH(xi, pi)

h>x hp

δx
δp


and, eventually, the use of preconditioners.

GMRES(m) = Generalized Minimal Residual (with restarting dimension m)

BiCGStab = Biconjugate Gradient Stabilized

FOM = Full Orthogonalization Method

TFQMR = Transpose-Free Quasi-Minimal Residual

Recent Trends in Nonlinear Science 2016, January 25-29 2016, Sevilla – p. 6



An example of a matrix-free product

Consider the system of PDEs

∂τ c = (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ)),

modelling a tubular exotermic chemical reactor (Heinemann and Poore 1981), with s ∈ [0, 1], and

where c, θ and τ are the non-dimensional concentration of a reactant, temperature and time,

respectivelly. Pem, Peh, D, β, B, θr and γ are non-dimensional parameters of the problem.

Suppose that all of them are fixed except D that will be our control parameter (p in the previous

slides), and that our state variable is x = (c, θ).

Let

H(x, p) =

 (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

(1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ))

 .

Then, if δx = (δc, δθ) and δp = δD,

DxH(x, p)δx+DpH(x, p)δp = (1/Pem)∂2
ssδc− ∂sδc− exp(γ(1− 1/θ))(Dδc+Dc(γ/θ2)δθ + δDc)

(1/Peh)∂2
ssδθ − ∂sδθ − βδθ +B exp(γ(1− 1/θ))(Dδc+Dc(γ/θ2)δθ + δDc)

 .
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Inexact Newton’s methods
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Types of convergence

Iterative methods can be classified by their rate of convergence.

Definition. Let {xk} ⊂ Rn and x∗ ∈ Rn. Then

• xk → x∗ q-quadratically if xk → x∗ and there is K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.

• xk → x∗ q-superlinearly with q-order α > 1 if xk → x∗ and there is K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖α.

• xk → x∗ q-superlinearly if

lim
n→∞

‖xk+1 − x∗‖/‖xk − x∗‖ = 0.

• xk → x∗ q-linearly with q-factor σ ∈ (0, 1) if

‖xk+1 − x∗‖ ≤ σ‖xk − x∗‖.

Definition. Let {xk} ⊂ Rn and x∗ ∈ Rn. Then xk → x∗ r-(quadratically, superlinearly,

linearly) if there is a sequence {ξk} ⊂ R converging q-(quadratically, superlinearly, linearly) to

zero such that

‖xk − x∗‖ ≤ ξk,

and xk → x∗ r-superlinearly with r-order α > 1 if the sequence ξk → 0 q-superlinearly with

q-order α.
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Newton’s method

Suppose we seek to solve the system

F (x) = 0

with x, F (x) ∈ Rn, and assume the following standard conditions hold

• F (x) = 0 has a solution x∗,

• There is a neighborhood of x∗, Ω ⊂ RN , such that DF : Ω→ RN×N is Lipschitz continuous

with Lipschitz constant γ > 0, i.e.,

‖DF (x)−DF (y)‖ ≤ γ‖x− y‖

for all x, y ∈ Ω,

• DF (x∗) is nonsingular.

Theorem. Under the above assumptions there is a δ > 0 such that if ‖x0 − x∗‖ < δ the

Newton iteration

xk+1 = xk + sk, with DF (xk)sk = −F (xk)

converges q-quadratically to x∗, i.e., there is a K > 0 such that

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2.
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Inexact Newton methods

Suppose now that instead of solving

DF (xk)sk = −F (xk)

exactly, the linear system is solved by an iterative method with stopping criteria

‖DF (xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖.

Theorem. Let the standard conditions hold. Then there exists δ > 0 such that if

‖x0 − x∗‖ < δ, and {ηk} ⊂ [0, η] with η < η̄ < 1, then the inexact Newton iteration

xk+1 = xk + sk, with ‖DF (xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖,

converges q-linearly to x∗ with respect to the norm ‖ · ‖∗ = ‖DF (x∗) · ‖. Moreover

• if ηk → 0 the convergence is q-superlinear, and

• if ηk ≤ Kη‖F (xk)‖p for some Kη > 0 the convergence is q-superlinear with q-order 1+p.

Proposition. Under the standard conditions, and if xk → x∗, ‖xk − x∗‖∗ → 0 q-linearly if

and only if ‖F (xk)‖ does.
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Iterative linear solvers and GMRES
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Krylov methods for linear systems

Large-scale non-symmetric linear systems Ax = b of dimension n� 1 are usually solved by iterative

Krylov methods. The class of projection methods produce, from an initial guess x0, a sequence of

approximations, xk, to the solution x∗ = A−1b, in the affine subspace xk ∈ x0 +Kk, which satisfy

the Petrov-Galerkin condition

b−Axk ⊥ Lk,

where Kk and Lk are two k-dimensional linear subspaces. If Lk = AKk, then xk satisfies

||b−Axk||2 = inf
x∈x0+Kk

‖b−Ax‖2.

It minimizes the norm ||b−Ax||2 over x ∈ x0 +Kk.

In the particular case of GMRES, Lk = AKk, and Kk is the Krylov subspace

Kk = {r0, Ar0, A2r0, . . . , A
k−1r0}, with r0 = b−Ax0.

It follows that

rk =b−Axk = b−A(x0 + zk) = r0 −Azk =

= Ir0 −A(α1r0 + α2Ar0 + · · ·+ αkA
k−1r0)

= (I − α1A− α2A
2 − · · · − αkAk)r0 = pk(A)r0

pk being a polynomial of degree k, with pk(0) = 1.
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Now, by using that

• If A = V ΛV −1 then Al = V ΛlV −1 and p(A) = V p(Λ)V −1

• If Λ = diag(λ1, . . . , λn) then p(Λ) = diag(p(λ1), . . . , p(λn))

• ‖p(A)‖2 ≤ ‖p(Λ)‖2‖V ‖2‖V −1‖2 = κ2(V )‖p(Λ)‖2, with κ2(V ) = ‖V ‖2‖V −1‖2 the norm-2

condition number of V .

• If Λ = diag(λ1, . . . , λn) then ‖p(Λ)‖2 = maxi=1,...,n |p(λi)|

the following result is obtained.

Theorem. (Saad and Schultz 1986) Assume that A is diagonalizable with A = V ΛV −1, where

Λ = diag(λ1, · · · , λn) is the diagonal matrix of eigenvalues, Pk is the set of polynomials of

degree at most k, and κ2(V ) = ‖V −1‖2‖V ‖2 is the norm-2 condition number of V . Then at

the k-th step of GMRES

‖b−Axk‖2
‖b−Ax0‖2

≤ κ2(V ) inf
p∈Pk
p(0)=1

max
i=1,...,n

|p(λi)|.

Proof:

‖b−Axk‖2 = inf
p∈Pk
p(0)=1

‖p(A)r0‖ ≤ κ2(V ) inf
p∈Pk
p(0)=1

max
i=1,...,n

|p(λi)|‖b−Ax0‖2.
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The Arnoldi’s factorization

It is used in the solution of linear systems, eigenvalue problems (Arnoldi’s method), and to find

reduced order models by the dynamic mode decomposition (DMD).

Let 〈., .〉 be the euclidean dot product. Given a matrix A and an initial unitary vector v1

Iterate: for j = 1, 2, . . . , k compute

1. hi,j = 〈Avj , vi〉, for i = 1, 2, . . . , j

2. wj = Avj −
∑j
i=1 hi,jvi (this is classical Gram-Schmidt orthogonalization)

3. hj+1,j = ‖wj‖2, if hj+1,j = 0 stop

4. vj+1 = wj/hj+1,j

If Vk = [v1, . . . , vk] is the matrix with columns v1, . . . , vk then

• The columns of Vk form an orthonormal basis of Kk = {v1, Av1, A2v1, . . . , Ak−1v1}.

• If Hk is the k × k upper Hessenberg matrix whose nonzero entries are the hi,j then

AVk = VkHk + wke
>
k , and V >k AVk = Hk,

with wk = hk+1,kvk+1, and e>k = (0, . . . , 0, 1) ∈ Rk.

• If H̃k is the (k + 1)× k matrix whose nonzero entries are the hi,j then

AVk = Vk+1H̃k.

