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A Minimal Model of a Central Pattern Generator and Motoneurons for Insect
Locomotion∗
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Abstract. We adapt the generic three-dimensional bursting neuron model derived in the companion paper
[SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 636–670] to model central pattern generator interneu-
rons and slow and fast motoneurons in insect locomotory systems. Focusing on cockroach data, we
construct a coupled network that retains sufficient detail to allow investigation and prediction of
biophysical parameter changes. We show that the model can encompass stepping frequency, duty
cycle, and motoneuron output variations observed in cockroaches, and we reduce it to an analyti-
cally tractable symmetric network of coupled phase oscillators from which general principles can be
extracted. The model’s modular form allows dynamical analyses of individual components and the
addition of other components, so we expect it to be more generally useful.
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1. Introduction. Central pattern generators (CPGs) are networks of functionally distin-
guishable neurons, located in the vertebrate spinal cord or in invertebrate thoracic ganglia,
capable of generating and regulating the spatio-temporal activity of motoneurons in the ab-
sence of sensory input (e.g., [2, 3, 4]). Over forty years of in vitro and in vivo studies of network
architectures, intrinsic membrane properties, and neuromodulators (e.g., [5, 6, 7, 4, 8]) have
firmly established their importance in motor behavior. CPG dynamics depends on intra-
cellular, synaptic, and network level phenomena and can display remarkable richness and
flexibility.

In this paper, using the reduced bursting neuron ODEs derived and studied in the preced-
ing paper [1], we develop a model of the CPG and associated bursting motoneurons for insect
locomotion. We draw on data from the death’s head and American cockroaches Blaberus dis-
coidalis and Periplaneta americana and focus on rapid running, a regime in which preflexive
feedforward control [9, 10] appears to dominate and reflexive feedback plays a less important
role [11, 12, 13] than in, e.g., stick insects [14] that use more varied gaits and leg placement
strategies. We include enough ionic current and conductance detail to reveal how modulation
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of specific biophysical parameters can adjust CPG outputs that determine key locomotive
properties, while providing sufficient tractability to enable mathematical analysis. In par-
ticular, after reduction of the CPG “core” to phase equations, simple symmetry arguments
locate fixed points and describe gaits, and eigenvalue calculations determine their stability
properties. We also confirm that these phase reductions correctly represent the dynamics of
the full network.

While we emphasize the double-tripod gait employed by Blaberus over the speed range
10–60 cm sec−1 [15, 16] (and common to many insects), our model also describes other gait
patterns, and its modularity will permit the inclusion of additional inter- and motoneurons and
reflexive sensing. Indeed, our ultimate goal is to marry it to muscle and body-limb mechanical
models of the types developed in [17, 18, 19, 20] and to equip the whole with proprioceptive
feedback and goal-oriented direction.

This paper is organized as follows. In section 2 we recall the bursting neuron model of [1]
and summarize the effects of bias currents and conductances on its behavior. We then review
relevant data on CPG neurons, motoneurons, and network architectures in section 3 and use
it to assemble a hexapedal pattern generator in section 4. This comprises six synaptically
interconnected CPG bursters, each driving a fast and a slow bursting motoneuron. Finally, to
permit elementary analyses of network properties, in section 5 we reduce, via phase response
curves (PRCs) and averaging, to phase variables alone. We summarize and outline future
work in section 6.

2. A minimal bursting model. The analyses developed in the preceding paper [1] enable
us to propose a model sufficiently general to apply to both bursting CPG neurons and mo-
toneurons. It includes a branch of stable equilibria terminating in a saddle-node and one of
limit cycles terminating in a global homoclinic bifurcation, separated by a branch of unstable
(saddle-type) equilibria. (Index theory [21] implies that the periodic orbits must encircle un-
stable equilibria, so an upper equilibrium branch also must exist.) A minimal model requires
only the saddle-node on the lower equilibrium branch and a Hopf bifurcation to create the
periodic orbit on the upper branch. As shown in [1], this can be captured by a fast nonlinear
current, e.g., ICa, a leakage current IL, a slow potassium current IK, and an additional very
slow current, IKS, giving the system [1, equation (31)]

Cv̇ = −[ICa + IK + IL + IKS] + Iext,

ṁ =
ε

τm(v)
[m∞(v) −m] ,(2.1)

ċ =
δ

τc(v)
[c∞(v) − c] .

The currents appearing in (2.1) are

ICa = ḡCan∞(v)(v − ECa), IK = ḡKm · (v − EK),

IL = ḡL(v − EK), IKS = ḡKSc · (v − EK),(2.2)

where the steady state gating variables m∞(v), n∞(v), c∞(v) and time “constants” τm(v), τc(v)
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take the forms

wi∞(v; ki0 , vith) =
1

1 + e−ki0 (v−vith )
,(2.3)

τi(v; ki0 , vith) = sech (ki0(v − vith)) ,(2.4)

with wi∞ = m∞(v), n∞(v), c∞(v). Parameters were generally fixed as specified in Table 1
of section 4; modifications will subsequently be made to accomodate other behaviors. All
parameters excepting C, ḡK, ε, δ are the same as in Morris and Lécar [22, 23], ḡK = 9 being
slightly higher than their value ḡK = 8. The parameters C, ε, and δ, which independently
determine the time scales of v, m, and c, are set to match typical cockroach data.

As shown in section 4 of [1], variations in three key characteristics of the bursting pattern
can be achieved quasi-independently by varying two biophysical parameters for each of the
different neuron types to be used in the model. Specifically, in the appropriate regimes, the
following hold:

1. The bursting frequency can be adjusted primarily by Iext.
2. The spiking frequency can be adjusted by Iext.
3. The number of action potentials (APs) can be adjusted by Iext and ḡKS.
4. The duty cycle can be adjusted by ḡKS, although this may also affect frequency.

As we shall see, the bursting frequency and duty cycles of CPG interneurons are primarily
responsible for speed adjustment (although leg extension, via stride lengths, is also important
at higher speeds [24]), while motoneuron spiking frequencies and AP numbers grade force
production. We remark that Iext can be modulated by excitatory and inhibitory synapses
from CNS neurons, and ḡKS by suitable neurotransmitters, so both of these are biophysically
plausible control parameters in vivo.

