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Minimal Models of Bursting Neurons: How Multiple Currents, Conductances,
and Timescales Affect Bifurcation Diagrams∗
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Abstract. After reviewing the Hodgkin–Huxley ionic current formulation, we introduce a three-variable generic
model of a single-compartment neuron comprising a two-dimensional fast subsystem and a very slow
recovery variable. We study the effects of fast and slow currents on the existence and stability of
equilibria and periodic orbits for the fast subsystem, presenting a classification of currents and de-
veloping graphical tools that aid in the analysis and construction of models with specified properties.
We draw on these to propose a minimal model of a bursting neuron, identifying biophysical param-
eters that can shape and regulate key characteristics of the membrane voltage pattern: bursting
frequency, duty cycle, spike rate, and the number of action potentials per burst. We present ad-
ditional examples from the literature for comparison and illustration, and in a companion paper
[SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 671–700], we construct a model of an insect central pattern
generator using these methods.
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1. Introduction. In this and a companion paper [1] we develop and analyze a generic
model of a bursting neuron and assemble a set of such models, suitably adapted to interneurons
and motoneurons, to model a central pattern generator (CPG) for insect locomotion. We
have two main goals: to integrate and extend a body of work, largely in theoretical and
mathematical neuroscience, that enables (semi-) analytical studies of bursting neurons, while
maintaining sufficient biophysical detail for comparisons with experimental data; and to use
this to derive a model of a CPG that reveals how key locomotive properties may be determined
by individual neurons and the network as a whole. In this first paper we show how complex
models can be reduced and develop the analytical methods; in [1] we construct the CPG
model.

The first dynamical neural model based on biophysical data was due to Hodgkin and Hux-
ley [2], and their description of the action potential (AP) and ionic currents in the giant axon
of the squid has been vastly extended and generalized in the half century since. Detailed ax-
onal and dendritic geometry can be included, for example, at the unicellular level. However,
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A MINIMAL BURSTER MODEL 637

behaviors even as simple as scratching or breathing require networks of neurons, and the
resulting firing patterns depend on three levels of activity: intracellular, synaptic, and net-
work. Models ignoring any of these levels risk oversimplification [3], perhaps especially in
invertebrates, in which relatively few neurons may be responsible for such diverse behaviors
as searching, walking, and running [4, 5]. The wealth of neurophysiological data collected
since Hodgkin and Huxley’s paper has led to rather complicated models (e.g., [6, 7, 8]), some
multicompartmental and including seven or more ionic currents, that require on the order
of ten ODEs and fifty parameters per cell. These models are specific to particular animals
and even to in vitro preparations and, not being amenable to analytical comparative studies,
do not readily reveal general principles. In this paper and [1] we seek a balance between
such complexity and simpler phenomenological models employing phase oscillators [9, 10] or
connectionist circuits [11] that have been used to study network connectivity effects.

Bursting oscillations have been widely studied, mostly at the single-cell level, e.g., [12, 13,
14, 15, 16, 17]; general classifications have been proposed [18, 19, 20, 21, 22], and polynomial
reductions have been developed and thoroughly analyzed [23, 24, 25]. Some network studies
have also recently been done [17, 26]. When limited experimental data is available, as in [17]
and the CPG model of [1], generic models and broad parameter variations can still lead
to testable hypotheses and provide motivation to verify novel predictions [27]. However,
while asymptotic reductions and polynomial approximations aid mathematical analyses, they
often obscure biophysical effects that must be retained if one is to understand how internal
components and architecture, as well as proprioceptive sensing and commands from higher
centers, can influence a network [28].

Single-current effects on individual cells are qualitatively understood, but collective in-
fluences have not been fully explored. We therefore devote this first paper to analyzing how
multiple (fast and slow) currents conspire to affect the location and stability of equilibria and
limit cycles, with a view to determining how biophysical parameters can effect changes in
behavioral variables such as spike rate, bursting frequency, duty cycle, and number of APs
per burst. Our methods identify currents which are unessential to the bursting mechanism,
suggest dimensional reductions, and provide guidelines for “designing” bursters with desired
behaviors when intracellular biophysical data is lacking. Thus, while they are used in [1] to
model an insect CPG, these methods offer a more general set of tools for studying the neural
basis of rhythmogensis. Indeed, comparisons with several existing models are noted in pass-
ing, and a specific example is given in section 4.3. In developing these tools, we have profited
from many earlier studies, including those of Rose and Hindmarsh [29, 14, 16] (on I−v steady
state curves) and of FitzHugh [30] and Rose and Hindmarsh [14, 31] (on combining gating
variables). Here we treat only third order models with one very slow recovery variable; we
note that Smolen, Terman, and Rinzel [32] considered two slow variables. Specific references
to these and other relevant papers and models will be made in the course of the paper.

This paper is organized as follows. After reviewing basic ideas of single-compartment
ion-channel models and noting the role of disparate timescales in section 2, we describe a
three-variable generic model of a bursting neuron in section 3. We identify and analyze
the effects of individual current and conductance parameters on branches of equilibria and
periodic orbits and their bifurcations, and then in section 4 we lay out a “minimal” model
for a bursting neuron, of sufficient flexibility to represent both interneurons and motoneurons
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638 R. M. GHIGLIAZZA AND P. HOLMES

in the CPG application of [1]. We identify biophysical parameters that shape the bursting
pattern and hence will determine key behavioral characteristics, and we illustrate further by
showing how an example (the Sherman–Rinzel–Keizer (SRK) model [13]) can be modified to
produce different behaviors. We summarize in section 5.

2. Ion-channel models. Bursting, the clustering of spikes followed by a refractory period
of relative quiescence, can vary substantially in form and function [22, 33, 21]. The mechanism
can be described qualitatively as the interaction of two subsystems dynamically separated by
their intrinsic time scales: a faster one, typically governed by sodium and potassium channels,
which can either be at rest or exhibit (periodic) oscillations, and a slow subsystem driving the
first through its quiescent and oscillatory states in a quasi-static manner [34, 35]. The slower
mechanism can be attributed to the accumulation of intracellular calcium ions (referred to
as calcium dynamics [33]) or to other slow voltage-dependent processes (e.g., [17]). In many
cases, bursting models can therefore be framed as singularly perturbed systems [36]:

u̇ = f(u, c),(2.1a)

ċ = δg(u, c),(2.1b)

where the vector u = [v,w] ∈ RN+1, v denotes the cell membrane voltage, w = [w1, . . . , wN ]T

represents a collection of N gating variables wi to be explained below, and δ � 1 is a small
parameter. The variable c may represent calcium concentration or, more generally, any (very)
slowly varying quantity responsible for bursting.

The subset of fast equations (2.1a) generally takes the Hodgkin–Huxley (HH) form [2] and
can be written as follows [37]:

Cv̇ = −Iion(v, w1, . . . , wn, c) + Iext(t),(2.2a)

ẇi = εi
wi∞(v) − wi

τi(v)
, i = 1, . . . , N.(2.2b)

The first equation (2.2a) describes the voltage dynamics, with C denoting the cell mem-
brane capacitance, Iion transmembrane ionic currents, and Iext(t) exogenous input currents,
including synaptic and external inputs. Equations (2.2b) describe the first order kinetics of
variables wi that gate the ionic currents (see below), with εi a positive temperature-like pa-
rameter (not necessarily small). At steady state, gating variables approach voltage-dependent
limits wi∞(v), usually described by sigmoidal functions:

wi∞(v; ki0 , vith) =
1

1 + e−ki0 (v−vith )
,(2.3)

where ki0 determines the steepness of the transition occurring at a threshold potential vith .
Gating variables can be either activating (ki0 > 0), with wi∞ ≈ 1 for depolarized voltages
v > vith and wi∞ ≈ 0 for hyperpolarized levels v < vith , or inactivating (ki0 < 0), with
wi∞ ≈ 1 when hyperpolarized and wi∞ ≈ 0 when depolarized.1 The voltage-dependent “time
constant” τi is generally described by

τi(v; ki0 , vith) = sech (ki0(v − vith)) ,(2.4)

1It is sometimes useful to retain ki0 > 0 in (2.3) and express inactivation via 1 − wi.
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A MINIMAL BURSTER MODEL 639

and, as implied in (2.3)–(2.4), the constants ki0 , vith determining wi∞ and τi are often taken
to be the same for a given ion channel [38].

The term Iion in (2.2a) is the sum of all ionic currents Iα. Ions move across the membrane
via channels which are permeable to specific species (possibly more than one per channel), and
they can be thought of as being in either of two states: open or closed. The total conductance
associated with a given (sufficiently large) population of channels can be expressed as the
(constant) maximal conductance ḡα for all channels open, multiplied by the fraction of open
channels. Thus, each ionic current can generally be described as Ohmic and written in the
form

Iα(v,w, c) = ḡα · γα(v, w1, . . . , wN , c) · (v − Eα);(2.5)

more complicated “rectifying” conductances, such as those expressed by the Goldman–Hodg-
kin–Katz formula [39] can also be represented in this manner. Here Eα is the (Nernstian)
reversal potential, α denotes the ion type, typically α ∈ {Na,K,Ca,Cl,L}, L denoting the
leakage current, and γα(v,w, c) is a voltage-, gate-, and possibly c-dependent conductance
factor for channels selective to ion α. To describe this dependence, Hodgkin and Huxley [2]
introduced fictive gating particles and represented γα with one or two2 activating and inacti-
vating gating variables wi, wj ∈ [0, 1], raised to integral powers a and b:

γα(v,w, c) = ζ(v) ξ(c) wa
i w

b
j .(2.6)

The exponents a, b can be thought of as representing the number of subunits within a single
channel necessary to open it; see Figure 1b. Probabilistic models based on this approach
closely reproduce experimental data for large channel numbers [41].