The matrix Hk is H̃k without its last row.
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AVk = VkHk + hk+1,kvk+1e
>
k :

A[v1, . . . , vk] = [v1, . . . , vk]



h1,1 h1,2 h1,3 · · · h1,k

h2,1 h2,2 h2,3 · · · h2,k

0 h3,2 h3,3 · · · h3,k

...
. . .

. . .
. . .

...

0 · · · 0 hk,k−1 hk,k


+ hk+1,k[0, . . . , 0, vk+1]

AVk = Vk+1H̃k :

A[v1, . . . , vk] = [v1, . . . , vk, vk+1]



h1,1 h1,2 h1,3 · · · h1,k

h2,1 h2,2 h2,3 · · · h2,k

0 h3,2 h3,3 · · · h3,k

...
. . .

. . .
. . .

...

0 · · · 0 hk,k−1 hk,k

0 · · · · · · 0 hk+1,k


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Practical implementation of the Arnoldi’s factorization

Given a matrix A and an initial unitary vector v1 Iterate: for j = 1, 2, . . . , k compute

1. w = Avj

2. for i = 1, 2, . . . , j do (this is modified Gram-Schmidt orthogonalization)

(a) hi,j = 〈w, vi〉
(b) w ← w − hi,jvi

3. hj+1,j = ‖w‖2, if hj+1,j = 0 stop

4. vj+1 = w/hj+1,j
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To complete GMRES, it remains to solve the minimizing problem

inf
x∈x0+Kk

‖b−Ax‖2.

Suppose that v1, . . . , vk form an orthonormal basis of Kk and let Vk = [v1, . . . , vk]. It is found by

means of the Arnoldi factorization with v1 = r0/‖r0‖. Then

x ∈ x0 +Kk =⇒ x = x0 + Vky with y ∈ Rk,

and

inf
x∈x0+Kk

‖b−Ax‖2 = inf
y∈Rk

‖b−A(x0 + Vky)‖ = inf
y∈Rk

‖r0 −AVky‖.

Now, since AVk = Vk+1H̃k,

‖r0 −AVky‖2 = ‖r0 − Vk+1H̃ky‖2 = ‖V >k+1(βv1 − Vk+1H̃ky)‖2 = ‖βe1 − H̃ky‖2

with β = ‖r0‖, e1 = (1, 0, . . . , 0)> ∈ Rk+1 and y ∈ Rk.

Therefore

inf
x∈x0+Kk

‖b−Ax‖2 = inf
y∈Rk

‖βe1 − H̃ky‖2.

The latter is a least-squares problem without restrictions in Rk.

One wants to solve the system in a small number of iterations to avoid the matrix Vk to grow too

much and then in practice k � n.
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The restarted GMRES(m) algorithm

The complete restarted version of the algorithm GMRES(m) is , given x0, and r0 = b−Ax0,

1. Set l = 0.

2. Start: Choose as initial unitary vector v1 = r0/‖r0‖, set ρ = β = ‖r0‖, k = 0.

3. do while ρ > ε, k < m, and l < lmax:

(a) set k = k + 1 and l = l + 1

(b) compute the Arnoldi’s factorization AVk = Vk+1H̃k

(c) find yk the minimizer of ‖βe1 − H̃ky‖2
(d) set ρ = ‖βe1 − H̃kyk‖2 (remember that infx∈x0+Kk

‖b−Ax‖2 = infy∈Rk ‖βe1 − H̃ky‖2 )

4. if ρ < ε then set xk = x0 + Vkyk as approximate solution and exit

5. if l > lmax (too many iterations without convergence) exit

6. if k = m set x0 ← x0 + Vkyk and restart the algorithm (go to 2).
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Preconditioning

If the spectrum of A is not clustered it is necessary to use preconditioners to accelerate the

convergence of the iterative solvers for the linear system Ax = b.

Suppose M is a matrix which approximates A (M ≈ A) and is easy to invert (easy to solve systems

with matrix M).

• Left preconditioning. Solve the system

M−1Ax = M−1b.

Its solution is that of Ax = b.

• Right preconditioning. Solve the system

AM−1y = b.

Then the solution of Ax = b is x = M−1y.

This means that when applying a matrix-free method (GMRES, for instance) each matrix product

by A is substituted by a matrix product by A followed by a matrix solve with matrix M in the case

of left preconditioning, or by a matrix solve with matrix M followed by a matrix product by A for

right preconditioning.
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Spatial discretization of the HP problem

Consider the system of PDEs

∂τ c = (1/Pem)∂2
ssc− ∂sc−Dc exp(γ(1− 1/θ))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr) +BDc exp(γ(1− 1/θ)),

in the interval s ∈ [0, 1], with boundary conditions

∂sc = Pem(c− 1) at s = 0, ∂sc = 0 at s = 1,

∂sθ = Peh(θ − 1) at s = 0, ∂sθ = 0 at s = 1.

To implement the boundary conditions easily we substitute c = c̄+ 1, θ = θ̄ + 1 in the equations

and boundary conditions to obtain, after removing the overbars the equations

∂τ c = (1/Pem)∂2
ssc− ∂sc−D(c+ 1) exp(γθ/(θ + 1)))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr + 1) +BD(c+ 1) exp(γθ/(θ + 1))),

with boundary conditions

∂sc = Pemc at s = 0, ∂sc = 0 at s = 1,

∂sθ = Pehθ at s = 0, ∂sθ = 0 at s = 1.

If D = 0 and θr = 1 then c = 0 and θ = 0 is a solution of the problem.
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We use collocation methods in a Gauss-Lobatto mesh. Let si = 0.5(1− cos(πi/nd)), i = 0, . . . , nd

and D(l) = {d(l)
i,j} the (nd + 1)× (nd + 1) matrices which approximate the derivatives on the mesh,

i.e,

f (l)(si) ≈
nd∑
j=0

d
(l)
i,jf(sj), i = 0, . . . , nd.

Let ci = c(si), θi = θ(si) and approximate the boundary conditions (of c, for instance) by

nd∑
j=0

d
(1)
0,jcj = Pemc0,

nd∑
j=0

d
(1)
nd,j

cj = 0.

From these two equations the values at the end points can be obtained as a linear combination of

the values at the inner points,

c0 =

nd−1∑
j=1

α0,jcj , cnd =

nd−1∑
j=1

αnd,jcj .

And then, for instance,

∂2
ssc(si) ≈

nd−1∑
j=1

(d
(2)
i,j + d

(2)
i,0α0,j + d

(2)
i,nd

αnd,j)cj =

nd−1∑
j=1

d̃
(2)
i,j cj , i = 1 . . . , nd − 1

and D̃(2) = {d̃(2)
i,j } is the (nd − 1)× (nd − 1) matrix which approximates ∂2

ss incorporating the

boundary conditions and acting only on the values at the inner points.
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After the spatial discretization of

∂τ c = (1/Pem)∂2
ssc− ∂sc−D(c+ 1) exp(γθ/(θ + 1)))

∂τ θ = (1/Peh)∂2
ssθ − ∂sθ − β(θ − θr + 1) +BD(c+ 1) exp(γθ/(θ + 1))),

the following stiff system of ODEs of dimension 2(nd − 1) is obtained

ċi =

nd−1∑
j=1

(
(1/Pem)d̃

(2)
i,j − d̃

(1)
i,j

)
cj −D(ci + 1) exp(γθi/(θi + 1)))

θ̇i =

nd−1∑
j=1

(
(1/Peh)d̃

(2)
i,j − d̃

(1)
i,j − βδi,j

)
θj − β(1− θr) +BD(ci + 1) exp(γθi/(θi + 1))),

i = 1, . . . , nd − 1

which is integrated with the subroutine DLSODPK from the ODEPACK library.
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Effect of the preconditioner in the HP problem

In all the following examples we have taken nd = 30 and therefore the dimension of the dynamical

system is n = 2(nd − 1) = 58.

For the next examples Pem = Peh = 5, B = 0.5, γ = 25, β = 3.5, θr = 1, and D will be the free

parameter.