3. CPG neurons and motoneurons as bursters. Before proposing specific parameter
regimes for cockroach CPG and motoneuron models, we review relevant data on animals
and insects in general and cockroaches in particular. We start by briefly commenting on
spiking and nonspiking interneurons in CPGs, turn to motoneurons, and then discuss network
connectivity.

3.1. CPG neurons: Bursters and nonspikers. Working from direct recordings and deaf-
ferented (sensorless) preparations of the American cockroach Periplaneta americana [25, 26],
Pearson [27, 28] hypothesized a flexor burst generator for each leg that comprises several
interneurons, including a bursting interneuron that periodically excites the flexor (levator or
swing) motoneurons while inhibiting the extensor (depressor or stance) units. Subsequently,
interneurons that do not produce APs were found [29, 28, 30], and their importance in gener-
ating motor patterns was stressed. (In the locust they are responsible for coordinating subsets
of motoneurons, controlling their spiking frequencies, and altering reflex strengths and move-
ment magnitudes in a continuous and precise manner through graded potentials [31, 32].)
Despite this, there is no evidence that nonspiking interneurons exhibit pacemaking capabili-
ties; indeed, their quasi-sinusoidal membrane voltages could simply result from integration of
incoming bursts [33]. Thus, while they may be involved in CPG circuits and may contribute
in a graded manner to slow motoneuron outputs, we shall omit them from our model.
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Plateau potentials, slow voltage oscillations on which the fast spikes ride, do however
seem crucial to bursting [34]. These derive from bistability of the type illustrated in the
bifurcation diagrams of Figures 9 and 10 of [1] for the fast subsystem, which allows brief
inputs to trigger activities that outlast input duration; similarly, brief inhibitory stimuli can
terminate plateaus [35]. This nonlinear membrane property plays a pivotal role in structuring
bursts and producing cyclic behavior with appropriate time scales for stepping frequencies; it
also allows brief proprioceptive inputs to reset and regulate the rhythm. We shall therefore
represent each of the six “leg units” of an insect CPG by a single bursting (inter-) neuron of
the form (2.1)–(2.2), synapsing directly on motoneurons innervating the dominant depressor
muscles. Our model allows for subsequent addition of nonspiking interneurons between CPG
and motoneurons.

3.2. Motoneurons. Because of important constraints imposed by their physiology, we
discuss motoneurons and muscles in some detail.

The basic functional component of motor pathways is the motor unit, consisting of a
motoneuron and the muscle fibers innervated by it. A single AP in the motoneuron causes
a contractive twitch in the muscle fibers to which it is attached. Three types of motor units
can be distinguished by their motoneuron firing patterns and muscle fiber properties. Slow
twitch (S-type) units take about 50 msec to develop peak force and show little decline in
force over prolonged periods of repetitive stimulation; they can exert low forces for very long
periods. In contrast, fatigue resistant (FR) and fast fatigue (FF) units maximally contract in
5–10 msec. With repetitive stimuli, FR units can sustain moderate forces for ≈ 5 min before
steady decline sets in over many minutes. FF motor units can achieve the greatest force
of the three types, but with repetitive stimuli the force drops precipitously after 30 seconds
or so. Both FR and FF units produce rapid large forces and so are found preferentially in
muscles involved in executing fast movements. In the cockroach, slow and fast motoneuron
discharges are quite distinct; slow units spike continuously at rates from 100–400 Hz when
active [26, 36], while fast units typically produce 1–6 large spikes during a 50–100 msec stance
or swing phase [37].

Muscle contraction force is determined by the motor pool in two ways. Small force in-
creases are primarily met by greater motoneuron firing rates, but for larger contractions the
number of active motoneurons is increased in a process called recruitment. This occurs in an
orderly manner in the sequence S-FR-FF [38], determined jointly by the effect of cell body
size [39] on excitatory postsynaptic potentials and on graded inputs to S, FR, and FF units.
An incoming (tonic) stimulus sequentially excites the units as it passes their different thresh-
olds [40, 34]. Cockroach coxal depressor motoneurons are innervated by both fast and slow
motoneurons [41], and in Blaberus fast motoneuron recruitment begins at leg cycle rates of
≈ 6 Hz, corresponding to running speeds of 12 cm sec−1 [37]; fast motoneurons dominate at
high speeds, but there is a considerable “overlap range” [26].

Often only slow motoneurons are modeled. Since these exhibit continuous relationships
between firing frequency and force production, compact reductions of the whole neuromo-
tor complex are then possible (e.g., the neuromuscular transforms of [42]). However, since
we focus on rapid running, in which fast motoneurons are involved, and there is strong evi-
dence of plateau and bursting capabilities in cockroach motoneurons [35], spiking and bursting
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Figure 1. (a) Burst duration in levator (dashed, axons 5 and 6) and (b) slow depressor Ds axon (solid) as
a function of cycle time. The two thin dashed lines indicate duty cycles of 100% and 50%. Note that duty cycles
of both depressors and levators approach 50% as speed increases (cycle time decreases). Cycle frequency ranges
from 2 to 10 Hz. (c) Average spike rate of levator (dashed) and depressor (solid) axons. From Pearson [26].
(d) Approximate numbers of muscle action potentials (MAPs) per cycle in metathoracic (upper curve) and
mesothoracic muscle (lower curve): Regression equations MAPs = 0.051tcyc − 2.5, R2 = 0.52 for metathoracic
and MAPs = 0.048tcyc − 3.2, R2 = 0.42 for mesothoracic. From Full et al. [37].

behaviors cannot be ignored. Indeed, given the few large spikes typically seen during rapid
running, spike times and interspike intervals may be crucial in determining relative forces in
different legs of the stance tripod and in regulating episodes of negative and positive work [37].
These aspects are certainly as important as the analogous role of slow motoneuron spiking
frequency in low-speed walking. For this reason, and to allow continuous transition from
slow to fast speeds, we shall use the bursting model (2.1), with suitable parameter choices, to
represent both fast and slow motoneurons.

In Figures 1(a)–(c) we reproduce Periplaneta data from [26, 27] showing burst durations
and spiking rates of slow cockroach motoneurons as functions of cycle time or inverse stepping
frequency (cf. [43, 36] for analogous and more recent Blaberus data). In Figure 1(d) we
reproduce data from [37] showing the dependence of number of APs in fast motoneurons as
a function of cycle time. Phase relationships among leg muscles (not shown) indicate near
constant antiphase between motoneurons associated with the left and right tripods. This data
will guide our parameter choices.