A first possible simplification is to restrict the exponents a, b in (2.6) to unity. A rigorous
approach would require a change of variable z = wa

i , etc., as in [14], but two observations
are pertinent. (i) Some models do have currents with exponent 1: e.g., Morris and Lécar [38]
and extensions thereof to bursting models [37], IT in Plant [42], IK in Sherman, Rinzel, and
Keizer [13], IK in Keizer and Smolen [43], and IK(M), IK(C), IK(AHP) in [39, pp. 200–203].
(ii) More importantly, this restriction is not as severe as it may seem; for the steady state
expression (2.3) at least, one can show that wa

∞(v; k0, vth) can be approximated by another
sigmoidal function raised to the power 1 but with different coefficients w̄∞(v; k̄0, v̄th). Taylor-
expanding wa

0 , we can locally match the two functions to first order via the parameters k̄0, v̄th,
and we have checked that for sigmoidal functions the pointwise match is acceptable, with
maximum error of around 5% on the whole real line (results not shown).

In spite of the variety of ions and gating mechanisms, conductances come in two forms
[44, 3]: persistent and transitory (see Figure 1). The names refer to steady state properties
of wi∞ : persistent activating or inactivating conductances being active, respectively, above or
below a threshold, and transitory conductances being active only in a “window” of voltages.
The former are described by a single gating variable, whereas a combination of activating and
inactivating gating variables is used for transitory conductances. We will comment further on
the functions ζ(v) and ξ(c) in (2.6), but we anticipate that they can capture rectifying prop-
erties as described by the Goldman–Hodgkin–Katz equation [39], or “mixed” conductances,
to be defined subsequently.

2An exception with three gating variables appeared in the model of Beeler and Reuter [40].
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640 R. M. GHIGLIAZZA AND P. HOLMES
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Figure 1. Conductances in the HH formalism. (a) Qualitative dependence of persistent (dashed) and tran-
sitory conductances (solid). (b) Caricature of mechanisms underlying the opening and closure of the channels,
with voltage increases to the right. Persistent conductances are represented by a voltage-dependent gating vari-
able which continually opens the channel, allowing ionic transport; transitory conductances have an additional
secondary mechanism that blocks the channel at voltages above the active range.

We note that the coupling in (2.2) occurs only in the first equation (2.2a); gating vari-
ables are not directly coupled. This structure enables simplified analyses, as we now indicate
(cf. [16]). A neuron may possess a dozen distinct ion channels [3], but if qualitative or semi-
quantitative characteristics are adequate, a reduced model having fewer variables may suffice
[30, 37]. If some ionic timescales τj in (2.2b) are significantly faster than others, we may (for-
mally) set the corresponding gating variables at their equilibrium values wj = wj∞(v). Like-
wise, functionally related variables with similar timescales may be lumped together (cf. [37]),
and this is not atypical; see the comment below on hypothesis H1. Those variables whose
channel dynamics have been equilibrated will henceforth be denoted by ni(v) = ni∞(v); the
(slower) gating variables wj whose evolution equations are retained will be denoted by mj . In
general several such variables may be retained, but we shall henceforth restrict our attention
to the case of a single slow variable, m, noting that in some cases this might represent a combi-
nation of two or more gating variables that move in step; see [30, 33] and the Rose–Hindmarsh
model [14] in Appendix A.

The above reduction process, which was pioneered in FitzHugh’s polynomial reduction of
the HH model [30] (cf. [23, 14, 24]) and may be justified via geometric singular perturbation
theory [36], considerably simplifies analyses but at the expense of obscuring some of the
biophysics. We will therefore develop a three-dimensional model in this spirit but retaining
the link to biophysical parameters. Pernarowski [24] and more recently De Vries [25] have
amply demonstrated the richness and relevance of three-dimensional models in describing
several distinct bursting behaviors.

3. A third order model. Most neurons have many more membrane conductances than
the two measured by Hodgkin and Huxley (e.g., Connor and Stevens [45], Plant [42], Chay
and Keizer [12], McCormick and Huguenard [46]); one or two sodium conductances, two or
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A MINIMAL BURSTER MODEL 641

three different types of calcium conductances, and many different potassium conductances are
common [39]. In this section we will develop a framework to analyze the collective contribu-
tions of single ionic currents, with the goal of showing how biophysical parameters influence
the existence and stability of equilibria and periodic orbits in the fast subsystem (2.2), and
hence illuminating the global dynamics of the coupled fast-slow system (2.1).

We consider a class of models characterized by the following hypotheses:
H1. Existence of a single relatively slow (nonequilibrated) variable m in the fast subsystem.
H2. Multiplicative dependence of conductances on gating variables, voltage, and the very

slow variable c: γ(v,w, c) = ζ(v) ξ(c)
∏

i σαi(wi).
The first hypothesis could be rephrased as “homogeneous dependence on one slow variable.”
In fact m may describe more than one channel, pairs of the form ḡα1σα1(m)ζα1(v)(v−Eα1)+
ḡα1σα2(m)ζα2(v)(v−Eα2) being allowed. This is not as atypical as it may seem; see, e.g., the
reduced models of Rose and Hindmarsh [14] (Appendix A) and Butera, Rinzel, and Smith [17]
(Appendix C). The first hypothesis also implies that reduction to a three-dimensional system
is possible (cf. [23, 22, 37, 25, 24] and references therein), and it allows for a wealth of different
behaviors [35]. The second hypothesis formalizes a common assumption which holds for all
models of which we are aware.

Under these hypotheses, we can formulate a rather general model. We will not commit to
a particular choice of ionic currents until later, when we will be able to justify our choices for a
“minimal” model. The principle channels allow the passage of four ions: sodium, potassium,
chloride (or sometimes generic leakage ions), and calcium [3]. They are often highly selective,
each admitting only one ionic specie. Calling the relatively slow gating variable m and using
the above four ions, we can express the model as

Cv̇ = −
∑

i

Iαi + Iext,(3.1a)

ṁ =
ε

τm(v)
[m∞(v) −m] ,(3.1b)

ċ =
δ

τc(v)
[c∞(v) − c] ,(3.1c)

where δ � ε � 1/C = O(1) and the single currents Iα(v,w, c) are each of the type (2.6)
and α ∈ {Na,K,Ca,Cl,L,KCa}.3 As noted by Rinzel and Ermentrout [37], there are several
mechanisms which could provide the slow negative feedback required for bursting, in which
c cycles periodically, causing transitions between fixed points and limit cycles in the fast
(v,m) subsystem (see also [43]). For simplicity, we choose a very slow persistent potassium
current (essentially the IKS of Butera, Rinzel, and Smith [17]; see Model 2 in Appendix C
and cf. [14, 17, 32]), but the results adapt to other mechanisms as shown in the example of
section 4.3.

Given that the remaining gating variable m is slow relative to the voltage (spike) timescale,
while c evolves yet more slowly, (3.1) has three time scales: the “fast” gating variables implicit
in Iα, with wi = ni(v) where appropriate, evolve on scales of order 1, the slower variable m

3In the following an additional subscript ()f or ()s will be added, e.g., Kf or Ks, to distinguish between
fast and slow currents specific to a particular ion (here K).

D
ow

nl
oa

de
d 

03
/2

6/
14

 to
 1

30
.2

06
.3

0.
20

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



642 R. M. GHIGLIAZZA AND P. HOLMES

evolves on a scale of order ε, and the very slow c dynamics has order δ. Such singularly
perturbed systems have the appeal that the dynamic evolution can be separated according to
the disparate time scales [36]. In the present case, currents can be divided into three groups:
fast, instantaneously equilibrated currents, dynamic currents that evolve on the time scale of
interest, and very slow variables that may be regarded as pseudostationary. The resulting
simplification provides insight into the influence of single currents as part of a larger group.

3.1. The fast subsystem. We first analyze the fast subsystem (3.1a)–(3.1b). Since it
varies very slowly, c will initially be treated as fixed, its dynamical effects being addressed
subsequently. Hypothesis H1 implies that we can group the fast variables in (3.1a), write
them as Ifv(v), and separate them from the slow current of the form Is(v,m) = σsm(m)Isv(v)
(see, e.g., the Rose–Hindmarsh and Butera–Rinzel–Smith models [14, 17] given in Appendices
A and C). This factorization is always possible for a single slow current by hypothesis H2 and
extends to two (or more) provided that σα1(w) = σα2(w); cf. [14] and Appendix A. Thus we
can write (3.1a)–(3.1b) more explicitly as

Cv̇ = −[Ifv(v) + σsm(m)Isv(v)] + Iext,(3.2a)

ṁ =
ε

τm(v)
[m∞(v) −m].(3.2b)

In (3.2a) the subscripts sm and sv reflect functional dependence on the (slow) gating vari-
able m and voltage v; note that the former enters only via σsm(m). The voltage-dependent
fast and slow currents Ifv and Isv are given by

Ifv(v) =
∑

i

ḡαiσi(ni(v)) · ζi(v)(v − Eαi),(3.3)

Isv(v) = ḡαsζs(v)(v − Eαs).(3.4)

As argued in section 2, the slow current gating variable enters (3.2a) as

σP(m) = m or σT(m) = m(1 −m).(3.5)

We will call these cases dynamically persistent and dynamically transient, respectively, adding
the term “dynamically” because persistent and transitory usually refer to steady state prop-
erties (cf. Figure 1); we are concerned here with currents whose dynamical dependence on the
slow gating variable w makes them appear persistent or transitory.