If δx = (δc, δθ) then,

DxH(x, p)δx =

 (1/Pem)∂2
ssδc− ∂sδc−N

(1/Peh)∂2
ssδθ − ∂sδθ − βδθ +BN

 ,

with N = exp(γθ/(θ + 1))D(δy + (y + 1)(γ/(θ + 1)2)δθ)

Two possible preconditioners are

M1 =

(1/Pem)∂2
ss 0

0 (1/Peh)∂2
ss

 ,

and

M2 =

(1/Pem)∂2
ss − ∂s 0

0 (1/Peh)∂2
ss − ∂s − βI

 .
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The following figure shows the convergence of GMRES at the first Newton iteration for D = 0.1

starting with c = 0 and θ = 0. The size of the linear system is n = 58, and the dimension of the

Krylov subspace was m = 10 or m = 58. Norm of the residual = ‖b−Axk‖2.
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Stability
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Stability of fixed points (equilibria)

Given an autonomous system of ODE ẋ = f(x), with f : U ⊂ Rn → Rn (which we will assume to

be at least C1), let ϕ(t, x) its solution with initial condition x.

Let x∗ be a fixed point (or equilibrium) of the system of EDOs, i.e., f(x∗) = 0.

Definition. The fixed point is said to be Lyapunov stable if for every neighborhood N of x∗
there is a neighborhood M ⊂ N of x∗ such that if x ∈M , then ϕ(t, x) ∈ N for all t ≥ 0.

An equilibrium that is not stable is called unstable.

Definition. The fixed point is said to be asymptotically stable if it is Lyapunov stable and

there is a neighborhood N of x∗ such if x ∈ N then limt→∞ ‖ϕ(t, x)− x∗‖ = 0.

Definition. The fixed point said to be exponentially stable if it is asymptotically stable and

there exist α > 0, and β > 0, and a neighborhood N of x∗ such that if x ∈ N , then

‖ϕ(t, x)− x∗‖ ≤ α‖x− x∗‖e−βt, for t ≥ 0.

Theorem. If f is of class C1 and x∗ is a fixed point such that all the eigenvalues of Df(x∗)

have strictly negative real parts, then x∗ is exponentially stable (and hence asymptotically

stable). If at least one eigenvalue has strictly positive real part, then x∗ is unstable.

The eigenvalues of Df(x∗) close the imaginary axis have to be computed to detect bifurcations of

fixed points.
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Stability of periodic orbits

Definition. A set Λ is said to be invariant under the flow ϕ(t, x) if ϕ(t,Λ) = Λ for all t; that

is, for each x ∈ Λ, ϕ(t, x) ∈ Λ for any t.

Definition. The invariant set is said to be stable if for every neighborhood N of Λ there is a

subset M ⊂ N of Λ such that if x ∈M , then ϕ(t, x) ∈ N for all t ≥ 0.

An set that is not stable is called unstable.

Definition. The invariant set is said to be asymptotically stable if it is stable and there is a

neighborhood N of Λ such if x ∈ N then, then limt→∞ ρ(ϕ(t, x),Λ) = 0, with

ρ(x,Λ) = infy∈Λ(‖x− y‖).

A trajectory x(t) = ϕ(t, x) is a periodic orbit if there is a minimal T > 0 such that ϕ(T, x) = x.

Consider the first variational equation Ṁ = Df(x(t))M about the periodic orbit x(t), with initial

condition M(0) = I. The solution at time T is called the monodromy matrix M(T ). Its eigenvalues

are called the Floquet multipliers of the periodic orbit.

Theorem. The monodromy matrix M(T ) always has a unit eigenvalue with eigenvector

ẋ(0) = ẋ(T ) = f(x(0)).

This unit eigenvalue is named the trivial eigenvalue of the periodic orbit.

Theorem. If x(t) is a periodic orbit of a C2 flow ϕ(t, x) that is linearly asymptotically stable

(its monodromy matrix has all the eigenvalue inside the unit circle except the trivial one), then

it is asymptotically stable.

The eigenvalues of M(T ) of largest magnitude have to be computed to detect bifurcations of the

periodic orbits.
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Subspace iteration and Arnoldi methods
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Eigenvalue problems

Rayleigh-Ritz method.

Assume A is a real matrix of dimension n× n (n� 1), and that Vm is of dimension n×m
(m� n) such that V >m Vm = Im (Im identity of dimension m) and

AVm = VmBm

with Bm of dimension m×m. This expressions says that the columns of Vm span an invariant

subspace of A of dimension m. Moreover,

if (λ, u) eigenpair of Bm (Bmu = λu) =⇒ (λ, Vmu) eigenpair of A :

AVmu = VmBmu = λVmu.

If the identity AVm = VmBm is not exact, the pairs (λ, Vmu) are called Ritz values and vectors of

A, respectively.

It is clear that since V >m Vm = Im then Bm = V >mAVm.

There are two main methods to obtain approximate bases, Vm, of the subspace corresponding to the

leading (largest magnitude) eigenvalues of a large-scale matrix A, subspace iteration and

Arnoldi’s method.
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Subspace iteration

Subspace iteration is implemented, for instance, in LOPSI and SRRIT.

1. Start: Choose an initial system of orthonormal vectors Vm = [v1, . . . , vm], (m� n)

2. Iterate: Until convergence do:

(a) For l=1,. . . , k do

i. Compute Zm = AVm

ii. Orthonormalize Zm by computing Zm = QmRm, with Q>mQm = I and Rm

upper-triangular, and set Vm = Qm

(b) Form Bm = V >mAVm and compute the eigenpairs (λi, zi), i = 1, · · · ,m of Bm by the QR

method (LAPACK)

(c) Test for convergence of eigenvalues and/or eigenvectors

3. Stop: When satisfied, compute the approximate eigenvectors of A as xi = Vmzi, i = 1, · · · ,m.

The λi, i = 1, · · · ,m are the approximate eigenvalues.

Theorem. Suppose that the n eigenvalues of A are ordered by decreasing modulus as follows:

|λ1| ≥ |λ2| ≥ · · · |λm| > |λm+1| ≥ · · · ≥ |λn|. If the initial set of vectors Vm is not deficient in

the eigenvectors corresponding to λ1, · · · , λm, and if the total number of iterations taken, k, is

large enough, then the previous algorithm computes approximations λ̂i,k to λi (i = 1, . . . ,m)

with

|λ̂i,k − λi| = O

(∣∣∣∣λm+1

λi

∣∣∣∣+ εi,k

)k
, lim

k→∞
εi,k = 0.

Moreover, if λi is simple, then εi,k = 0.
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Arnoldi’s method

Arnoldi’s method is implemented, for instance, in ARPACK.

1. Start: Choose an initial unitary vector v1.

2. Iterate: Until convergence do:

(a) Compute the Arnoldi factorization AVm = VmHm + wme>m of length m. The columns of

Vm form an orthonormal basis of Km = {v1, Av1, A2v1, . . . , Am−1v1}.
(b) Compute the eigenpairs (λi, zi), i = 1, · · · ,m of Hm = V >mAVm by the QR method

(LAPACK).

(c) Test for convergence of eigenvalues and/or eigenvectors. If not converged select a new initial

vector v1 from the Arnoldi factorization.

3. Stop: When satisfied, compute approximate eigenvectors of A as xi = Vmzi, i = 1, · · · ,m.

The λi, i = 1, · · · ,m are the approximate eigenvalues.

Theorem. Suppose that the n eigenvalues of A are simple and that λ2, . . . , λn are enclosed by

a circle centered at ξ and passing through λ2, and that λ̂1 is the approximation to λ1 obtained

by Arnoldi’s method, then

|λ̂1 − λ1| ≤ c
∣∣∣∣λ2 − ξ
λ1 − ξ

∣∣∣∣m−1

,

with c a constant. This gives the same error bound as m− 1 steps of the power method applied

to A− ξI.
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From the Arnoldi’s decomposition

AVm = VmHm + wme
>
m, with wm = hm+1,mvm+1,

it is easy to find the residual ‖(A− λiI)xi‖2.

Proposition. Let zi be an eigenvector of Hm associated with the eigenvalue λi, and

xi = Vmzi the Ritz approximate eigenvector of A. Then,

(A− λiI)xi = hm+1,m(e>mzi)vm+1

and, therefore

‖(A− λiI)xi‖2 = hm+1,m|e>mzi|.