3.3. Network configuration. Apart from anatomic identification and the acceptance of
some degree of hierarchy [44, 45, 34], the precise division of labor among the higher cen-
tral nervous system (CNS), the CPG-motoneuron complex, and proprioceptive sensing and
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Figure 2. (a) Ipsilateral CPG-motoneuron network connectivity and (b) individual leg depressor and le-
vator circuit showing fast and slow motoneurons Df , Ds as proposed by Pearson [27]. The CNS excites the
bursting interneurons (BI) as well as Df and Ds, which innervate the depressor muscles. Motoneurons 5 and 6
innervate the levator muscles and are not modeled here. Sensory feedback (dashed) affects the activity of all
motoneurons. Open circles indicate excitatory coupling, and closed circles indicate inhibitory coupling. (c) Net-
work connectivity of the hexapedal model. CPG neurons are coupled through mutually inhibiting synapses, and
fast and slow motoneurons are connected via an inhibitory synapse to their corresponding CPG neuron; they are
also tonically driven by the CNS. Sensory feedback is briefly discussed in the text but is not explicitly modeled.
For synaptic weights, see text. (d) Asymmetric coupling as considered in section 5.6; the network of (c) is
obtained with gF = 1

2
= gH.

feedback remains unclear, but following Wilson [5], Pearson and Iles [27] deduced some general
principles from the experiments noted in section 3.1. They found evidence of mutual inhibi-
tion between CPG interneurons belonging to the motor complexes of neighboring ipsilateral
legs; they also found that CPG (inter)neurons excite levator motoneurons (active during the
swing phase) but inhibit depressor motoneurons (active during stance), that sensory signals
from campaniform sensillae and hair plates [46] (force and positions in the legs) tend to excite
depressor motoneurons, and that tonic CNS signals generally excite both CPG neurons and
depressor motoneurons. Their proposed architecture is reproduced in Figures 2(a), (b). The
subsequent discovery of an interneuron (the lambda cell) involved in the escape response and
highly depolarized by inputs from the ipsilateral campaniform sensilla and the contralateral
trochanteral hair plate [46] supports this picture.

Henceforth we exclude levators, since our mechanical models neglect leg masses and the
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swing phase is implicit [17, 12, 20]. In cockroaches there are two slow (177D and 177E)
and two fast (178 and 179) coxal depressor muscles, the former being innervated by the slow
motoneuron Ds and the latter by Df ; some fibers in 177D also receive inputs from Df [41].
With this and the discussion of section 3.2 in mind, we now develop our network model.

4. A hexapedal neuro-motor complex. Pearson did not address contralateral connectiv-
ity, but it is natural to extend his model to a network of six mutually inhibiting units, as
shown in Figure 2(c) (also cf. the stick-insect pattern generator proposed in [14, Fig. 4]). This
architecture promotes contra- and ipsilateral neighbors to burst in antiphase, leading units
1, 2, 3 and 4, 5, 6 to form two groups, internally in phase but mutually in antiphase, thus form-
ing the left and right (depressor) tripods. As noted above, we do not include interneurons,
so the output of each CPG neuron inhibits the slow and fast depressor motoneurons directly.
By inhibiting motoneuronal activity, the CPG selects both a stepping pattern and sets the leg
cycle frequency, but the CPG spiking frequency does not directly affect motoneuron spiking
frequencies, which are jointly adjusted by the local proprioceptive feedback and CNS drive;
see Figures 2(a), (b). CPG neurons and both slow and fast motoneurons will be modeled by
(2.1)–(2.2) with differing parameters as specified in Table 1.

Inhibitory coupling can be achieved via synapses that produce negative postsynaptic cur-
rents, or presynaptically by depressing a synapse. Lacking more precise information, we choose
the former mechanism. Following [47, p. 15], [48, p. 180], we adopt the first order dynamics

ṡ = αG(vpre) (1 − s) − βs, with G(vpre) =
Tmax

1 + e−kpre(vpre−Epre
syn)

,(4.1)

in which v denotes the potential of the presynaptic neuron and α, β and the parameters
Tmax, kpre, and Epost

syn defining the concentration of transmitter release G(vpre) set the timescale
of the synaptic rise and decay described by the nondimensional variable s. The variables s
enters the postsynaptic cell in the first equation of (2.1) as an additional term,

Cv̇ = −[ICa + IK + IL + IKS] + Iext − ḡsyn s · (v − Epost
syn ),(4.2)

where ḡsyn denotes synaptic strength and the current Isyn = −ḡsyn s ·(v−Epost
syn ) induced in the

postsynaptic cell is typically positive and hence depolarizing (resp., negative and hence hyper-
polarizing) for excitatory (resp., inhibitory) synapses [33]. A different form of the s-equation
(4.1) appears in [49]. We have checked that this produces similar results to those described
below.

Table 1 lists parameter values adopted for the CPG and motoneuron models and Table 2
lists those for the synapses (standard inhibitory GABAA; see [47]). All three types of neurons
have equal “fixed” parameter values except for C, ε, and Esyn. The physiologically adjustable
control parameters, ḡKS, Iext, and ḡsyn with nominal “standard” values indicated by asterisks
will be varied to match the data summarized in section 3. To obtain equal current injection
into all six CPG neurons under stationary conditions, we chose half weights for the synapses
from units 1 and 3 to 5, and 4 and 6 to 2 (i.e., ḡsyn = 0.005 in place of 0.01 as given in
Table 2), since the middle leg units receive input from three others, while other units have
inputs from only two (see Figure 2(c)). Contralateral CPG synapses are set at full strength,
since in-phase contralateral activity can occur with weak inhibition; cf. [5] and see sections
5.3 and 5.7 below.
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Table 1
Parameters for CPG and fast and slow motoneurons Df , Ds. Maximal conductances are expressed in

mS/cm2, the reversal and threshold potentials in mV, the slope coefficients in mV/s, and the capacitance C in
µF/cm2.