The functions ζi(v) can often be assumed constant, but in some cases this does not suffice.
A common counterexample is a transitory conductance with one gating variable significantly
faster than the other, e.g., a fast activating and slowly inactivating sodium current INaP-h [17]
(Model 1 in Appendix C). In this case, setting the fast ni at steady state, the conductance
can be expressed in the form (3.4), with ζ(v) = n1∞(v). Such currents should properly be
called “mixed,” since they are dynamically persistent, having the form σsmIsv in (3.2a), but
appear transitory at steady state, due to the product of two gating variables.

3.1.1. Fixed points: One current. We now analyze the effect of the ionic currents in
(3.2) on the location of fixed points of the fast subsystem. We begin with single currents.
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A MINIMAL BURSTER MODEL 643

We start by noting that separation into fast and slow currents (cf. (3.2)) has no influence
on the location and number of fixed points because at such points all gating variables and
currents are in equilibrium and can be expressed in terms of the voltage-dependent functions
ni∞(v) and m∞(v).4 The fixed points are therefore completely determined by the zeros of the
right-hand side of (3.2a), called the Iss− v curve, sometimes written I(v); this is the function
measured in a voltage-clamp experiment. Moreover, we need only consider the case ζ(v) = 1.
Indeed, when this does not hold, the results are similar to the transitory current case, because
the nonlinearity in ζ(v) acts as an additional linear or exponential multiplicative term, which
does not change the qualitative form of I(v).

Generic currents are described by

I(v) = ḡ · σ(v; k0, vth) · (v − E)(3.6)

and depend upon four parameters: ḡ, k0, vth, and E. Figure 2 shows typical examples of the
dependence on these. In [47] we show how all known currents fall into one of the four classes
above. Here σ is of either form in (3.5), and the gating variable w is set to equilibrium, i.e.,
w = w∞(v) (cf. (2.3)). We note the following.
The maximal conductance ḡ acts as a scaling factor, affecting the values of critical points

and their locations.
The Nernst potential E fixes the unique value of voltage v = E for which the current vanishes.

For transitory conductances, the current asymptotically approaches zero as v → ±∞,
but only as v → −∞ for persistent conductances. E also affects locations and values
of the extrema.

The threshold voltage vth affects locations and values of extrema. For transitory conductances
they approximately coincide with the voltage that globally minimizes (maximizes)
the current for vth < E (vth > E). When vth > E, the current is “essentially”
monotonically increasing for physiological values of k0. For persistent currents, the
relative location of the threshold voltage vth with respect to the reversal potential E
can substantially influence the shape of I(v). When vth < E (subreversal threshold),
I has a distinct shape with a pronounced minimum (Figure 2a), e.g., INa in the HH
equations [2]. If vth > E (superreversal threshold), the minimum is negligible, e.g.,
the potassium current IK in the HH equations [2] (Figures 2c, d).

The slope k0 determines the extent of the transition region from the inactive state I ≈ 0
to the active state. For very small values of k0, the currents tend to be linear over
a wide range. In the limit k0 → ∞ the currents approach piecewise linear functions,
and transitory currents are nonzero over only a very narrow range.

The substantial dips evident in Figures 2a, b are of particular importance in practice,
since they imply regions of negative resistance characteristic (NRC) in the steady state Iss−v
curves. As recognized experimentally by Wilson and Wachtel [48] in 1974, this is a necessary
condition for bursting. We may anticipate that it is also necessary for Hopf (H) bifurcations. It
is appreciable only when the threshold voltage is less than the Nernst potential, i.e., vth < E.
Since persistent currents play an important role, we conclude by noting that in the subreversal
case and for slopes higher than a critical value k0 > kcr = 2

E−vth
that is usually exceeded in

4For clarity, we drop the subscript α but recall that each current comes with its own set of four parameters.
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Figure 2. Persistent (left) and transitory (right) ionic currents for different values of the slope parameter
k0 = 0.02, 0.2, and 2 (a typical value is 0.1, e.g., [2, 38]). We illustrate with a calcium current of the form
(3.6), with maximal conductance ḡCa = 4.4mS/cm2 and reversal potential ECa = 120mV and show the Iss − v
curves (3.6) for the two conductance cases of (3.5). Dotted and dash-dotted vertical lines show the threshold
voltage vth and reversal potential E. (a) Persistent subreversal vth = 0mV < E. (b) Transitory subreversal.
(c) Persistent superreversal vth = 160mV > E. (d) Transitory superreversal. Note that transitory currents
typically exhibit smaller ranges than persistent currents (≈ 20%; note differing scales on ordinate I).

physiological ranges, the minimum is bounded below by Imin ≥ ḡ · (vth − E). Finally, we
note that passive conductances or passive currents, like the leakage IL = gL · (v −EL) can be
described as a degenerate subclass of persistent currents with zero slope: k0 = 0.

The current Iext enters (3.2a) as a purely additive term, so for any voltage v = v̄, one
can find a current I such that the fixed point is at v̄. Hence only the general shape of the
Iss−v curve is relevant in determining the possible number of fixed points. We may therefore
conclude that existence of an NRC “dip” can introduce up to two new fixed points.
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A MINIMAL BURSTER MODEL 645

3.1.2. Fixed points: Multiple currents.
Linear or passive currents. In the absence of leakage or other linear currents, the existence

of at least one fixed point, typically at low voltage values, is no longer guaranteed. Apart
from this, passive currents (with positive conductance) cannot generate, but only destroy,
fixed points (see discussion below).

Nonlinear currents. As described above, the most relevant feature is the creation of local
minima in the Iss − v curve, but if vth > E, the resulting dips are negligibly small (Figures
2c, d). We will therefore consider the subreversal case vth < E. For simplicity we discuss only
persistent currents, but one can also give bounds for transitory ones. For equilibrated gating
variables w = n∞(v) of the form (2.3) the persistent currents and their (voltage) derivatives
are

IP = ḡ · n∞ · (v − E),

I ′P = ḡ · n∞ · [k0(1 − n∞)(v − E) + 1] ,

I ′′P = ḡk0 · n∞ · (1 − n∞) [k0(1 − 2n∞)(v − E) + 2] ;(3.7)

hence the minimum occurs at

IPmin = ḡ

(
v̄ − E +

1

k0

)
,(3.8)

where v̄ is implicitly defined by (1 − n∞(v̄))(v̄ − E) = − 1
k0

. The addition of a current can
destroy the local “dip” of a pre-existing current. A sufficient condition for this is that the
derivative of the new current be larger in magnitude than the pre-existing one; if the added
current always increases more than the other decreases, no local minimum survives. It is
therefore useful to estimate the maximum slope of IP , which is obtained at its inflexion point
to the left of E:

I ′Pmin
=

ḡ

4
[k0(ṽ − E) + 2] .(3.9)

Here the voltage ṽ is implicitly defined by (1 − 2n∞(ṽ))(ṽ −E) = − 2
k0

. As anticipated, IPmin

is bounded below by ḡ(vth − E), achieved in the limit k0 → +∞. In the same limit, the
minimum derivative is unbounded and tends to −∞. Therefore, any nonlinear current can
create up to two new fixed points.

One can show this in general; in particular, consider the limit of high thresholds k0i → ∞
for all i, and let the individual voltages be ordered as vth1 < E1 < vth2 < E2 < · · · < vthN

<
EN . In this limit one can define “influence windows” Ui = [vthi

, Ei] such that nj(v) ≈ 0 or 1
for all j �= i; i.e., in the ith window only the current Iαi is “turning on or off”; the others are
all inactive or fully active. Suppose further that Ij = IPj = ḡαjnj(v) (v − Eαj ) is persistent.
Then, it follows that the total current and its derivative are

I =
∑

i�=j

ḡαi(v − Eαi) + IPj and I ′ =
∑

i�=j

ḡαi + I ′Pj
.(3.10)

(In (3.10) we set ḡαi = 0 for inactive currents.) From (3.9), I ′Pj
can be arbitrarily large and

negative, and analogous arguments hold for transitory currents. We note that, for increasing
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Figure 3. An example of four ionic currents: a slow potassium current IKs, two fast potassium and sodium
currents IKf and INa, and a leakage current IL. Parameters are as follows: ḡKs = 4.5, EK = −75, vthKs = −50,
k0Ks = 0.08; ḡKf = 2.5, vthKf = −70, k0Kf = 0.05; ḡNa = 3.4, ENa = 115, vthNa = −50, k0Na = 0.25; ḡL = 0.5,
EL = −60, with units as given in section 4. Leftmost panels (a) show the Iss − v curves for the individual
ionic currents. (b) The fast currents are collected in Ifv and are shown solid, the slow current Isv is shown
dash-dotted, and the sum ITot = Iion is shown bold. In (c) the derivatives of the single ionic currents are shown,
and (d) shows the derivative with respect to v of the collected fast currents (dashed), the derivative of the slow
current (dash-dotted), and their sum (bold), which gives the coefficient a = Iion

∂v
of section 3.1.3.

numbers of currents N ,
∑N

i ḡαi tends to increase since constant terms gαi are added which
activate in the sequence vth1 , . . . , vthN

. Therefore, the more currents there are, the less likely
it is that they produce new fixed points, unless their conductances or slopes are very large.