Proof:

AVmzi = VmHmzi + hm+1,mvm+1e
>
mzi

Axi − λixi = hm+1,m(e>mzi)vm+1

and vm+1 is unitary.
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Eigenvalue Transformations

To find the leading (maximal real part) eigenvalues of Av = λv the following transformations can be

used:

Shift-invert with real or complex shift:

Av = λv =⇒ (A− σI)−1v = µv with µ = 1/(λ− σ).

The circle C(σ, |λ− σ|) in the λ-plane is mapped to the circle C(0, |λ− σ|−1) in the µ-plane.

µ=1/(λ−σ),  λ=a+ib
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Generalized Cayley transformation:

Av = λv =⇒ (A− σI)−1(A− τI)v = µv with µ = (λ− τ)/(λ− σ).

The line Re(λ) = (σ + τ)/2 is mapped to the unit circle and Re(λ) < (σ + τ)/2

(Re(λ) > (σ + τ)/2) is mapped to the interior (exterior) of the unit circle.

µ=(λ−τ)/(λ−σ),  λ=a+ib
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Double complex shift: If σ = ρ+ iθ,

Av = λv =⇒ (A− σI)−1(A− σ̄I)−1v = µv with µ = 1/((λ− ρ)2 + θ2).

Systems with matrix (A− σI)(A− σ̄I) = (A− ρI)2 + θ2I have to be solved.

µ=1/(λ−σ)(λ−σ
∗
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Exponential:

Av = λv =⇒ exp(TA)v = µv with µ = exp(λT ).

The line Re(λ) = 0 is mapped to the unit circle and Re(λ) < 0 (Re(λ) > 0) is mapped to the

interior (exterior) of the unit circle.

µ=exp(Tλ),  λ=a+ib
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By taking logarithms, and using that λ = 〈v,Av〉/〈v, v〉 to recover the undetermined imaginary part,

λ can be obtained from µ.

The previous methods (subspace or Arnoldi iterations) can be used to find the eigenvalues µ with

maximal modulus of the transformed problems.
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Continuation of fixed points of ODEs

Summarizing, it is possible to find the equilibria of the system of ODEs

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

by Newton-Krylov methods by a generic continuation code if one can provide three subroutines:

• fun(X, H) computing the function H = f(x, p) from X = (x, p),

• dfun(X, δX, δH) which computes the action by the Jacobian δH = Dyf(x, p)δx+Dpf(x, p)δp

from X = (x, p) and δX = (δx, δp), and

• prec(X, h, δX, δZ) which solves MδZ = δX from X = (x, p), h = (hx, hp), and δX = (δx, δp),

M being an approximation of Dxf(xi, pi) Dpf(xi, pi)

h>x hp

 .

In the previous example (HP problem) we used an approximation of the form

M =

M 0

0 1

 .
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Continuation of periodic orbits of ODEs

To compute periodic orbits of

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

by Newton-Krylov methods two subroutines are needed:

• fun(X, H) computing the function

H(x, T, p) =

x− ϕ(T, x, p)

g(x, p)


from X = (x, T, p), g(x, p) being a phase condition. This involves integrating

ẏ = f(y, p) with initial condition y(0) = x during a time T.

• dfun(X, δX, δH) which computes the action by the Jacobian of the system

δH = DH(x, T, p)(δx, δT, δp) =

δx−Dxϕ(T, x, p)δx−Dpϕ(T, x, p)δp− f(y(T ), p)δT

Dxg(x, p)δx+Dpg(x, p)δp


from X = (x, T, p) and δX = (δx, δT, δp), where y(T ) = ϕ(T, x, p).
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The matrix product

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp

can be computed by integrating a first variational equation. If

y(t) =ϕ(t, x, p)

y1(t) =Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp

then y1 satisfies

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp and y1(0) = δx,

because ϕ(0, x, p) = x.

This equation must be solved coupled with that for y,

ẏ = f(y, p)

ẏ1 = Dyf(y, p)y1 +Dpf(x, p)δp
with initial conditions

y(0) = x

y1(0) = δx.

Finally

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp = y1(T ).
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Continuation of fixed points of ODEs by time evolution

The equilibria of the system of ODEs

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

can also be obtained as fixed points of the map

x→ ϕ(T, x, p)

ϕ(t, x, p) being the solution of the ODEs with initial condition x, because

f(x, p) = 0⇒ x− ϕ(T, x, p) = 0.

The arbitrary time T must be large enough to have most of the spectrum of Dxϕ(T, x, p) clustered

at the origin, but as short as possible to save computing time.

The matrix products required can be computed by integrating the first variational equation

ẋ = f(x, p)

ẏ = Dxf(x, p)y +Dpf(x, p)δp
with initial conditions

x(0) = x

y(0) = δx.

Then

Dxϕ(T, x, p)δx+Dpϕ(T, x, p)δp = y(T ).

This method can be used as a second option, for instance, when the continuation method applied to

f(x, p) fails due to the lack a good preconditioner for the linear systems or the eigenvalue problems.
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Examples and exercises
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Results for the HP problem
In this example Pem = Peh = 5, B = 0.5, γ = 25, β = 3.50, and θr = 1.
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In this example Pem = Peh = 5, B = 0.5, γ = 25, β = 3.00, and θr = 1.
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The one-dimensional Brusselator

Consider the system of PDEs

∂tX = (DX/L
2)∂2

zzX +X2Y − (B + 1)X +A

∂tY = (DY /L
2)∂2

zzY −X2Y +BX,

in the interval z ∈ [0, 1], with boundary conditions

X(0) = X(1) = A

Y (0) = Y (1) = B/A.

For any value of the parameters the problem has the trivial constant solution X = A and Y = B/A.

It undergoes Hopf bifurcations for

Lk = kπ

√
DX +DY

B −A2 − 1
, k = 1, 2 . . . .

If DX = 0.008, DY = 0.004, A = 2, B = 5.45 then Lk ≈ 0.5130k.

To implement the boundary conditions we substitute X = X̄ +A, Y = Ȳ +B/A in the equations

and boundary conditions to obtain, after removing the overbars the equations

∂tX = (DX/L
2)∂2

zzX +X2Y + (B/A)X2 + 2AXY +A2Y + (B − 1)X, X(0) = X(1) = 0,

∂tY = (DY /L
2)∂2

zzY −X2Y − (B/A)X2 − 2AXY −A2Y −BX, Y (0) = Y (1) = 0.
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Results for the Brusselator problem

In this example DX = 0.008, DY = 0.004, A = 2, B = 5.45 and L is the continuation parameter.
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A period doubling cascade or tori in the Brusselator problem
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Continuation of codimension-one bifurcation points

of equilibria and periodic orbits
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Continuation of bifurcation curves

Consider an autonomous system of ODEs

ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R2,

depending on two parameters p = (p1, p2) obtained after spatial discretization of a system of

parabolic PDEs (n >> 1).

Let y(t) = ϕ(t, x, p) be its solution with initial condition y(0) = x at t = 0 and for a fixed p.

We are interested in tracking curves of codimension-one bifurcations of periodic orbits in system

with or without symmetries.

Let assume a matrix-free continuation code based on Newton-Krylov methods is available to follow

the curves of solutions of

H(X) = 0

with X ∈ U ⊂ Rm+1 and H(X) ∈ Rm, which requires the user to provide an initial solution X0,

and two subroutines:

• fun(X, h) which computes h = H(X) from X, and

• dfun(X, δX, δh) which computes δh = DXH(X)δX from X, and δX.
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Saddle–node and period doubling bifurcations

The saddle-node (λ = 1) and period doubling (λ = −1) bifurcations of periodic orbits are solutions

of the system H(x, u, T, p) = 0 given by

x− ϕ(T, x, p) = 0,

g(x) = 0,

λu−
(
Dxϕ(T, x, p)u−

1

2
(1 + λ)

〈f, u〉
〈f, f〉

f

)
= 0,

〈ur, u〉 = 1.

• g(x) = 0 is a phase condition to select a single point on the periodic orbit. We use

g(x) = 〈vπ , x− x(π)〉 = 0.