C ḡCa ḡK ḡKS ḡL ECa EK EL vthCa vthK vthc

CPG 1.2 4.4 9.0 0.19∗ 2.0 120 −80 −60 −1.2 2 −27

Df 1.39 4.4 9.0 0.25∗ 2.0 120 −80 −60 −1.2 2 −27

Ds 2.4 4.4 9.0 0.50 2.0 120 −80 −60 −1.2 2 −27

k0Ca k0K kc ε δ Iext

CPG 0.056 0.1 0.8 4.9 0.052 35.6∗

Df 0.056 0.1 0.8 4.18 0.044 36.3∗

Ds 0.056 0.1 0.8 2.0 0.0002 50∗

Table 2
Synapse parameters. Only the CPG neurons have “outgoing” synapses.

Epre
syn Epost

syn ksyn α β ḡsyn Tmax

CPG 2 −70 0.22 5000 0.180 0.01∗ 2 · 10−3

Df −70 0.22 5000 0.180 0.2∗

Ds −70 0.22 5000 0.180 0.9∗

4.1. Pairs of coupled bursting neurons. Before studying the full circuit of Figure 2(c),
we consider a pair of CPG neurons with mutually inhibitory and excitatory couplings and a
CPG neuron unidirectionally coupled to fast and slow motoneurons.

Depending on their intrinsic bursting frequencies and the strength of the coupling term ḡsyn

of (4.2), the units may entrain (frequency lock). Figures 3(a), (b) show pairs of identical CPG
neurons mutually coupled by inhibitory synapses (left column) and excitatory synapses (right
column). In the first case they antiphase lock within a cycle; in the second the bursts entrain,
although individual spikes may not. Unidirectionally driven fast motoneurons entrain to the
bursting frequency of CPG neurons in Figures 3(g), (h). Slow motoneurons are essentially
continual spikers, but with sufficiently strong inhibitory coupling, they can be made to burst in
alternation with the CPG inputs in agreement with animal recordings; see Figure 3(i). With
excitatory coupling, spiking persists throughout, but the rate increases during an incoming
CPG burst; see Figure 3(j). The intervening panels (c)–(f) show the synaptic variable s and
the resulting currents −Isyn. The s-dynamics is similar in both inhibitory and excitatory
cases; the major difference lies in postsynaptic currents.

4.2. A hexapedal CPG. We now move to the full circuit of Figure 2(c). Synaptic currents
and other relevant parameters will be distinguished for CPG, fast, and slow motoneurons by
adding appropriate subscripts. Each CPG neuron forms three types of synapses: to other
CPG neurons through Isyn,CPG and to fast and slow motoneurons through Isyn,Df

, Isyn,Ds ,
respectively. Figure 4 shows typical time histories of ipsilateral and contralateral CPG neurons
and motoneurons; note the alternating activity of the left (1, 2, 3) and right (4, 5, 6) tripods.
Also, burst durations of the slow motoneurons Ds are longer than those of CPG neurons, and
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Figure 3. Two coupled bursting neurons, with GABAA inhibitory synapses (left panels) and AMPA exci-
tatory synapses (right panels). Panels (a)–(b) show membrane voltages of mutually coupled CPG1 (dark grey)
and CPG2 (light grey) neurons, respectively; inhibitory coupling causes antiphase bursts (a) and excitatory
coupling causes in-phase bursts (b). Panels (c)–(d) show synaptic dynamics s(t) and (e)–(f) the resulting
synaptic currents −Isyn: Negative in the inhibitory case and positive in the excitatory case. Panels (g), (h)
show the membrane voltage of a CPG neuron (dark grey) superimposed on that of a unidirectionally coupled
fast motoneuron Df1 (light grey). With inhibitory coupling (g), Df1 bursts in antiphase with respect to CPG,
but in-phase with excitatory coupling (h). Panels (i)–(j) show the membrane voltage of a CPG neuron (dark
grey) superimposed on that of a unidirectionally coupled slow motoneuron Ds1 (light grey). With inhibitory
coupling (i), Ds1 bursts in antiphase with respect to CPG, but with excitatory coupling, it continues to spike,
with increased rate during CPG bursts (j). Parameters are as in Table 1 except for ICPG = 36.3, with coupling
strengths ḡCPG,CPG = 0.15, ḡCPG,Df = 0.25, and ḡCPG,Ds = 0.4 for both the inhibitory and excitatory cases.
The coefficients for AMPA synapses are as in Table 2, except for α = 1100, β = 0.190, Epost

syn = 0. Some
panels show effects of transients, and we note that while bursts are synchronized, individual spikes (and spike
numbers) need not be.

their spiking frequency is approximately constant, in agreement with experiments [26].

Via Iext = Iα and ḡKS,α, where α = {CPG,Df ,Ds}, we can adjust the stepping frequency,
the number of APs in Df , the spiking rate of Ds, and their duty cycles, as described in
[1] and section 2 above. We note that all three neuron types can have different duty cycles.
In the locomotion literature duty cycle normally refers to S-type (slow) muscle fibers or slow
motoneuron activity (in fast fibers it is not a relevant measure). In our network, the duty cycle
of the slow motoneurons can be indirectly controlled through that of the CPG neurons. Since
CPG neurons drive motoneurons through inhibitory synapses, and duty cycles of the former
are generally less than 0.5, motoneuron duty cycles typically exceed 0.5. Hence, by suitable
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column shows ipsilateral CPG neurons, while the right column shows contralateral CPG neurons and fast and
slow motoneurons for units 1 and 4. Bursting frequency is 10.4 Hz, Df has 4 APs per burst, and Ds spikes at
a rate of ≈ 290 Hz with a duty cycle of 0.80; (fBurst, nAP, fSpike,∆Ds) = (10.4 Hz, 4, 287 Hz, 0.80). Parameters
are as in Tables 1 and 2.

parameter choices we can reproduce Pearson’s finding that motoneuron burst durations vary
from 0.4 to 0.9 of the full cycle period as the latter increases; see Figure 6(d). From now on,
unless otherwise stated, by duty cycle we mean the Ds duty cycle.

In the following we show how the network can be adjusted for different locomotive require-
ments, in comparison with the nominal case of Figures 4(b), (d), (f) in the insect’s preferred
speed range, in which the stepping frequency is 10.3 Hz, the Df have four APs per burst, and
the Ds spike at a rate of 279 Hz and have a duty cycle of 0.59. We write these four “outputs”
as (fBurst, nAP, fSpike,∆Ds). Figures 5(a1)–(a3) show slow walking (3.66 Hz, 1, 147 Hz, 0.88).
Figures 5(b1)–(b3) show how it is possible to vary the number of APs in fast motoneurons
and the spiking frequency of slow motoneurons independent of stepping frequency: still slow
walking but with increased force production, as required, e.g., for hill climbing (3.66 Hz, 7,
353 Hz, 0.95). Figures 5(c1)–(c3) show fast stepping, with an intermediate number of APs
and spiking rate (17.2 Hz, 4, 287 Hz, 0.44). Note that in this case the Ds duty cycle is slightly
less than 0.5 and there is no overlap.