Figure 3 shows an example with four ionic currents: two fast, IKf and INa; one slow, IKs;
and a leakage current IL. The leftmost panels show the steady state Iss − v curves for the
individual currents, which are then collected in Ifv and Is and added to give the total current
Iion shown in Figure 3b.
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A MINIMAL BURSTER MODEL 647

Conclusion. From the above analysis, we can summarize the major result as follows. Each
additional nonlinear current can, for suitable ḡ, k0, vth, E, create a new local “dip” and hence
two additional fixed points may arise; cf. [31]. Leakage currents guarantee one fixed point for
any value of the applied current.

Here we have emphasized the role of the Iss − v curve in determining fixed points, due
to its biophysical relevance. Indeed, this is the characteristic measured in voltage-clamp
experiments, and can therefore be directly related to data. Alternatively, fixed points may be
found at intersections of the v- and m-nullclines of (3.2) (e.g., [49, 22, 37, 33]).

3.1.3. Stability. In this section, we analyze the stability of fixed points. We concentrate
on slow dynamically persistent currents, which are more common in reduced models, but we
also discuss slow transitory currents. Rewriting (3.2) as

v̇ = − 1

C
[Ifv(v) + σsm(m)Isv(v) + Iext]

def
= f1(v,m),

ṁ =
ε

τm(v)
[m∞(v) −m]

def
= εf2(v,m)(3.11)

and linearizing yield a Jacobian of the form

Df =

[
− 1

C a − 1
C b

dε −eε

]
.(3.12)

If we define the total ionic current Iion = −(Ifv + σsmIsv), then the coefficients evaluated at
a fixed point p are given by

a =
∂Iion

∂v
|p, b =

∂Iion

∂m
|p, d =

m′
∞

τm
− (m∞ −m)τ ′m

τ2
m

|p, e =
1

τm
|p .(3.13)

Here a represents the variation of the ionic current with respect to voltage, sometimes called
the instantaneous I−v curve [37] or the slope conductance curve [41]. The coefficient b reflects
the dependence of the ionic current on the slow variable, and d and e are entirely determined
by the gating dynamics. Observing that the sigmoid (2.3) has the property that its derivatives
can be expressed in terms of the function itself, e.g., w′

∞ = k0w∞(1 − w∞), we may write

a = I ′fv + σsmI ′sv, b =
∂σsm
∂m

Isv,

d = k0
m∞(1 −m∞)

τm
, e =

1

τm
,(3.14)

where (·)′ = ∂
∂v (·) and the derivatives of the conductance factors σsm are given by ∂σP

∂m = 1 and
∂σT
∂m = 1−2m for dynamically persistent and dynamically transitory conductances, respectively
(cf. (3.5)). In computing d we note that the second term in the general expression of (3.13)
vanishes at fixed points. Also note that d and e are always positive.

As noted above, the particular structure of (2.2) implies that at the fixed points all gating
variables are explicit functions of voltage. In addition, and importantly, as we noted at the
end of section 3.1.1, any voltage value v = v̄ can be made a fixed point by suitable choice
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648 R. M. GHIGLIAZZA AND P. HOLMES

of external current Iext. Therefore, the Jacobian entries a, b, d, e of (3.13) can all be reduced
to explicit functions of voltage at the fixed point v̄. This substantially simplifies the stability
analysis, reducing it to a characterization in terms of v̄ alone.

The eigenvalues of (3.12) are determined by the determinant DetDf and trace TrDf and
the necessary conditions for H and saddle-node (SN) bifurcations [50] may be written

aH = −εeC, ae + bd > 0,(3.15a)

aSN = −bd

e
.(3.15b)

Using (3.14), we observe that the ratio −d
e appearing in (3.15b) is given by

−d

e
= −k0m∞(1 −m∞)(3.16)

and depends only on the (slow) gating dynamics; it is affected neither by the addition of fast
currents nor by whether the slow current is dynamically persistent or transitory, activating
or inactivating. In addition it depends neither on the maximal conductance ḡα nor on the
reversal potential Eα, but only on the slope k0α and threshold voltage vthα . It is a negative
bell-shaped function tending exponentially to 0− for v → ±∞; e.g., see Figure 5c. We can
therefore focus on the coefficients a and b.

Coefficient a. The slope conductance curve is composed of the terms I ′fv and σsmI ′sv
(cf. (3.14)). It is often stressed [41, 39] that stability cannot be inferred from the slope
of the Iss − v curve. Indeed, I ′ss = ∂Iion

∂v would be equal to a if all currents were fast, but in
the presence of slow currents, this is no longer true. Gathering N fast currents, using (3.3),
we have

∂Iion

∂v
= I ′fv =

N∑

i=1

ḡαiσ
′
iζi(v)(v − Eαi) + ḡαiσiζ

′
i(v)(v − Eαi) + ḡαiσiζi(v),(3.17)

where σ′
i = ∂σ(ni(v))

∂v . However, if one of the currents is slow, then we have

∂Iion
∂v

=

N−1∑

i=1

[
ḡαiσ

′
iζi(v)(v − Eαi) + ḡαiσiζ

′
i(v)(v − Eαi) + ḡαiσiζi(v)

]

+ ḡαjσjζ
′
j(v)(v − Eαj ) + ḡαjσjζj(v),(3.18)

and the analogue of the first term ḡαiσ
′
i(v − Eαi) in the summation does not appear for the

slow current j.
Figure 4 shows the case of ζi(v) = 1, in which (3.18) simpifies to

∂Iion
∂v

=
N−1∑

i=1

[
ḡαiσ

′
i(v − Eαi) + ḡαiσi

]
+ ḡαjσj .(3.19)

Since σ′
P = k0n(1 − n) and σ′

T = k0n(1 − n)(1 − 2n) (from (2.3) and (3.5); cf. (3.7)), the first
term in the sum is a hump or a “dipole” for dynamically persistent or transitory currents,
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Figure 4. Derivatives of persistent ionic currents (left) and transitory currents (right), showing how they
differ for fast (solid) and slow (dashed) currents. See Figure 2 for steady state Iss − v curves. This example
shows a calcium current of the form (3.6), with maximal conductance ḡCa = 4.4mS/cm2, and reversal potential
ECa = 120mV, with k0 = 0.2. Dotted vertical line shows the threshold voltage vth; dash-dotted vertical line
shows the reversal potential E. (a) Persistent subreversal vth < E, here vth = 0mV. (b) Transitory subreversal.
(c) Persistent superreversal vth > E, here vth = 160mV. (d) Transitory superreversal. Observe that slow
currents always give positive contributions to the derivative (coefficient a).

respectively. If current j is slow, then the derivative ∂Iα
∂v > 0 for both types of currents,

but if j is fast, then ∂Iα
∂v can change sign. In the persistent case, this will only happen

for subreversal currents (Figures 4a and 4c), whereas it always holds in the transitory case
(Figures 4b and 4d).

Reviewing the four-current example of Figure 3, we observe how the individual currents
contribute to determine a = ∂Iion

∂v depicted in Figure 3d. IKf is a typical example of a persistent
superreversal current whose derivative is shown in Figure 3c (second down). INa exemplifies a
fast subreversal persistent current whose derivative is shown in Figure 3c (third down); cf. INaP

in [17], Model 2 of Appendix C. The linear leak IL gives a constant contribution to a; see

D
ow

nl
oa

de
d 

03
/2

6/
14

 to
 1

30
.2

06
.3

0.
20

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



650 R. M. GHIGLIAZZA AND P. HOLMES

Figure 3c (bottom). IKs is a slow (dynamically and statically) persistent current; see Figure 3c
(top). Note the difference between the two potassium currents. The slow current IKs, also
present in the HH equations [2], yields a term aKs = ¯gKsm∞Ks (Figure 3c1), whereas the fast
current IKf yields the term aKf = ḡKf kKf n∞Kf

(1−n∞Kf
)(v−EK)+ ḡKfn∞Kf

(Figure 3c (second
down)). The difference is not very marked here, but, as shown in Figure 4a, it can be more
substantial and sufficient to change the stability of a fixed point. The single terms ∂Iα

∂v are
constant for v → ±∞.

Coefficient b. This coefficient describes the dependence of the ionic current upon the (rela-
tively) slow gating variable m. For dynamically persistent and transitory currents, one obtains

bP = Isv and bT = (1 − 2m∞)Isv.(3.20)

For dynamically persistent currents bP has the same sign as Isv; hence if, as usually, Isv =
v − Eαs is linear, then bP is strictly positive for all v > Eαs .