• f = f(x, p) is the vector field evaluated at (x, p).

• 〈ur, u〉 = 1 fixes the indetermined constant of the eigenvalue problem, ur being a reference

vector. We use ur = u.

• The last term of the third equation is Wieland’s deflation, which guarantees the regularity of the

system by shifting the +1 multiplier associated with f(x, p) to zero.

X = (x, u, T, p) has dimension 2n+ 3, and the 2n+ 2 equations define the curve of solutions.
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In order to compute H(x, u, T, p), we define

y(t) = ϕ(t, x, p)

y1(t) = Dxϕ(t, x, p)u

and, taking into account that

DtDxϕ(t, x, p) = Dyf(ϕ(t, x, p), p)Dxϕ(t, x, p), and Dxϕ(0, x, p) = I

the following system has to be integrated during a time T

ẏ = f(y, p), y(0) = x

ẏ1 = Dyf(y, p)y1, y1(0) = u.

Then

ϕ(T, x, p) =y(T )

Dxϕ(T, x, p)u =y1(T ).

Recent Trends in Nonlinear Science 2016, January 25-29 2016, Sevilla – p. 53



The action of DXH(x, u, T, p) on (δx, δu, δT, δp) is

δx−Dtϕ(T, x, p)δT −Dxϕ(T, x, p)δx−Dpϕ(T, x, p)δp,

Dg(x)δx,

λδu−D2
txϕ(T, x, p)(u, δT )−D2

xxϕ(T, x, p)(u, δx)−D2
xpϕ(T, x, p)(u, δp)

−Dxϕ(T, x, p)δu

+
1 + λ

2〈w,w〉

(
〈w, u〉z +

(
〈z, u〉+ 〈w, δu〉 −

2〈w, z〉
〈w,w〉

〈w, u〉
)
w

)
,

〈ur, δu〉,

where w = f(x, p) and z = Dyf(x, p)δx+Dpf(x, p)δp. Lets define

y(t) = ϕ(t, x, p),

y1(t) = Dxϕ(t, x, p)u,

y2(t) = Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp,

y3(t) = D2
xxϕ(t, x, p)(u, δx) +D2

xpϕ(t, x, p)(u, δp),

y4(t) = Dxϕ(t, x, p)δu.

Dtϕ(T, x, p)δT = f(y(T ), p)δT,

D2
txϕ(T, x, p)(u, δT ) = δT Dyf(ϕ(T, x, p), p)Dxϕ(T, x, p)u = δT Dyf(y(T ), p)y1(T ).
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If

y(t) = ϕ(t, x, p),

y1(t) = Dxϕ(t, x, p)u,

y2(t) = Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp,

y3(t) = D2
xxϕ(t, x, p)(u, δx) +D2

xpϕ(t, x, p)(u, δp),

y4(t) = Dxϕ(t, x, p)δu,

the system which must be integrated to obtain y(T ), yi(T ), i = 1, . . . , 4 is

ẏ = f(y, p), y(0) = x

ẏ1 = Dyf(y, p)y1, y1(0) = u

ẏ2 = Dyf(y, p)y2 +Dpf(y, p)δp, y2(0) = δx

ẏ3 = Dyf(y, p)y3 +D2
yyf(y, p)(y1, y2) +D2

ypf(y, p)(y1, δp), y3(0) = 0

ẏ4 = Dyf(y, p)y4, y4(0) = δu.
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Neimark-Sacker bifurcations

The Hopf bifurcations of periodic orbits with multiplier eiθ and eigenvector u+ iv are solutions of

the system H(x, u, v, T, θ, p) = 0 given by

x− ϕ(T, x, p) = 0,

g(x) = 0,

u cos θ − v sin θ −Dxϕ(T, x, p)u = 0,

u sin θ + v cos θ −Dxϕ(T, x, p)v = 0,

〈u, u〉+ 〈v, v〉 = 1,

〈u, v〉 = 0.

• g(x) = 0 is the phase condition g(x) = 〈vπ , x− x(π)〉 = 0.

• The third and fourth equations are the real and imaginary parts of

eiθ(u+ iv)−Dxϕ(T, x, p)(u+ iv) = 0.

• The two last equations uniquely determine the eigenvector u+ iv.

Now X = (x, u, v, T, θ, p) has dimension 3n+ 4, and the 3n+ 3 equations define the curve of

solutions.
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Pitchfork bifurcations

If the initial system is T -invariant, f(T x, p) = T f(x, p) with T 2 = I, and T x = x, the pitchfork

bifurcation points of periodic orbits are solutions of the system H(x, u, T, ξ, p) = 0 are given by

x− ϕ(T, x, p) + ξφ = 0,

g(x) = 0,

〈x, φ〉 = 0,

u−
(
Dxϕ(T, x, p)u−

〈f, u〉
〈f, f〉

f

)
= 0,

〈ur, u〉 = 1.

• The slack variable ξ and the third equation are introduced to make the system regular.

Moreover ξ = 0 at the solution.

• g(x) = 0 is the phase condition g(x) = 〈vπ , x− x(π)〉 = 0.

• φ is a given antisymmetric vector, T φ = −φ.

• The last equation uniquely determines the eigenvector u.

Now X = (x, u, T, ξ, p) has dimension 2n+ 4, and the 2n+ 3 equations define the curve of solutions.
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Thermal convection in binary fluid mixtures

The equations in Ω = [0,Γ]× [0, 1] for the perturbation of the basic state (vc = 0, Tc = Tc(0)− z,

and Cc = Cc(0)− z) in non-dimensional form are

∂tv + (v · ∇)v = σ∆v −∇p+ σRa(Θ + SC)êz ,

∂tΘ + (v · ∇)Θ = ∆Θ + vz ,

∂tC + (v · ∇)C = L(∆C −∆Θ) + vz ,

∇ · v = 0.

The boundary conditions are non-slip for v, constant temperatures at top and bottom and insulating

lateral walls for Θ = T − Tc, and impermeable boundaries for C.

The parameters are

Γ Aspect ratio (4)

S Separation ratio (−0.1)

L Lewis number (0.03)

σ Prandtl number (control)

Ra Rayleigh number (control)

z ψ

z Tc + Θ

z Cc + C

x
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To simplify the system, a streamfunction v = (−∂zψ, ∂xψ), and an auxiliary function η = C −Θ

are used. Then

∂t∆ψ + J(ψ,∆ψ) =σ∆2ψ + σRa [(S + 1)∂xΘ + S∂xη] ,

∂tΘ + J(ψ,Θ) =∆Θ + ∂xψ,

∂tη + J(ψ, η) =L∆η −∆Θ,

with J(f, g) = ∂xf∂zg − ∂zf∂xg. The boundary conditions are now

ψ = ∂nψ = ∂nη = 0 at ∂Ω,

Θ = 0 at z = 0, 1,

∂xΘ = 0 at x = 0,Γ.

The symmetry group of the equations is Z2 × Z2 generated by the two reflections:

Rx : (t, x, z, ψ,Θ, η)→ (t,Γ− x, z,−ψ,Θ, η),

Rz : (t, x, z, ψ,Θ, η)→ (t, x, 1− z,−ψ,−Θ,−η).
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Variational equations

∂t∆ψ1 + J(ψ,∆ψ1) + J(ψ1,∆ψ) =σ∆2ψ1 + σRa [(S + 1)∂xΘ1 + S∂xη1] ,

∂tΘ1 + J(ψ,Θ1) + J(ψ1,Θ) =∆Θ1 + ∂xψ1,

∂tη1 + J(ψ, η1) + J(ψ1, η) =L∆η1 −∆Θ1,

∂t∆ψ2 + J(ψ,∆ψ2) + J(ψ2,∆ψ) =σ∆2ψ2 + σRa [(S + 1)∂xΘ2 + S∂xη2] + δσ∆2ψ

+ (σδRa+ δσRa) [(S + 1)∂xΘ + S∂xη] ,

∂tΘ2 + J(ψ,Θ2) + J(ψ2,Θ) =∆Θ2 + ∂xψ2,

∂tη2 + J(ψ, η2) + J(ψ2, η) =L∆η2 −∆Θ2,

∂t∆ψ3 + J(ψ,∆ψ3) + J(ψ3,∆ψ) =σ∆2ψ3 + σRa [(S + 1)∂xΘ3 + S∂xη3] + δσ∆2ψ1

+ (σδRa+ δσRa) [(S + 1)∂xΘ1 + S∂xη1]

− J(ψ1,∆ψ2)− J(ψ2,∆ψ1),

∂tΘ3 + J(ψ,Θ3) + J(ψ3,Θ) =∆Θ3 + ∂xψ3 − J(ψ1,Θ2)− J(ψ2,Θ1),

∂tη3 + J(ψ, η3) + J(ψ3, η) =L∆η3 −∆Θ3 − J(ψ1, η2)− J(ψ2, η1).
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Discretization

The functions ψ, Θ, and η are approximated by a pseudo-spectral method. Collocation on a mesh of

nx × nz = 64× 16 (n = 3072) Gauss-Lobatto points is used.