To adjust to rapid external disturbances, flexibility is required in load as well as speed.
In the following we show how, in a multiparametric setting, the four main characteristics of
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Figure 5. Membrane voltages of CPG neurons and fast and slow motoneurons in the hexapedal model
during fictive locomotion, for comparison with “nominal” case of Figure 4 (right column). (a1)–(a3) Slow
stepping, low force: (fBurst, nAP, fSpike,∆Ds) = (3.66 Hz, 1, 147 Hz, 0.88); parameters are as in Figure 4
except for ICPG = 35.38, IDf = 35.7, IDs = 44, ḡKS,Df = 0.45, ḡCPG,Df = 0.5. (b1)–(b3) Slow stepping,
large force: (fBurst, nAP, fSpike,∆Ds) = (3.66 Hz, 7, 353 Hz, 0.95); parameters are as in Figure 4 except for
ICPG = 35.38, IDf = 35.8, IDs = 64, ḡKS,Df = 0.13, ḡCPG,Df = 0.5. (c1)–(c3) Fast stepping, medium force:
(fBurst, nAP, fSpike,∆Ds) = (17.2 Hz, 4, 287 Hz, 0.44). Parameters are as in Figure 4 except for ICPG = 38.4,
IDf = 37.4, IDs = 50.

the network can be adjusted over a wide range, with sufficient independence. Parameters not
explicitly noted are as in Tables 1–2. Figure 6(a) shows the variation of bursting frequency
with ICPG parametrized by the maximal conductance ḡKS,CPG. Together they span the range
5–26 Hz (although a lower frequency of 3.2 Hz was obtained with ICPG = 35.38, IDf

= 35.7),
encompassing the entire range over which Blaberus discoidalis uses the double-tripod gait.
Figure 6(c) shows how the duty cycle of slow motoneurons is affected by changes in ICPG

and ḡKS. Figure 6(b) shows the variation of the spiking frequency of the slow motoneurons
with IDs parametrized by ICPG. Variation of IDs in the range 38–64 provides frequencies
from 124 Hz to 389 Hz. Figure 6(c) shows duty cycle variation with ICPG parametrized by
ḡKS,CPG, indicating coverage of the range from 0.4 to 0.9, and Figure 6(d) shows this data
superimposed on measurements of Pearson [26].

Figure 6(e) shows the variation of the number of APs in fast motoneurons with IDf

parametrized by ICPG. In the first case the number of APs per burst changes only from 3
to 4, but this is significant in the 10 Hz frequency range; cf. [37]. A wider range is obtained
when ICPG = 38.4, corresponding to a stepping frequency of 17.0 Hz; here the number of APs
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Figure 6. (a) Network bursting frequency vs. ICPG for ḡKS,CPG = 0.35 (bold), 0.19 (dark), 0.18 (solid grey),
and 0.15 (dashed grey). (b) Slow motoneuron spiking frequency vs. IDs for low ICPG = 35.6 (solid, stepping
frequency 10.5 Hz), and 38.4 (bold, stepping frequency 17.0 Hz). (c) Duty cycle vs. ICPG, parametrized by
ḡKS,CPG, parameter values and curves as in panel (a). (d) Duty cycle vs. cycle time: Data from Pearson [26,
Fig. 6] (bold) and obtained by varying ICPG from 35.38 to 36.7 and keeping ḡKS fixed at the values indicated
(dashed and broken lines); dotted lines correspond to 50% and 100% duty cycle. (e) Number of fast motoneuron
APs per burst vs. IDf , for ICPG = 35.6 (solid, bursting frequency 10.5 Hz); ICPG = 38.4 (bold, bursting frequency
17.0 Hz). (f) Number of fast motoneuron APs per burst vs. gKS,Df for ICPG = 35.41, IDf = 35.7 (solid,
bursting frequency 6.4 Hz); ICPG = 35.6, IDf = 36.5 (bold, bursting frequency 10.5 Hz). (g) Fast motoneuron
APs vs. cycle time: Data from Full [37, Fig. 5] with mesothoracic (upper, bold) and metathoracic (lower, bold)
regression lines. Model results shown in circles and broken line; see text for explanation. (h) Slow motoneuron
spiking frequency vs. cycle time: Data from Pearson [26, Fig. 7] (bold) and model results on broken line; see
text.

ranges from 2 to 5. Figure 6(f) shows variation of the number of APs with ḡKS,Df
parametrized

by ICPG, indicating that from 1 to 7 APs can be delivered. Recalling that each spike causes
a muscle fiber twitch, the model can therefore achieve up to a sevenfold graded increase in
force production, covering the entire range described in [37]. Finally, Figures 6(g), (h) replot
the fast motoneuron AP numbers and slow motoneuron spike rates achieved by the model in
comparison with those measured by Full et al. [37] and Pearson [26], showing that the model
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can reproduce the data rather well. To match Full’s overall finding that slower stepping
(increased cycle time) results in more APs, we adjusted the network bursting frequency via
ICPG = 35.41, 35.6, 38.4 and concurrently adjusted the bias current IDf

= 35.7, 36.3, 36.4
to produce the broken line (for the rightmost data point gKS,Df

= 0.18 was slightly less than
for the others gKS,Df

= 0.19). The circles in panel (g) show network behaviors obtained for
a broader variation of ICPG, IDf

, and ḡKS,Df
that span the wide variability identified in [37,

Fig. 5]. The circles in (h) were obtained by concurrently changing ICPG from 35.38 to 35.6
and IDs from 40 to 44. We also found other cases in which the number of APs decreases with
increasing cycle time.

All results shown in this section correspond to tripod gaits, with 1:1 entrainment of CPG
and fast and slow motoneurons, as in Figure 5. The impossibility of extending some curves
beyond the ranges shown (e.g., Figure 6(d), solid line) is due to failure of “normal” network
properties: e.g., CPG neurons, fast and/or slow motoneurons cease to fire at all (typically
at low values of the current), or fire tonically (high bias currents); or 1:1 phase locking of
fast motoneurons and CPG neurons is lost. Nonetheless, these simulations show that the
tripod gait can be maintained over a wide range of speeds and duty cycles, and that in a
multiparameter setting, bursting frequency, spiking frequency, duty cycle, and the number of
APs can be almost independently changed.