It is now relatively easy to analyze the behavior of fixed points. One computes the de-
pendence of a on v̄ at a fixed point; when a crosses one of the values aSN or aH defined
by (3.15), stability changes and a bifurcation occurs. An example is shown in Figure 5 for
a system with the currents of Figure 3. The condition Tr = 0, satisfaction of which with
Det > 0 results in an H bifurcation, is depicted in Figure 5a. Note that the term −eε is
small only in a relatively narrow range of voltages because e(v) = 1

τm(v) → +∞ for v → ±∞;
asymptotic analysis is therefore of little help for global understanding. Figure 5c shows the
term −d

e , which multiplied by bP or bT gives the condition Det = 0. For persistent currents,
the SN condition aSN is shown in Figure 5b. Since aSN is always positive for v < EKs, the
SN and the H bifurcations can never occur in that range, but only at more depolarized levels
than the reversal potential of the slow variable, here EKs. We note that since ε will only
change the shape of Tr = 0 (by flattening it), the above observation suggests that there is a
lower bound for these bifurcations and, as ε → 0, the location of these points will not change
much. The determinant is positive for a > −bde , above the bold lines in Figures 5b and 5d
for dynamically persistent and transitory conductances, respectively. Finally, Figure 5e shows
the two boundaries with a superimposed for the example of Figure 3. This reveals a first
crossing of aH for v̄H1 ≈ −58mV giving rise to an H bifurcation, followed by two intersections
of aSN at v̄SN1 ≈ −57.8mV and v̄SN2 ≈ −44.3mV and finally a second H bifurcation at
v̄H2 = −43.8mV, giving the bifurcation sequence H, SN, SN, H. In the next section we will
exploit this approach to explore the effect of parameter variations.

3.2. Bifurcation diagrams for the fast subsystem. The collective effect of parameters
describing single currents are best exemplified in bifurcation diagrams. The discussion of
section 3.1.3 immediately translates to a bifurcation diagram with external current Iext as
the bifurcation parameter. The diagrams given below were computed numerically using a
Newton–Raphson algorithm to determine fixed points and a continuation algorithm to follow
their branches. However, the “constructive” single current analysis developed above more
clearly reveals the causes and parameter sensitivities responsible for changes in the structure
and sequence of bifurcations along branches of equilibria, so we also display this information
in the form of Iss − v and slope conductance curves. In the following we will assume ζ(v) = 1
for simplicity.
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Figure 5. (a) The H bifurcation condition aH = −εeC (3.15a): TrDf < 0 (> 0) above (below) dashed
curve; (b) rescaled bP (solid) and the SN bifurcation condition aSN = −bPd/e (3.15b) (bold); (c) the term −d/e;
(d) rescaled bT (solid) and the SN bifurcation condition aSN = −bTd/e (bold). (e) Shows the H condition as
in (a) (dashed), the SN condition as in (b) (solid), and the coefficient a (bold) for the system of four currents
given in Figure 3. Other parameters are C = 20, ε = 0.04. Note that voltage (v) scales differ.

3.2.1. Fast currents. We consider a simple case with three ionic currents: a slow persis-
tent potassium current IKs, a fast persistent calcium current ICa, and a leakage current IL,
similar to the original work of Hodgkin and Huxley [2].5 The term

b
d

e
= k0m∞(1 −m∞) · Isv ·

{
1, dynamically persistent,

(1 − 2m∞), dynamically transitory,

which gives the SN condition (3.15b), depends only on the slow gating parameters. The
bifurcation sets (3.15) are therefore affected neither by adding fast currents nor by changes

5Sodium and calcium currents differ in their reversal potentials ENa = 50mV and ECa = 120mV and in the
fact that the sodium current in [2] is transitory, whereas the calcium current considered here is persistent, as
in [38].
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Figure 6. Dependence of the total ionic current on variation of threshold voltage vth of a fast calcium
current. Parameters are as follows: ḡKs = 8.0, EK = −80, vthKs = 2, k0Ks = 0.2; ḡCa = 4.4, ECa = 120,
vthCa = −38,−1.2,+15 from lower to upper curves in (a2) and (b), k0Ca = 0.11; ḡL = 0.5, EL = −60. Units
are as given in section 4.

in their parameters. For illustrative purposes, we show the effect of two such parameters: the
threshold voltage vth of a fast persistent inward current such as INa or ICa, and the slope of
its fast gating variable k0.

Threshold voltage vth. The effect of vth on the Iss − v curve is shown in Figure 6, its
effect on the slope conductance curve (coefficient a) in Figure 7, and the resulting bifurcation
diagrams in Figure 8. Increasing values of vth shift the minimum of ∂ICa

∂v to the right. For
low thresholds, the corresponding bifurcation diagram has two SN points (see Figure 8c1).
Increasing vth, an H bifurcation emerges from the higher (more depolarized) SN bifurcation
point in a Takens–Bogdanov (TB) bifurcation [50] (see Figure 8c2). Further increase causes the
SN points to coalesce and disappear in a codimension two “cusp” bifurcation [50], leaving two
H bifurcations (see Figure 8c3 (cf. Rinzel and Ermentrout [37] and Koch [41] for discussions
of the latter)).
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Figure 7. Dependence of the total slope conductance curve a on variation of threshold voltage vth of a fast
calcium current. Parameters as in Figure 6.

Also note that the cases of Figures 8a2–c2 and a3–c3 can explain the smooth transition
from Class I to Class II spiking [20] without appealing to an extra current (e.g., an IA current)
as in Connor and Stevens [51], [41, pp. 159, 190]. Rinzel and Ermentrout [20] stated that this
was possible with a model similar to the one used here by changing vthK

; Figure 8 should
provide some further insight.

Slope k0. Despite the fact that a steeper transition in the sigmoid (2.3) has a negligible
effect on the steady state curves (Figures 9a1–a2), it can substantially change the bifurcation
structure via the increased slope that causes a substantial negative peak in ∂ICa

∂v (see Figures
9b1–b2). Moreover, due to global bifurcations in which limit cycles disappear (see [50] and
below), the topological difference between the two cases involves more than simply removing
one (local) H bifurcation point (see Figures 9c1–c2).

Maximal conductance of leakage current ḡL. Because of its relevance to the bursting dy-
namics in the following section, we end by noting that the effect of the (linear) leakage current
is simply a vertical shift of a. The resulting bifurcation diagram (not shown) goes from the
sequence SN, SN, H to SN, SN as ḡL increases.
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Figure 8. Dependence of a fast calcium current upon variation of the threshold voltage vthCa . Parameters
as in Figure 6 with vthCa = −38,−1.2,+15 from top row to bottom; in addition C = 20, ε = 0.1. Left panels
show the steady state Iss − v curves from Figure 6: fast current (solid), slow current (dash-dotted), and total
current (bold). Middle panels show the relevant terms for stability from Figure 7: Det = 0 ⇔ a = − bd

e
(solid),

Tr = 0 ⇔ a = −eεC (dashed), and a = ∂Iion
∂v

(bold). Right panels show the corresponding bifurcation diagrams.

3.2.2. Slow currents. Slow current parameters also affect the bifurcation sets (3.15).
Figure 10 shows the effect of threshold voltage changes on a slow outward current, such as IK.
Bifurcation points are shifted and the coefficient a changes its form via σsm(m∞(v)), which
appears in the second term in a = I ′fv + σsmI ′sv. The resulting bifurcation diagrams show
transitions can occur from SN, SN to SN, SN, H and back to SN, SN as vth increases.

Conclusion. The introduction of each current with a nonoverlapping “window of influence”
can produce another pair of equilibria. Thus “snaking” branches with multiple SN bifurcations
can appear. Up to two H bifurcations can be introduced, associated with at least one SN pair.
H bifurcations may also occur in the absence of SN bifurcations when the branch does not
double back. Coincident H and SN (TB) bifurcations can be obtained by varying a second
parameter in addition to Iext.
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Figure 9. Dependence of a fast calcium current upon variation of slope k0. Left panels show the steady
state Iss − v curves: fast current (solid), slow current (dash-dotted), and total current (bold). Middle panels
show the relevant terms for stability: Det = 0 ⇔ a = − bd

e
(solid), Tr = 0 ⇔ a = −eεC (dashed line), and

a = ∂Iion
∂v

(bold). Right panels show the corresponding bifurcation diagrams.

3.2.3. Bifurcations in terms of c. The bifurcation diagrams of Figures 8, 9, and 10 use
external current Iext as parameter. In the full system (3.1) the slow variable c drives the
fast subsystem from regime to regime; hence, we must recast the above results in terms of c,
which enters the fast equation (3.1a) via a current such as IKS = ḡKSc(v − EK). To do this
we consider a two-parameter bifurcation diagram of the original system (3.1) and then slice
it with an appropriate plane. For illustrative purposes, we will treat (3.1) with three internal
currents ICa, IKs, IL and an external current Iext, as in [38].