Higher resolutions have been used to check the results.

The stiff system of ODEs obtained can be written as

Bu̇ = Lu+N(u)

with u = (ψij ,Θij , ηij).

It is integrated by using fifth-order BDF-extrapolation formulas:

1

∆t
B

(
γ0u

n+1 −
k−1∑
i=0

αiu
n−i

)
=

k−1∑
i=0

βiN(un−i) + Lun+1.

The initial points are obtained by a fully implicit BDF method.
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Some results for σ = 0.6
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Some results for σ = 0.6
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Fixed points
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Periodic orbits
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Curves of bifurcations
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Curves of bifurcations
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Curves of bifurcations
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Period
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Codimension-two points
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Performance
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Relative distance between Newton iterates and number of GMRES iterations for the pitchfork and

one of the Neimark-Sacker curves.
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Continuation of invariant tori
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Poincaré maps and its derivatives

Given the system of ODEs
ẏ = f(y, p), (y, p) ∈ U ⊂ Rn × R,

let ϕ(t, x, p) is its solution with initial condition x at t = 0 for a fixed value of p (ϕ(0, x, p) = x),

and suppose there is a periodic orbit which cuts transversely a hyperplane Σ1 given by

Σ1 =
{
y ∈ Rn / 〈v1, y − xΣ

1 〉 = 0
}
.

Let V ⊂ Σ1 be a neighborhood of the intersection. The Poincaré map P : V ⊂ Σ1 → Σ1 is defined

as

x P(x, )

Σ

P

p

1

P (x, p) = ϕ(t(x, p), x, p),

t(x, p) being the first positive time for which

ϕ(t(x, p), x, p) ∈ Σ1

with

sign〈v1, f(x, p)〉 = sign〈v1, f(P (x, p), p)〉.
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The action of the Jacobian of P (x, p) = ϕ(t(x, p), x, p) on (δx, δp) with 〈v1, δx〉 = 0 is

w = DxP (x, p)δx+DpP (x, p)δp = y1 −
〈v1, y1〉
〈v1, z〉

z,

where z = f(P (x, p), p), y1 is the solution, at the arrival time, t(x, p), of the first variational

equation

)P(x,p

Σ

x

x

w

P
δ

y
1

1

z

ẏ = f(y, p)

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp

with initial conditions

y(0) = x

y1(0) = δx.

Each matrix product requires, the time integration of a system of 2n equations.
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To see that

DxP (x, p)δx+DpP (x, p)δp = y1 −
〈v1, y1〉
〈v1, z〉

z,

first differentiate P (x, p) = ϕ(t(x, p), x, p) to obtain

DxP (x, p)δx+DpP (x, p)δp = Dxϕ(t(x, p), x, p)δx+Dpϕ(t(x, p), x, p)δp

+ f(ϕ(t(x, p), x, p), p)
(
Dxt(x, p)δx+Dpt(x, p)δp

)
= y1(t(x, p)) + cz,

if

y1(t) =Dxϕ(t, x, p)δx+Dpϕ(t, x, p)δp,

c =Dxt(x, p)δx+Dpt(x, p)δp ∈ R,

z =f(ϕ(t(x, p), x, p), p)

Then

• y1 satisfies ẏ1 = Dyf(y, p)y +Dpf(y, p)δp and y1(0) = δx (because ϕ(0, x, p) = x),

y(t) = ϕ(t, x, p) being the solution of ẏ = f(y, p) with y(0) = x.

• Since h1(x, p) ≡ 〈v1, P (x, p)− xΣ
1 〉 = 0 ∀x ∈ V and p, and then

Dxh1(x, p)δx+Dph1(x, p)δp = 〈v1, y1〉+ c〈v1, z〉 = 0
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Continuation of periodic orbits of ODEs

The periodic orbits ẏ = f(y, p) can be computed as fixed points of a parameterized version of the

Poincaré map.

If v1k
is the largest component of v1, lets define Rk as the orthogonal projection from Σ1 onto the

hyperplane yk = 0.

x
)

x P(x, )

R

yk

Σ

ky = 0

P

P(x,

R
−1

p

p

1

a)

k

k

The parameterized map

P̄ (x̄, p) = Rk(P (R−1
k (x̄), p)),

and its fixed points verifying

x̄− P̄ (x̄, p) = 0, x̄ ∈ Rn−1,

are in one-to-one correspondence with

those of P by the map x = R−1
k (x̄).
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By applying the chain rule to P̄ (x̄, p) = Rk(P (R−1
k (x̄), p))

Dx̄P̄ (x̄, p)δx̄+DpP̄ (x̄, p)δp = Rk
(
DxP (x, p)DR−1

k (x̄)δx̄+DpP (x, p)δp
)

= Rkw

whith

w = DxP (x, p)δx+DpP (x, p)δp = y −
< v1, y >

< v1, z >
z,

where δx = DR−1
k (x̄)δx̄, z = f(P (x, p), p), and y1 is the solution, at the arrival time, t(x, p), of

the first variational equation

R

R
−1

)P(x,p

x

y

Σ

x

x

x

= 0

w

P

w

k
P(x, )

δ

p

δ
y

y

k

1

1

z
b)

k

k

ẋ = f(x, p)

ẏ1 = Dxf(x, p)y1 +Dpf(x, p)δp

with initial conditions

x(0) = x = R−1
k (x̄)

y1(0) = δx = DR−1
k (x̄)δx̄.
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’Continuation’ of invariant 2-tori of ODEs (first method)

Let P : V ⊂ Σ1 → Σ1 be the Poincaré map defined on a hyperplane Σ1, and Σ2 another

hyperplane, given by 〈v2, x− xΣ
2 〉 = 0, transversal to both Σ1 and the invariant 2-tori. Fix ε, and

define the map G(x̄, p) : U ⊂ Rn−2 × R→ Rn−2 as follows. If R : Σ1 ∩ Σ2 → Rn−2 is a

parameterization of Σ1 ∩Σ2 and x̄ ∈ U let x = R−1(x̄) and zj = Pkj (x, p), j = 1, . . . , q+ 1 be the

first q + 1 powers of P on x such that ‖Pkj (x, p)− x‖ < ε. Then

µ1µ2µ3µ4

ΣΣ 21

z1
z3z4

z2
Σ1

2v

Pk=jz j

ε
x

G

q=3

(x,

(x,p)

p)

a)

G(x̄, p) = R

q+1∑
j=1

lj(0)Pkj (R−1(x̄), p)

 = R

q+1∑
j=1

lj(0)zj

 ,

where the lj are the Lagrange interpolation

polynomials of degree q associated to the

mesh of points

µj = 〈v2, P
kj (x, p)−xΣ

2 〉, j = 1, · · · , q+1

lj(µ) =

q+1∏
i=1
i6=j

µ− µi
µj − µi

,

evaluated at µ = 0.

Then x̄−G(x̄, p) = 0 is solved.

The fixed points of the map G(x̄, p) are in one-to-one correspondence, by the map x = R−1(x̄),

with approximations of the points of the invariant 2-tori in Σ1 ∩ Σ2.