5. Reduction to phase oscillators. In this section we review the phase reduction and
averaging methods and apply them to coupled bursting CPG neurons of the type (2.1) with
synaptic dynamics (4.1). We derive reduced sets of ODEs describing mutually coupled pairs
of neurons and the CPG network of Figure 2(c) in terms of relative phases, and analyze them
to find phase locked solutions and their stability properties.

5.1. The phase response curve. We write the ODE for a single cell in the compact form

ẋ = f(x) + αp(x, t, . . . ); x ∈ R
n,(5.1)

where p denotes the coupling function (of strength α) and (. . .) in the argument of p contains
state variables of all cells that synapse onto the one in question, as well as external inputs.
The phase reduction method originated in work of Malkin and Winfree [50, 51]; more details
can be found in [52, Chap. 9] and [53], and an application to the “standard” Hodgkin–Huxley
equations in [54].

We assume that, for α = 0, (5.1) has an attracting hyperbolic limit cycle Γ0, with period T0

and frequency ω0 = 2π
T0

(the bursting cycle). We define a scalar phase variable φ(x) ∈ [0, 2π)
for all x in some neighborhood U of Γ0 (within its domain of attraction), such that the phase
evolution has the simple form φ̇ = ω0 for all x ∈ U . The cycle Γ0 persists for small α �= 0 [21],
and, from the chain rule, we deduce that

φ̇ =
dφ

dt
=

∂φ

∂x
· [f(x) + αp(x, t, . . . )] = ω0 + α

∂φ

∂x
· p(x, t, . . . ).(5.2)

Equation (5.2) defines a first order PDE that the scalar field φ(x) and its inverse x = x(φ)
must satisfy; φ(x) is unique up to a translational constant which may be fixed by setting
φ(x) = 0 at a distinguished point of Γ0. For periodically spiking neurons, this is often the
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voltage peak; in the present application it will be the upward crossing of −30 mV preceding
the first spike in the burst. The theory of isochrons [55] implies that the phase space R

n

near Γ0 is foliated by (n− 1)-dimensional manifolds

Mφ̄ =
{
x ∈ B : lim

t→∞
x(t) ∼ φ(t) = ω0t + φ̄

}
,

from which solutions approach Γ0 with the same asymptotic phase.

Introducing the relative phase ψ = φ − ω0t and approximating the derivative in (5.2) by

its value on the uncoupled limit cycle Z(φ)
def
= ∂φ

∂x |Γ0(φ), (5.2) becomes

ψ̇ = αZ(φ) · p(φ).(5.3)

For mutual coupling among N identical units, defining the phase variables xi = xi(φi) and
ψi = φi − ω0t, this generalizes to

ψ̇i =

N∑
j �=i

αjiZ(φi) · pji(φi, φj).(5.4)

For weak coupling (|α| � 1), the phases φi evolve on a much faster time scale than ψi, so we
may appeal to averaging theory [21] (cf. [52, p. 259, Malkin’s theorem]) to integrate over the
unperturbed period and obtain

ψ̇i =

N∑
j �=i

αjiHji(ψi − ψj),(5.5)

where

Hji(ψi − ψj) =
1

T0

∫ T0

0
Z(ω0t + ψi) · pji(Γ0(ω0t + ψi),Γ0(ω0t + ψj))dt.(5.6)

Note that only phase differences appear in the averaged coupling functions Hji due to peri-
odicity of the integrand in (5.6).

In the case that the perturbation or coupling functions pji only enter through the first
component of x, as in v̇ via Isyn in (4.2), we have

αjipji(xi,xj , t) =

⎡
⎢⎢⎣

ḡsyn,ji sj · (vi − Ei)
0
0
0

⎤
⎥⎥⎦,(5.7)

where sj denotes the synaptic variable associated with the jth cell and ḡsyn,ji the synaptic
strength from the jth to the ith cell. Here only the first component Z1(φ) of the 2π-periodic
function Z(φ) appears in (5.6); this is called the phase response curve (PRC), and it may be
approximated numerically by perturbing from the limit cycle at each phase φ with a voltage
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increment v �→ v + ∆v and allowing the solution to recover to its new asymptotic phase
φ �→ φ + Z1(φ). The resulting infinitesimal PRC is valid in the combined limit

Z1(φ) = lim
∆v→0
t→∞

∆φ

∆v
.(5.8)

Z1(φ) may also be computed by use of adjoint theory [52], e.g., as implemented in the software
XPP [56]. For Z1(φ) > 0 (resp., < 0), positive voltage perturbations advance (resp., retard)
the phase.

5.2. PRCs and averaged coupling functions. Applying the theory sketched above to
(2.1), we obtain the infinitesimal PRC of Figure 7(a). Here Z1(φ) was computed numerically by
taking successively smaller voltage perturbations ∆v starting at ∆v = 31.6 mV and reducing
to 0.1 mV; the PRC stabilized in the form shown for |∆v| < 1 mV. If the linearity assumption
inherent in (5.8) holds, positive and negative perturbations should yield the same result, since
the infinitesimal PRC is a derivative. We verified that this is the case using perturbations
∆v = ±0.08 and finding good convergence over the whole range θ ∈ [0, 2π); see the solid and
dashed curves in Figure 7(a).

In Figure 7(b) we show how the estimate of Z at θ = 30.6o changes as perturbation
size increases. This indicates how weak the coupling should be for the theory to hold, i.e.,
the maximum size of α allowed in (5.2)–(5.3). As |∆v| increases, linearity is lost in three
different respects: (i) (for a given θ) the phase difference ∆φ is no longer proportional to |∆v|;
(ii) positive and negative perturbations give different contributions; (iii) strong nonlinear
effects appear in the perturbed limit cycle; spikes can be deleted, as in Figure 7(c) for ∆v =
−7.5 mV, and spikes or entire bursts can be added, as in Figure 7(d) for ∆v = +7.5 mV.
The threshold for “small” perturbations may depend on θ and on specific parameters (see
comment in section 5.4). In Figure 7(e) we show the estimate of Z at θ = 168.8o; for negative
perturbations, linearity is maintained up to h = −31.6 mV but is lost at around h = +7 mV
for positive perturbations. This could imply that antiphase solutions are more robust than
in-phase solutions; see the discussion in section 5.4.