We compare the membrane voltage equations of (3.1a),

Cv̇ = − [ḡLcL(v − EL) + f1(v,m)] + Iext,(3.21)
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Figure 10. Dependence of a slow current upon variation of the threshold potential vth for a potassium
current. Left panels show the steady state Iss − v curves: fast current (solid), slow current (dash-dotted),
and total current (bold). Middle panels show the relevant terms for stability: Det = 0 ⇔ a = − bd

e
(solid),

Tr = 0 ⇔ a = −eεC (dashed), and a = ∂Iion
∂v

. Right panels show the corresponding bifurcation diagrams.

with an analogous system with an additional current IKS,

Cv̇ = − [ḡL(v − EL) + f1(v,m) + ḡKSc(v − EK)] ;(3.22)

here f1(v,m) = ḡCan∞(v)(v − ECa) + ḡKm(v − EK) denotes the unchanged fast currents.
Equations (3.21) and (3.22) are equivalent provided that we set the “leakage” factor cL and
the current Iext in (3.21), respectively, equal to

cL = 1 +
ḡKS

ḡL
c and Iext = ḡKS cEK + ḡL(1 − cL)EL.(3.23)

The desired bifurcation diagram of equilibrium voltage as a function of c is therefore a “slice”
of the two-parameter (v, ḡLcL) bifurcation surface above the line defined by eliminating c
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Figure 11. Bifurcations with respect to c. (a) The two-parameter bifurcation surface as a function of Iext
and g̃L = ḡLcL; also shown is the bifurcation slice (bold) and its projection (3.24) (dashed). (b) The slice as a
function of c; note the two SNs and an H bifurcation. (c) The v̇ = 0 and ċ = 0 nullclines and a typical bursting
trajectory projected onto the (c, v) plane. (d) Voltage time history exhibiting bursts.

from (3.23):

Iext = ḡL(EL − EK)(1 − cL).(3.24)

Figure 11 shows an example. Note that the line (3.24) is almost perpendicular to the
Iext-axis on Figure 11a; this is due to the fact that the difference between the leakage reversal
potential EL and the potassium reversal potential EK is very small in this case; also note
that the signs of the terms in (3.23)–(3.24) imply that the c-bifurcation diagram is reversed in
comparison to the I-diagrams of Figures 8, 9, and 10, having the higher v branch extending
to the left (see Figure 11b). Finally, we note that the maximal conductance associated with
the very slow variable ḡKS does not influence the slice location (3.24). Rather, changes in ḡKS,
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which enters the current IKS of (3.22) multiplicatively, horizontally compress or expand the
orbit projected on the (c, v) plane (Figure 11), a fact that will be useful in section 4.2.

3.3. The bursting mechanism. As anticipated at the beginning of this section, burst-
ing results from hysteretic transitions between a quasi-static quiescent state and a periodic
(spiking) state, driven by the slow variable c. Thus, given the bifurcation diagram in c, the
dynamics of the third order model can be elucidated in the limit of small δ. Here we discuss a
typical bifurcation diagram, with the sequence SN, SN, H as in Figure 11b (cf. Figure 10c2 or
Figure 8c2). The vectorfield of (3.1c) indicates that c ∈ [0, 1] will decrease when c > c∞(v) and
increase when c < c∞(v). As c slowly evolves, the fast subsystem (3.1a)–(3.1b) remains close
to its stable fixed point until the left-hand SN bifurcation on the lower branch is reached.
When c passes this point, the state quickly jumps to the coexisting stable limit cycle (see
Figure 11c). During this spiking oscillation, the average voltage is sufficiently high that c
increases, until the cycle is destroyed as the limit cycle collides with the saddle point (the
middle branch) in a saddle-loop (SL) or homoclinic bifurcation, or the right-hand SN occurs
on the cycle itself (SNLC) [50]. Figure 11c shows the former case. It may also happen that
the H bifurcation is subcritical [50] and the relevant stable limit cycle is born in an SN of
periodic orbits (SNPO).

4. A minimal bursting model. The bursting mechanism identified above includes a branch
of stable equilibria terminating in an SN and a branch of limit cycles terminating in a global
homoclinic bifurcation, or possibly destroyed by a second SN of fixed points occurring on
the limit cycle. A minimal model therefore requires only the “nose” or NRC on the lower
equilibrium branch, and an H bifurcation to create the periodic orbit on the upper branch.
This can be captured by a fast persistent (inward) current. In the model discussed in [20],
based on the two-variable Morris–Lécar equations [38], it is a calcium current; in Butera,
Rinzel, and Smith’s model 2 [17] (cf. Appendix C) it is a persistent sodium current INaP, with
almost the same functional expression, the only difference being the exponent of the gating
variable which is 1 in [38] and 3 in [17].

The following results were obtained for a persistent inward current with a reversal potential
of E = 120mV, consistent with calcium, which we called ICa. We believe that analogous results
could be obtained with a persistent sodium current with reversal potential around E = 50mV,
but specific biophysical data is unavailable for CPG neurons in the cockroach, so we cannot
identify a specific current, responsible for the fast spikes. In addition we have a slow (outward)
current IK and a leakage current IL. The bursting mechanism will be caused by an additional
very slow potassium current IKS (essentially the same as IKS in [17, Model 2]; see also [39])
that plays the same role of the calcium-activated potassium current IKCa in the Sherman–
Rinzel–Keizer (SRK) model: it hyperpolarizes (decreases) the membrane voltage when v is
highly depolarized (i.e., in the bursting regime). Our main results should carry over when a
calcium-dependent potassium current is used for the bursting mechanism as presented in the
example below using the SRK model [13]. Therefore, we consider the system

Cv̇ = −[ICa + IK + IL + IKS] + Iext,

ṁ =
ε

τm(v)
[m∞(v) −m] ,(4.1)
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A MINIMAL BURSTER MODEL 659

ċ =
δ

τc(v)
[c∞(v) − c] .

The currents in (4.1) are specified by

ICa = ḡCan∞(v)(v − ECa), IK = ḡKm · (v − EK),

IL = ḡL(v − EK), IKS = ḡKSc · (v − EK).(4.2)

The steady state gating and timescale functions are of the types (2.3)–(2.4); in particular,

m∞(v) and c∞(v) are both sigmoidal functions
(
1 + e−k0(v−vth)

)−1
, where m∞(v) is defined

by k0K , vthK
and c∞(v) by k0KS , vthKS

. The parameters given in Table 1 were adopted for
the work described in this section. The maximal conductances are expressed in mS/cm2, the
reversal and threshold potentials in mV, the slope coefficients in mV/s, and the capacitance C
in µF/cm2. All parameters excepting C, ḡK, ε, δ are the same as in Morris and Lécar [38, 20],
ḡK = 9 being slightly higher than their value ḡK = 8. With the application to follow in [1]
in mind, the parameters C, ε, and δ, which independently determine the time scales of v, m,
and c, are set to match typical cockroach data.

Table 1
Parameter values for the bursting model.

ḡCa = 4.4 ECa = 120 vthCa = −1.2 k0Ca = 0.11
ḡK = 9.0 EK = −80 vthK = 2.0 k0K = 0.2
ḡKS = 0.25 vthKS = −27 k0KS = 0.8
ḡL = 2.0 EL = −60
C = 1.2 ε = 4.9 δ = 0.052 Iext = 35.6

4.1. Silence, bursting, and beating. The existence of a resting potential and a limit cycle
for the fast subsystem ensures that the cell can exhibit two states: silent or beating (persistent
spiking). As we saw in section 3.3, to obtain bursting, these states must coexist over some pa-
rameter range. Moderate increases in external current Iext leave the (v, c)-bifurcation diagram
almost unchanged in shape but shift it rightward, causing the intersection of the nullclines to
move from the lower, to the middle, and finally to the upper branch (Figures 12a1–a4). This
effects a continuous change from silence to bursting to beating (Figures 12b1–b4). Similar
results (not shown) can be obtained by changing the threshold voltage in the function c∞(v).

The bursting frequency can be changed by over an order of magnitude (0.8–19.6 Hz) via the
bias current Iext (Figures 12(a2,b2)–(a3,b3)). This agrees with Butera, Rinzel, and Smith [17],
in which variations from 0.05–1 Hz were found, but it is accompanied by an increase from five
to nine APs. Since fast motoneurons encode force in terms of AP numbers, the latter should
also be adjustable without substantial frequency change. This is possible in regimes with few
APs per burst (Figures 12(b3,b5)).

4.2. Shaping the bursts. In the following we will concentrate on five parameters and
show how they can affect the properties of the bursts. We anticipate that not all will be
plausibly adjustable in vivo; in particular, we will show how one can fix the parameters C,
ε, and δ to match timescales and key features in systems of interest, providing a “baseline”
model, and how the adjustable parameters (Iext, gKS) affect this model. While Iext cannot be
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Figure 12. Left panels (a1)–(a5) show bifurcation diagrams of the fast subsystem of (4.1) and projections of
the bursting trajectory (grey line) onto (c, v) plane. The ċ = 0 nullcline (solid) is also shown. Parameters are as
in Table 1, unless stated otherwise. Right panels (b1)–(b5) show the membrane voltage v versus time. (a1)–(b1)
Silence: the ċ = 0 nullcline intersects the stable branch of the bifurcation diagram and there is one (stable) fixed
point for (4.1); Iext = 34.5. (a2)–(b2) Low frequency bursting: f = 0.8 Hz; Iext = 35.346. Notice that each burst
has five spikes and note extended time scale in (b2). (a3)–(b3) High frequency bursting: f = 19.6 Hz; Iext = 38.
(a4)–(b4) Beating: the system has a stable limit cycle with c ≈ const; Iext = 40. (a5)–(b5) Changing ḡKS to 0.35
(in place of ḡKS = 0.19 in previous cases) contracts the bifurcation diagram, affecting the duty cycle; Iext = 37.

adjusted independently via, e.g., synapses from central nervous system (CNS) neurons, both
it and ḡKS can be modulated by synaptic inputs and by neurotransmitters, so both of these
control parameters are biophysically plausible in vivo.