The radius ε defining G must be varied adaptively during the ’continuation’ process.
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The action of the Jacobian of G(x̄, p) = R(
∑q+1
j=1 lj(0)Pkj (R−1(x̄), p)), on a (δx̄, δp) reduces to

the case of the differential of the Poincaré map

Dx̄G(x̄, p)δx̄+DpG(x̄, p)δp = R

q+1∑
j=1

[
lj(0)

(
DxP

kj (x, p)δx+DpP
kj (x, p)δp

)

+ Pkj (x, p)

q+1∑
i=1

∂µi lj(0)〈v2, DxP
ki (x, p)δx+DpP

ki (x, p)δp〉
]
,

with x = R−1(x̄) and δx = Dx̄R−1(x̄)δx̄, and where

〈v2, DxP
ki (x, p)δx+DpP

ki (x, p)δp〉 = Dxµiδx+Dpµiδp.

The derivatives ∂µi lj(0) of

lj(0) =

q+1∏
i=1
i 6=j

µi

µi − µj

are trivial.
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’Continuation’ of invariant 2-tori of ODEs (second method)

Let P : V ⊂ Σ1 → Σ1 be the Poincaré map defined on a hyperplane Σ1, and Σ2 another

hyperplane, given by 〈v2, x− xΣ
2 〉 = 0, transversal to both Σ1 and the invariant 2-tori. Let

µ1, · · · , µq+1 be q + 1 fixed coordinates along the line x = xΣ
2 + µv2. Fix ε, and define the map

G(X, p) : U ⊂ R(n−1)(q+1) × R→ R(n−1)(q+1) as follows. If X = (x1, · · · , xq+1) ∈ U let

zj = Pk
′
j (xj , p) be the first power of P on xj such that ‖Pk

′
j (xj , p)− xj‖ < ε

for j = 1, . . . , q + 1. Then

ΣΣ 21

µ2µ3µ4 µ1

µ3
~ µ1

~µ2
~

x’4
z4

z3 2x’ z2
1x’ z1

x4
x3 x1

x2

4µ~

k’j

x’3
Σ1

2v

=jz (xjPq=3 ,p)

G(X, p) = X′ = Z(X, p)Ṽ (X, p)−1V, with

X′ = (x′1, · · · , x′q+1), Z(X, p) = (z1, · · · , zq+1),

and V and Ṽ the Vandermonde matrices

V =


1 · · · 1

µ1 · · · µq+1

. . . . . . . . . . .

µq1 · · · µqq+1


associated with the µj and the µ̃j = 〈v2, P

k′j (xj , p)− xΣ
2 〉, j = 1, · · · , q + 1 respectively.

The fixed points of the map G(X, p) approximate an arc of the invariant curve in Σ1.
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The action by the Jacobian of G = ZṼ −1V also reduces to that of the Poincaré map. If

δX = (δx1, · · · , δxq+1) then

DG(X, p)(δX, δp) =[
DZ(X, p)(δX, δp)− Z(X, p)Ṽ (X, p)−1DṼ (X, p)(δX, δp)

]
Ṽ (X, p)−1V

where

DZ(X, p)(δX, δp) = (DPk
′
1 (x1, p)(δx1, δp), · · · , DPk

′
q+1 (xq+1, p)(δxq+1, δp)),

DṼ (X, p)(δX, δp) =



0 · · · 0

1 · · · 1

2µ̃1 · · · 2µ̃q+1

. . . . . . . . . . . . . . .

qµ̃q−1
1 · · · qµ̃q−1

q+1




η1 · · · 0

...
. . .

...

0 · · · ηq+1

 ,

and ηj = 〈v2, DP
k′j (xj , p)(δxj , δp)〉. In short, DG =

[
DZ − ZṼ −1DṼ

]
Ṽ −1V.

The radius ε and the position of the µj defining G must be varied adaptively during the

continuation process.
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Comparison of the two methods to compute invariant tori

Assuming the same degree q of interpolation is used to approximate the invariant curve:

• The first method requires computing increasing powers k1 < k2 < · · · < kq+1 of the Poincaré

map of a single initial condition x. This is a sequential process.

• The second requires the first returning powers k′j for a collection of initial conditions xj . They

can be computed in parallel. If the xj are close enough all the k′j will be the same.

• If the two methods are applied to the same problem with the same ε, and close initial

conditions, one can expect k′1 = · · · = k′q+1 = k1. Therefore if parallelism is used in the second

method the wall-clock time to compute the map or the action by the Jacobian is reduced by a

factor kq+1/k1.

• If the number of iterations of Newton’s method and the linear solver are the same for both

methods, the time (wall-clock) to do the continuation will be reduced essentially by a factor

kq+1/k1.

• If k2 ≈ 2k1, · · · , kq+1 ≈ (q + 1)k1 then kq+1/k1 ≈ q + 1.

• If k′1 = · · · = k′q+1 the speed-up of the second method (time sequential/time parallel) is

essentially q + 1.

• Since the second method requires, in principle, lower powers of the Poincaré map, it should be

best suited for the computation of weakly unstable invariant tori.
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Thermal convection in binary fluid mixtures

The equations in Ω = [0,Γ]× [0, 1] for the perturbation of the basic state (vc = 0, Tc = Tc(0)− z,

and Cc = Cc(0)− z) in non-dimensional form are

∂tv + (v · ∇)v = σ∆v −∇p+ σRa(Θ + SC)êz ,

∂tΘ + (v · ∇)Θ = ∆Θ + vz ,

∂tC + (v · ∇)C = L(∆C −∆Θ) + vz ,

∇ · v = 0.

The boundary conditions are non-slip for v, constant temperatures at top and bottom and insulating

lateral walls for Θ = T − Tc, and impermeable boundaries for C.

The parameters are

Γ Aspect ratio (4)

S Separation ratio (−0.1)

L Lewis number (0.03)

σ Prandtl number (control)

Ra Rayleigh number (control)

z ψ

z Tc + Θ

z Cc + C

x
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Some results for σ = 0.6
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Invariant tori for σ = 0.6
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Ra=2117.4954

• Beginning of the branch: Ra = 2066.74

• 1/7–resonance interval 2102.79 < Ra < 2102.80

• Pitchfork bifurcation Ra ≈ 2115.92

• 1/8–resonance interval 2116.18 ≤ Ra ≤ 2116.20.

• First period doubling Ra ≈ 2118.40

• Second period doubling Ra ≈ 2118.55

• Breakdown of the torus Ra ≈ 2118.60
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Comparison of the two methods to compute invariant tori

Meth. Version q Time N. sol. Time/N. sol. Ratio1 Ratio2

1 serial 2 3725 19 196 4.97 4.71

1 serial 3 3960 19 208 5.27 4.99

1 serial 4 5019 19 264 7.34 7.34

1 serial 5 5664 19 298 7.97 7.97

2 serial 2 2255 18 125 3.01 3.01

2 serial 3 2830 18 157 3.76 3.76

2 serial 4 3563 19 188 5.21 5.21

2 serial 5 4333 19 228 6.09 6.09

2 parallel 2 749 18 42 1.00 1.00

2 parallel 3 752 18 42 1.00 1.00

2 parallel 4 684 19 36 0.91 0.87

2 parallel 5 711 19 37 0.95 0.90

Comparison of the wall-clock times for the different algorithms, implementations, and interpolation

degrees. The continuation corresponds to the interval Ra ∈ [210, 2115].
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The Arnold’s tongue of ρ = 1/8 (σ = 0.6)
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Computation of the limits of the 1/8 tongue
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Computation of the limits of the 1/8 tongue

 2100

 2200

 2300

 2400

 2500

 2600

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Ra 

σ 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.4  0.8  1.2  1.6  2  2.4

ρ 

σ 

Neimark-Sacker

1/8

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

||u|| 

σ 

5.9950

5.9954

5.9958

5.9962

5.9966

5.9970

0.5502 0.5504 0.5506 0.5508 0.5510 0.5512

||u|| 

σ 

Recent Trends in Nonlinear Science 2016, January 25-29 2016, Sevilla – p. 89



Continuation of periodic orbits by multiple shooting
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Computation of periodic orbits by parallel multiple shooting

Consider a system of autonomous differential

equations

ẋ = f(x, p), (x, p) ∈ U × I ⊂ Rn+1,

m hyperplanes Πi intersecting transversally an

initial periodic orbit, the partial Poincaré maps

Pi (i = 1 · · · ,m), and the Poincaré map on

Π1, P . They satisfy

P (x1, p) = (Pm ◦ Pm−1 ◦ · · · ◦ P1)(x1, p),

P1

P2

Π1

Π2

Π3

3x

x1

x2

P1 x1

P2

Pm

(x2 )

( )

P

Πm

xmm
Pm−1

Pm−1 xm−1( )

x( )m

if xi+1 = Pi(xi, p), i = 1, · · · ,m− 1,

DxP (x1, p) = DxPm(xm, p)DxPm−1(xm−1, p) · · ·DxP1(x1, p).