We observe three distinct regions in the PRC. During the burst, sensitivity to each spike
is evident, with maximal sensitivity to the final one. After this, there is a period of relative
insensitivity, followed by a region dominated by a large smooth phase advance. This third
region is largely unaffected by changes in bursting frequency, duty cycle, or number of APs
in the burst, since the end of the cycle remains very similar; see also Figures 10(b1)–(b2) and
11(a1)–(a2), below. A PRC of similar form was derived experimentally by Delcomyn [57] for
the locust flight CPG.

The inability of the infinitesimal PRC to represent the loss or addition of spikes and
bursts follows from the tight coiling of the limit cycle of (2.1) in phase space. This implies
that the isochronic manifolds Mφ̄ are globally convoluted, and (moderate) perturbations exist
that can skip or repeat spikes by taking the perturbed voltage v + ∆v from one spike to a
point near another. Hence phase reduction must be used with care, although if the number
of spikes within a burst is large compared to the burst period, skipping or adding spikes will
not greatly affect the averaged coupling functions Hji of (5.5)–(5.6). In what follows synaptic
conductances are small enough to remain within the range of infinitesimal PRC validity.
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Figure 7. The infinitesimal PRC of (2.1) for the standard parameter set of Tables 1–2. (a) Z1(φ) com-
puted with a perturbation of ∆v = ±0.08 mV (solid and dashed, respectively). (b) Z1(30.6o) as a function
of perturbation size and sign: ∆v > 0 (solid), ∆v < 0 (dashed). (c) The unperturbed (solid) and perturbed
(dashed) cycles with ∆v = −7.5 mV applied at θ = 30.6o (arrow): Spikes can be removed. (d) The unperturbed
(solid) and perturbed (dashed) cycles for ∆v = +7.5 mV applied at θ = 168.8o (arrow): Spikes or entire bursts,
as here, can be added. (e) Z1(168.8o) as a function of perturbation size and sign: ∆v > 0 (solid), ∆v < 0
(dashed).
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5.3. Coupled bursting neurons. We now return to study coupled bursters in a phase-
reduced setting. From Figures 2(c), (d), two types of coupling appear: motoneurons are
unilaterally driven by the CPG neurons, whereas CPG neurons are bi- or trilaterally coupled.

Fast motoneurons, unilateral coupling. Allowing for different intrinsic frequencies ω0 + εj ,
the PRC and averaging theory of section 5.1 lead to phase-reduced dynamics for a CPG
neuron ψ1 and a fast motoneuron ψ2 of the form

ψ̇1 = ε1, ψ̇2 = ε2 + αH(ψ2 − ψ1).(5.9)

Phase locking occurs when θ̇ = ψ̇1 − ψ̇2 = 0:

ε1 − ε2 = αH(ψ2 − ψ1).(5.10)

As shown in Figure 8(a) H is almost always negative for the nominal case. Phase reduction
therefore predicts that locking can only occur if ε1 < ε2, i.e., when the intrinsic CPG bursting
frequency is lower than that of the motoneurons. This is illustrated in Figures 14(a), (b)
below, where fCPG = 10.5 Hz < fDf

= 15.4 Hz. On the contrary, phase locking does not
occur when fCPG = 18.1 Hz > fDf

= 15.4 Hz; see Figures 14(c), (d). Indeed, inhibitory
coupling delays the bursts; therefore, it is natural to expect that for unilateral coupling the
driving neuron should be slower than the follower. If that were not the case, the already slower
“follower” would be further slowed, preventing 1:1 phase locking. In fact, for the simulations
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reported here, 2:1 locking occurs; see Figure 14(d). This could explain the phenomenon of
“double bursting” described in [58].

Thus, provided their bursting frequencies are chosen appropriately, fast motoneurons fol-
low CPG neurons and so need not be explicitly included in the reduced analysis of locomotion
rhythms to follow. Similarly, slow motoneurons need not be included in a reduced phase
description, since they also phase lock via synaptic depression and their duty cycles are de-
termined by those of the CPG neurons (cf. Figures 3(i), 6(c)).

CPG neurons, mutual coupling. For mutual coupling between two identical CPG neurons
the reduced phase equations (5.5) become

ψ̇1 = αH(ψ1 − ψ2), ψ̇2 = αH(ψ2 − ψ1)(5.11)

(since α12H12 = α21H21, here we may drop the subscripts), and subtracting these we may
further reduce to a single scalar ODE for the phase difference θ = ψ1 − ψ2:

θ̇ = α[H(θ) −H(−θ)]
def
= G(θ).(5.12)

Fixed points of (5.12) occur at H(θ) = H(−θ), and since H is 2π-periodic, we have G(π) =
α[H(π) − H(−π)] = α[H(π) − H(π)] = 0 as well as G(0) = 0, implying that, regardless of
the form of H, (exact) in-phase and antiphase solutions exist; see Figure 8(b). Note that, for
θ̄ = 0 and π, the equations in (5.11) become ψ̇1 = ψ̇2 = αH(θ̄), so that, unless H(0) = 0
and/or H(π) = 0, coupling does change the common frequency φ̇ = ω0 + ψ̇i of the units, even
when phase locking occurs.

The stability of fixed points θ̄ of (5.12) is determined by ∂G
∂θ |θ̄ = 2αH ′(θ̄). As expected,

for inhibitory coupling αH ′(0) > 0 > αH ′(π) (Figure 8(b)), so the in-phase solution θ̄ = 0
is unstable and the antiphase solution θ̄ = π is stable. Stability of the “full” two-phase
system (5.11) is determined by the eigenvalues of the 2 × 2 matrix obtained by linearizing at
ψ1 − ψ2 = θ̄:

α

[
H ′(θ̄) −H ′(θ̄)
−H ′(θ̄) H ′(θ̄)

]
;(5.13)

these are 0 and 2αH ′(θ̄) with eigenvectors (1, 1)T and (1,−1)T, respectively. Hence the
dynamics is only neutrally stable to perturbations that advance or retard the phases of both
units equally, but the antiphase solution is asymptotically stable to perturbations that disrupt
the relative phase ψ1 − ψ2, as indicated by Figure 3.