(i) The capacitance C basically sets the frequency of the fast spiking. Here it was set
to 1.2 in order to obtain fast spikes on the order of 1ms.
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Figure 13. Regulating spiking frequency by changing input current Iext. Varying Iext from 36 (a) to 72 (b)
spans the frequency range from 90 to 465 Hz. The v̇ = 0 nullcline moves rightward as Iext increases (c), taking
the limit cycle further from the homoclinic bifurcation. (d) The resulting f−I curve. Parameters as in Table 1,
except ḡKS = 0.5, ε = 2.0, δ = 10−4.

(ii) The parameter ε can play a central role as also suggested in the next illustrative
example, at the end of section 4. Recalling Figure 5, we observe that the H condition
aH = −εeC is the only one depending on the parameter ε. A decrease in ε therefore
makes the curve aH = −εeC shallower, shifting the H bifurcation point to more
depolarized levels. This, in turn, “drags” the global homoclinic bifurcation to the left.
Assuming that the very slow dynamics is unchanged, this suggests that the number of
spikes in a burst should decrease, because the homoclinic bifurcation moves closer to
the SN bifurcation.

(iii) The parameter δ is responsible for the recovery variable time scale and therefore de-
termines a “baseline” bursting frequency.

(iv) The bias current Iext can have several effects. It can influence the bursting frequency,
especially when the nullcline ċ = 0 of the very slow variable is fairly close to the SN
bifurcation (Figure 12(a2)–(a3)).
Iext can affect the spiking frequency as shown in Figure 13, for which we set δ = 10−4

and bursting is so slow that behavior resembles a regular spiking neuron. (In the
companion paper [1] this will be used to model slow cockroach motoneurons which
spike in the range 90–400 Hz [52, 53].) A lower bound for maximum spiking frequency
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662 R. M. GHIGLIAZZA AND P. HOLMES

is given by ω0 =
√
ε(ae + bd)/C at the H bifurcation, and since the cycle is destroyed

via a homoclinic bifurcation [50], there is no limit to minimum frequency in principle;
however, away from the H bifurcation the f − I curves for these neurons are rather
flat (see, e.g., discussion in [41]: 53–138 Hz in the HH model, 19–28 Hz in FitzHugh–
Nagumo, and 50–70 Hz in Morris–Lécar [38]). At least in the relaxation oscillator
limit, frequency is essentially fixed by the dynamics on the slow manifold, which does
not significantly change away from the H bifurcation (Figure 13d was obtained near
the homoclinic bifurcation).
Iext can also affect the number of APs per burst, but we note that the (percentage)
variation is minimal when the number of APs per burst is large and becomes increas-
ingly more important when there are few APs per burst (∼ 4-5).

(v) The conductance gKS is central in determining the duty cycle: the fraction of the period
occupied by the burst. Recalling that the slice of the bifurcation diagram does not de-
pend on ḡKS (3.24), and that this maximal conductance enters multiplicatively in IKS

(3.22), we see that increases (decreases) in its value respectively expand (contract) the
projected orbit in the c-direction, without changing the values of the corresponding
v̄SN and v̄H . The location of the homoclinic bifurcation responsible for disappearance
of the cycle shifts in this deformation process. The time spent in each regime varies
inversely with distance to the ċ = 0 nullcline; thus, in going from ḡKS = 0.19 to 0.35
(Figures 12a3 to 12a5), the quiescent fraction of the cycle increases since the lower
branch of the Iss − v curve moves closer to the nullcline. Figures 14(a,b) show how
bursting frequency and duty cycle can be independently changed by a suitable com-
bination of the parameters Iext and ḡKS. Iext primarily affects frequency, especially at
higher values of ḡKS; ḡKS affects both frequency and duty cycle.

Summary. The model parameters C, ε, and δ in (4.1) may be chosen to match timescales of
fast spikes (C), approximate number of APs per burst (ε), and baseline bursting frequency (δ).
Depending on the number of APs per burst, two regimes can be identified: high (∼ 15 APs)
or low (∼ 4 APs). In the high regime, bursting frequency is modulated by Iext; in the low
regime, Iext influences both bursting frequency and number of APs per burst. In the high
regime gKS primarily affects the duty cycle; in the low regime it affects both duty cycle and
number of APs per burst.

To satisfy changing behavioral demands CPGs must produce wide variations in cycle fre-
quency, relative timing, and activity levels in motoneurons and muscles. One might therefore
expect that the four key characteristics—bursting frequency, duty cycle, number of APs per
burst, and spiking frequency—should be independently adjustable, since they serve different
physiological functions (e.g., in locomotion, bursting sets the stepping frequency, and slow
motoneuron spike rates and fast motoneuron APs determine muscle force, via calcium release
dynamics). Such flexibility may seem impossible with only the two parameters Iext and gKS.
Moreover, since conductance changes are slower, adjustments might not be possible on com-
patible timescales, and as we have noted above, Iext is in any case not directly accessible in
vivo.

Here we anticipate a solution that evolution may have achieved via “division of labor”;
more details will be given in [1]. Insect CPGs comprise at least six bursting interneurons, each
of which drives fast (bursting) motoneurons Df and slow (spiking) motoneurons Ds. Stepping
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Figure 14. Bursting frequency (a) and duty cycle (b) dependence on Iext and ḡKS, showing that Iext
primarily affects frequency at higher values of ḡKS (see contour lines), but ḡKS simultaneously affects duty cycle
and frequency. (c), (d): Slices for constant ḡKS = 0.19 and constant Iext = 36.5; frequency shown solid and
duty cycle dashed.

frequency and duty cycle can be set at the network level by synaptic currents from CNS and
local reflexive feedback circuits, which effectively change CPG input currents Iext and conduc-
tances gKS. For reasons to be explained in [1], these two parameters together with external
currents to slow motoneurons completely define the operational regime of the latter. Fast mo-
toneurons, which grade force via the number of APs per burst, require more subtle treatment.
As noted above, they can be modulated by their input currents and conductances, but these
parameters also affect their bursting frequencies. Here network properties come to the res-
cue: unilaterally connected motoneurons “follow” CPG neurons provided that their bursting
frequencies are close enough, in which case they entrain to the CPG bursting frequency over
finite current and conductance ranges. This renders the Df bursting frequency independent
of these parameters, which therefore affect only the number of APs per burst. In summary,
independent controls can be obtained by synergy of individual and network properties using
(i) three different sets of bursters with five biophysical parameters and (ii) a network with
appropriate leader-follower connections.

4.3. An illustrative example. We now illustrate how the foregoing analysis can help one
to modify existing models to produce desired behaviors, perhaps when precise parameter
details, or even current types, are unavailable. Specifically, we show how the SRK model [13],
first introduced by Chay and Keizer [12], can be adapted to yield different duty cycles and
numbers of APs per burst.
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664 R. M. GHIGLIAZZA AND P. HOLMES

The SRK model may be written

Cmv̇ = −ḡKn(v − EK) − ICa(v) − gKCa(Ca) · (v − EK),

ṅ = λ
n∞(v) − n

τn(v)
,

Ċa = f(−αICa(v) − kCaCa)(4.3)

(cf. [37] and a slightly modified version in [33, p. 192]). Here,

ICa(v) = ḡCam∞(v)h∞(v)(v − ECa),

gKCa(Ca) = ḡKCa
Ca

Kd + Ca
,(4.4)

and n∞,m∞, h∞ are standard HH-type equilibrium functions (see Appendix B for functional
forms and parameters). The model has a potassium current IK = ḡKn(v − EK), a fast
transitory calcium current ICa, and a very slow calcium-dependent potassium current IKCa =
gKCa(Ca) · (v − EK). Intracellular calcium affecting the conductance via (4.4) has its own
dynamics given in the last equation of (4.3).

To compare (4.3) with (4.1) more directly, we first rewrite the system so that the calcium-
dependent potassium current IKCa = gKCa(Ca)(v − EK) is linear in a new very slow variable

c =
Ca

Kd + Ca
.(4.5)

Differentiating (4.5), we find ċ = Kd
(Kd+Ca)2

Ċa, and inverting (4.5) to obtain Ca = Kd
c

1−c ,

we have

Cmv̇ = −ḡKn(v − EK) − ICa(v) − ḡKCac(v − EK),

ṅ = λ
n∞(v) − n

τn(v)
,

ċ = f
(1 − c)2

Kd

(
−αICa(v) − kCaKd

c

1 − c

)
,(4.6)

with ICa as given above. The nullclines of the ċ equation are now

c = 1 and c =
αḡCam∞(v)h∞(v)(v − EK)

αḡCam∞(v)h∞(v)(v − EK) − kCaKd
.

For the parameters of [13] the nullcline ċ = 0 behaves as in our model, in the relevant region
of voltages (Figure 15a4).

The current ḡKCa enters (4.3) as does ḡKS in (4.1)–(4.2); we can therefore expect that
changing ḡKCa will primarily affect the duty cycle. Figures 15a1–b1 reveal that this is the
case, although the bursting frequency also changes. In fact, since Kd 	 Ca, the conductance
gKCa is essentially proportional to c, (4.5) is in its linear regime, and (4.3)–(4.4) is close to
(4.1)–(4.2).
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Figure 15. Bursts in the SRK model. Panels (a1), (b1) Duty cycle changes due to ḡKCa: ḡKCa = 30000,
left, and 41750, right. (a2), (b2) Effect of λ on numbers of APs: λ = 1.7, left, and 1.55, right. (a3), (b3) Effect
of added external currents on AP numbers and bursting frequency: Iext = 0, left, and −550, right.