We also define X = (x1, · · · , xm) ∈ Rmn, and the map G as

G(X, p) = (x1 − Pm(xm, p), x2 − P1(x1, p), · · · , xm − Pm−1(xm−1, p)).

The points x1, · · · , xm are on a periodic orbit if G(X, p) = 0.
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Continuation and the Newton-Krylov method
The equation G(X, p) = 0 is completed with

U>(X −X0) + up(p− p0) = 0,

(X0, p0) being the prediction of a new point on the curve of solutions, and (U, up) an approximation
of the tangent with U = (u1, · · · , um). Setting U = 0 and up = 1 leads to parameter continuation.

The system is solved by Newton’s method and the linear systems by Krylov matrix-free methods

(GMRES in our case), which only require computing the action by the Jacobian of the system

DXG DpG
U> up

 =



I . . . . . . 0 −Am −bm

−A1 I
... 0 −b1

0
. . .

. . .
...

...

...
. . .

. . .
. . .

...
...

0 . . . 0 −Am−1 I −bm−1

u>1 . . . u>m−2 u>m−1 u>m up


,

with Ai = DxPi(xi, p), and bi = DpPi(xi, p).
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The computation of

G(X, p) = (x1 − Pm(xm, p), x2 − P1(x1, p), · · · , xm − Pm−1(xm−1, p)).

involves the time integration of ẋ = f(x, p) with m initial conditions x(0) = xi.

The computation of the action of DG(X, p) on (V, µ) = (v1, · · · , vm, µ),

DG(X, p)(V, µ) =

(v1 −DPm(xm, p)(vm, µ), v2 −DP1(x1, p)(v1, µ), · · · , vm −DPm−1(xm−1, p)(vm−1, µ))

is also trivially parallelizable, and involves the time integration of the system of first variational

equations (for a vector)

v̇ = Dxf(x, p)v +Dpf(x, p)µ,

with initial conditions v(0) = vi, together with the original system ẋ = f(x, p), with initial

conditions x(0) = xi.

Only systems of at most 2n equations must be integrated.
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Speedup and efficiency

Let T (m, k) be the wall-clock time required to do a continuation with m sections, with each partial

shoot computed on a different processor, and using a preconditioner (to be defined later) based on

an invariant subspace of dimension mk (k = 0 means no preconditioning).

The (absolute) speedup is defined as

S(m, k) = Tref/T (m, k), (the goal is S(m, k) = m)

Tref being the wall-clock time of the best algorithm without using parallelism. We have taken

Tref = T (1, 0).

The efficiency is

E(m, k) = S(m, k)/m (the goal is E(m, k) = 1).
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Bifurcation diagram (main branch of periodic orbits)

The full circles indicate bifurcation points, and the empty circles the point at which the continuation

is started in the numerical experiments (Ra = 2320), and that at which the preconditioner has been

computed (Ra = 2305).
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Solid and dashed lines mean stable and unstable branches, respectively. The labels beside the branch

of periodic orbits indicate the number of multipliers outside the unit circle.
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Results for the unpreconditioned computations
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(a) Speedup, and (b) efficiency versus the number of sections m corresponding to the computation

of five points without preconditioning, and starting at Ra = 2320.
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Block cyclic matrices I
Consider the matrices

A =



0 . . . . . . 0 Am

A1

. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 Am−1 0


,

A = AmAm−1 · · ·A1, with A ∈ Rmn×mn, and Ai ∈ Rn×n.

Proposition. If A and A are defined as above then

a) if (µ, V ) is an eigenpair of A, with µ ∈ C, and V = (v1, · · · , vm)> with vi ∈ Cn

(i = 1, · · · ,m), then (µm, v1) is an eigenpair of A.

b) if (λ, u1) is an eigenpair of A, with λ ∈ C and u1 ∈ Cn, and if µm = λ, then (µ, V ), with

V = (µm−1u1, µm−2u2, · · · , µum−1, um)>, and ui+1 = Aiui (i = 1, · · · ,m− 1), is an

eigenpair of A.

This result states that the eigenvalues of A are placed on circles centered at the origin, and then,

those of I − A on circles centered at +1.
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Preconditioners based on leading invariant subspaces (deflation)
Let Cx = b be a linear system with non-singular matrix C ∈ Rn×n. We look for a right

preconditioner, M such that the convergence of the iterative methods applied to

CM−1y = b, x = M−1y,

be faster. We assume that most of the spectrum of C is clustered around +1.

Let the columns of Q = [q1, · · · , qk] ∈ Rn×k form an orthonormal basis of an invariant subspace of

C corresponding to the first k leading (maximal distance to +1) eigenvalues of C, with Q>Q = Ik,

and k � n. The matrix Q verifies

CQ = QR, and C−1Q = QR−1,

with R an invertible k × k matrix. Then, we define M = QRQ> + (I −QQ>).

• M−1 = QR−1Q> + (I −QQ>)

• M> = QR>Q> + (I −QQ>), and (M>)−1 = Q(R>)−1Q> + (I −QQ>)

• CM−1 = QQ> + C(I −QQ>)

• If z = z1 + z2 with z1 ∈ Span{q1, · · · , qk}, and z2 ∈ Span{q1, · · · , qk}⊥,

CM−1z = z1 + Cz2.

In the case of multiple shooting we need a preconditioner for (I − A)X = B.
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Block cyclic matrices II

Proposition. Let the matrix Q1 ∈ Rn×k, with Q>1 Q1 = Ik, be such that AQ1 = Q1R is a

partial real Schur decomposition of A = AmAm−1 · · ·A1. Let Qi+1 ∈ Rn×k, and Ri ∈ Rk×k,

i = 1, · · · ,m− 1, form a partial periodic real Schur decomposition of A, defined by

AiQi = Qi+1Ri, and

Rm = Q>1 AmQm.

Then it follows that R = RmRm−1 · · ·R2R1, and if

Q =



Q1 . . . . . . . . . 0

...
. . .

...

...
. . .

...

...
. . .

...

0 . . . . . . . . . Qm


, and R =



0 . . . . . . 0 Rm

R1

. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 Rm−1 0


,

with Q ∈ Rmn×mk and R ∈ Rmk×mk, then AQ = QR and (I − A)Q = Q(I −R), i.e., the

columns of Q form an orthonormal basis of an invariant subspace, of dimension mk, of A and

of I − A.
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Results for the preconditioned computations
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Parameter continuation of an interval of 15 units in Ra without limitation of the step size. (a)

Speedup, and (b) efficiency.
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Preconditioners for the multiple shooting

The matrices of the linear systems corresponding to pseudo-arclength and parameter continuation

are DXG DpG
U> up

 , and

DXG 0

0 1

 ,

with DXG = I − A. If M is a preconditioner for DXG the systems can be preconditioned withM DpG
U> up

 , or

M 0

0 1

 .

The former is a bordered system, which can be solved in a stable way by the BEM algorithm. It

requires solving systems with M and M>, and to know explicitly the column DpG = −DpP. It can

be obtained by integrating the first variational equations with initial conditions v(0) = 0, and

µ(0) = 1.
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The continuation and preconditioning process

There are two possible straightforward ways of linking the continuation and the updating of the

preconditioner processes.

a) m processors are used to compute the periodic orbits and another one is updating the

preconditioner.

Stab.
Hyp.

Prec.

a)

m processors  

1 processor

b) The m processors are used to do both tasks.

Stab.

Hyp.

Prec.

b)

m processors  
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