To adjust the number of spikes per burst, we could change membrane capacitance C,
but this has very little effect on spike numbers and drastically reduces their magnitudes
(results not shown). Adding bias currents also has little effect, since the system is in a
high AP number/burst regime. However, decreasing the parameter λ (∼ ε in (4.1)) reduces
the number of APs from 22 to 2–3; this is accompanied by a moderate increase in bursting
frequency (Figure 15(a2–b2)). In this regime, an additional bias current has a much stronger
influence, permitting adjustment of AP numbers without drastically changing the bursting
frequency (Figure 15(a3–b3)).

5. Conclusions. This paper develops a minimal model for a bursting neuron. We retain
sufficient biophysical detail to permit appropriate parameter choices and variations to repro-
duce experimental data, while striving for generality and relative simplicity. Much current
research concerns subcellular details of ionic currents, channels, and molecular messengers
[43, 54, 17], but despite the ability of such detailed models to reproduce experimental data
(e.g., [6, 7, 8]), their complexity and sensitivity to parameter variations render them effec-
tively unanalyzable. We believe that massive simulations or experiments alone do not provide
global understanding, which profits more from the identification of a few key mechanisms. We
hope to extract these by judicious selection, rather than inclusion, of biological data, and in
doing so to provide a flexible and tractable mathematical framework within which biological
hypotheses can be investigated and novel experiments suggested.
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666 R. M. GHIGLIAZZA AND P. HOLMES

To this end, we review ion channel models of HH type and propose a generic three-
dimensional ODE (4.1)–(4.2) that exploits the presence of three disparate timescales and
obviates the detailed analysis of multiple currents, although we show how additional currents
can be classified and incorporated, and their influences investigated via steady state current-
voltage curves and their derivatives. We note that some currents increase complexity without
adding new qualitative behaviors, and thus can be neglected, at least in a first approximation.
Our procedure yields guidelines for creating models of specific behaviors, and we use it here
to select a minimal set of currents necessary to produce bursting, and to understand the role
of biophysical parameters such as conductances and bias currents in determining the bursting
frequency, duty cycle, spike rates, and numbers of APs per burst. We further illustrate by
showing how duty cycles and AP numbers can be adjusted in the SRK model.

Previous work of Bertram et al. [21], Rinzel and Lee [18], Rinzel [19], Izhikevich [35],
and others, summarized in [33], develops a topological classification of bursting mechanisms,
based on the types of bifurcations that the fast subsystem undergoes as c (or Iext) varies.
This illuminates the phase space geometry. The present treatment is more analytical in
nature and allows one to determine if specific currents with particular “influence windows”
Ui = [vthi

, Ei] can introduce new folds and hence SN bifurcations, or otherwise change stability
types of equilibria in the fast subsystem. Although our classification is in terms of steady state
properties of ionic currents and does not reveal all details of the periodic orbits, it nonetheless
allows one to adjust periodic orbit branches in the fast subsystem, via the reduced ċ = 0
nullcline and v̇ = 0 bifurcation set, and hence to tune burst properties.

In the paper [1] we will show how the bursting model (4.1)–(4.2), along with a single
equation describing synaptic dynamics, may be used as the basic subunit in building a model
of an insect CPG and motoneurons.

Appendix A. A Rose–Hindmarsh model. Rose and Hindmarsh [14, p. 273] considered
the following model for a repetitively firing neuron:

Cv̇ = −
[
ḡNam

3h(v − ENa) + gL(v − EL) + gKn
4(v − EK) − gAa

3b(v − EK)
]
+ I,(A.1)

where the five gating variables m,h, n, a, b are described by the usual first order kinetics (2.2b).
From this they obtained the third order system

Cv̇ = −
[
−3ḡNam

3
∞q(v − ENa) + 3AḡNab∞m3

∞(v − ENa)
]

− [0.85ḡNam∞(v − ENa) + ḡL(v − EL) + ḡKq(v − EK)]

− [ḡss∞(v − Es) + ḡoutz(v − EK) − I],

q̇ =
q∞(v) − q

τq(v)
,

ż =
z∞(v) − z

τz(v)
.(A.2)

In reducing the six-dimensional model they employed a slow gating variable q that combines
both sodium and potassium channels, and, numerically confiming that τb(v) ≈ τn(v), they
replaced both τb and τn by the average value τq(v) = 1

2(τb(v) + τn(v)).
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A MINIMAL BURSTER MODEL 667

Appendix B. The SRK model. The SRK model results of section 4.3 were obtained for
(4.3)–(4.4), where n∞, m∞, and h∞ are the standard HH equilibrium functions

n∞ =
1

1 + e
Vn−v
Sn

, m∞ =
1

1 + e
Vm−v
Sm

, h∞ =
1

1 + e
v−Vh
Sh

,(B.1)

and

τn(v) =
γ

e
v−V̄
a − e−

v−V̄
b

, α =
1

2VCellF
.(B.2)

The parameters used in section 4.3 are given in Table 2.

Table 2
Parameter values for the SRK model for bursting pancreatic β-cells.

ḡCa = 1400 pS ECa = 110 mV
ḡK = 2500 pS EK = −75 mV
ḡKCa = 30000 pS
Cm = 5310 f F VCell = 1150 µm3

F = 96.487 Coul/mMol Kd = 100 µMol
λ = 1.7 kCa = 0.03 m/s
Vn = −15 mV Sm = 5.6 mV
Vm = 4 mV Sm = 14 mV
Vh = −10 mV Sh = 10 mV
a = 65 mV b = 20 mV
γ = 60 ms V̄ = −75 mV
f = 0.001

Appendix C. Bursting pacemaker neurons in the pre-Bötzinger complex. Butera,
Rinzel, and Smith [17] considered two possible models for bursting pacemaker neurons in
the pre-Bötzinger complex. Model 1 takes the form

Cv̇ = −[INaP + INa + IK + IL + Itonic-e] + Iapp,

ṅ =
ε

τn(v)
[n∞(v) − n] ,(C.1)

ḣ =
δ

τh(v)
[h∞(v) − h] ,

with Itonic-e and Iapp fixed biases and the other currents specified by

INa = ḡNam
3
∞(v)(1 − n) · (v − ENa), IK = ḡKn

4 · (v − EK),
IL = ḡL(v − EL), INaP = ḡNaPm∞(v)h · (v − ENa).

(C.2)

The time course of inactivation of the sodium gating channel (h in the original HH equa-
tions [2]) as stated in [17] is “assumed to be of similar dynamics as n and is approximated by
h = (1 − n)” [55, 56]. As in Appendix A, this is an instance of a single gating variable (n)
associated to two different ionic channels (INa and IK).
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668 R. M. GHIGLIAZZA AND P. HOLMES

Model 2 takes the form

Cv̇ = −[INaP + IKS + INa + IK + IL + Itonic-e] + Iapp,

ṅ =
ε

τn(v)
[n∞(v) − n] ,(C.3)

k̇ =
δ

τk(v)
[k∞(v) − k] .

In addition to a leakage current IL = ḡL(v − EL), the currents in (C.3) are

INa = ḡNam
3
∞(v) · (v − ENa), IK = ḡKn

4 · (v − EK),
IKS = ḡKSk(v − EK), INaP = ḡNaPm∞(v) · (v − ENa).

(C.4)

Note that INaP does not inactivate as in model 1.
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Bötzinger complex. I. Bursting pacemaker neurons, J. Neurophysiology, 81 (1999), pp. 382–397.

[18] J. Rinzel and Y. S. Lee, On different mechanisms for membrane potential bursting, in Nonlinear Oscil-
lations in Biology and Chemistry, H. G. Othmer, ed., Lecture Notes in Biomath. 66, Springer-Verlag,
Berlin, 1986, pp. 19–33.

[19] J. Rinzel, A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in
Population Biology, Morphogenesis, and Neurosciences, E. Teramoto and M. Yamaguti, eds., Lecture
Notes in Biomath. 71, Springer-Verlag, Berlin, 1987, pp. 267–281.

[20] J. Rinzel and G. B. Ermentrout, Analysis of excitability and oscillations, in Methods in Neuronal
Modeling: From Synapses to Networks, C. Koch and I. Segev, eds., MIT Press, Cambridge, MA, 1989,
pp. 135–169.

[21] R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and penomenological classification
of bursting oscillations, Bull. Math. Biol., 57 (1980), pp. 413–439.

[22] X. J. Wang and J. Rinzel, Oscillatory and bursting properties of neurons, in Brain Theory and Neural
Networks, M. A. Arbib, ed., MIT Press, Cambridge, MA, 1995, pp. 686–691.

[23] J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differ-
ential equations, Philosophical Transactions of the Royal Society B: Biological Sciences, 221 (1984),
pp. 87–102.

[24] M. Pernarowski, Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting,
SIAM J. Appl. Math., 54 (1994), pp. 814–832.

[25] G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci., 8
(1998), pp. 281–316.

[26] R. J. Butera, Jr., J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-
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