Finally we consider asymmetric coupling of the type shown in Figure 2(d), which will be
discussed further in the context of phase lags. The phase equations for two identical neurons
become

ψ̇1 = 2ραH(ψ1 − ψ2),

ψ̇2 = 2(1 − ρ)αH(ψ2 − ψ1),(5.14)

where ρ measures the degree of asymmetry, ρ = 1
2 being the symmetric case (5.11). The phase

difference is then governed by

θ̇ = α[2ρH(θ) − 2(1 − ρ)H(−θ)]
def
= Gasym(θ).(5.15)
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Figure 9. Dependence of the PRC Z(θ), the averaged coupling function H(θ), and the “difference” function
G(θ) on synaptic parameters. Panels (a1)–(a4) show dependence on synapse type: Inhibitory GABAA (solid)
and excitatory AMPA (dashed). Panels (b1)–(b4) show dependence on synapse timescale: Regular inhibitory
GABAA (solid) and slower inhibitory GABAA (dashed) with α = 500, β = 0.018.

Plots of Gasym(θ) for different values of ρ ∈ [0, 0.5] are shown in Figure 8(c). Note that the
interior zero occurs at increasing values of θ̄ > π, representative of a shifted “antiphase”
solution. In this case the in-phase solution remains at θ = 0, but this is a special property of
the averaged functions H, which vanish at θ = 0.

5.4. Parameter dependence of the PRC and averaged coupling functions. We will
now investigate the effect of certain parameters on the shapes of the functions Z, H, and G.
From (5.6), we see that the only parameter that can be factored out is the coupling strength
αji = ḡsyn,ji, which scales Z, H, and G; the other parameters change their forms more
generally.

Changing from inhibitory GABAA to excitatory AMPA synapses implies changing α, β,
and Epre

syn in (4.1) (cf. caption to Figure 3). As a result, H becomes almost always positive
(Figure 9(a3)), but more importantly G′(π) becomes positive and G′(0) negative, making
the antiphase solution unstable and the in-phase solution stable; see Figure 9(a4). Note
that Z(θ) is unaffected by this change. Even more interesting is the effect of a slower time
scale on inhibitory synapses. Under a ten-fold increase (α = 500, β = 0.018) the in-phase
solution becomes stable and two new unstable solutions appear in a pitchfork bifurcation; see
Figure 9(b4).
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Figure 10. Dependence of the PRC Z(θ), the averaged coupling function H(θ), and the function G(θ) on
ḡKS and Iext. Panels (a1)–(a4) show dependence on the maximal conductance ḡKS: Nominal case of Tables 1
and 2 (solid) and decreased value: ḡKS = 0.16 (dashed). Panels (b1)–(b4) show dependence on the external
current: Nominal case (solid) and increased current Iext = 36.5 (dashed).

Changing the maximal conductance ḡKS can affect the bursting frequency, the duty cy-
cle, and the number of APs per burst. In this case, even though bursting frequency and
AP numbers are significantly modified (Figure 10(a1)), and accordingly Z(θ) and H(θ) (Fig-
ures 10(a2)–(a3)), the net effects on the function G(θ) largely average out. Results not shown
indicate that increasing the maximal conductance to ḡKS = 0.25 can introduce extra spikes, vi-
olating the infinitesimal PRC assumption; this case is discussed further as a finite perturbation
below. Changing Iext yields analogous results; e.g., in spite of a substantial change in bursting
frequency (Figure 10(b1)), the final form of G(θ) is not greatly modified (Figure 10(b4)).

Finally we show that, even in cases in which spikes are lost or added, the infinitesimal PRC
undergoes sharp transitions (Figures 10(b1)–(b2); cf. Figure 7(b)), and the averaged coupling
function also changes significantly; both it and the difference function G(θ) retain similar
forms near θ = π (Figures 11(b3), (b4)). Hence we may still deduce stability information
regarding antiphase solutions from the reduced description. Indeed, Figure 7(e) shows that
Z1(φ ≈ π) is insensitive to the negative perturbation magnitude up to ∆v ≈ 30 mV .

5.5. A phase-reduced model of the CPG. Extension of the above reduction of a mutually
coupled pair to the network of six CPG neurons in Figure 2(c) is immediate. We again assume
identical units, but as noted in section 4 below Table 1, employ different synaptic strengths
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so that all units receive the same net input at steady state. Thus all contralateral connections
and ipsilateral connections from units 2 and 5 to 1, 3, 4, and 6 are set at ḡsyn, and ipsilateral
connections from 1, 3, 4, and 6 to 2 and 5 are set at ḡsyn/2. This leads to the following set of
six phase equations:

ψ̇1 = ḡsynH(ψ1 − ψ4) + ḡsynH(ψ1 − ψ5),

ψ̇2 =
ḡsyn

2
H(ψ2 − ψ4) + ḡsynH(ψ2 − ψ5) +

ḡsyn

2
H(ψ2 − ψ6),

ψ̇3 = ḡsynH(ψ3 − ψ5) + ḡsynH(ψ3 − ψ6),

ψ̇4 = ḡsynH(ψ4 − ψ1) + ḡsynH(ψ4 − ψ2),(5.16)

ψ̇5 =
ḡsyn

2
H(ψ5 − ψ1) + ḡsynH(ψ5 − ψ2) +

ḡsyn

2
H(ψ5 − ψ3),

ψ̇6 = ḡsynH(ψ6 − ψ2) + ḡsynH(ψ6 − ψ3).

We first observe that there exist solutions in which the tripods 1, 2, 3 and 4, 5, 6 remain
internally in-phase. Indeed, seeking (possibly time-dependent) solutions of the form ψ1 =
ψ2 = ψ3 ≡ ψL(t), ψ4 = ψ5 = ψ6 ≡ ψR(t), (5.16) collapses to the pair of equations

ψ̇L = 2ḡsynH(ψL − ψR) and ψ̇R = 2ḡsynH(ψR − ψL),(5.17)
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Figure 12. Some gaits produced by the hexapedal network of Figure 2(c). (a) Numbering convention for
CPG neurons; (b) tripod; (c) pronk; (d) pace; (e) gallop.

and the arguments used above may be applied to conclude that ψR = ψL + π and ψR = ψL

are fixed points of the ψL −ψR tripod phase difference equation, again regardless of the form
of H. Stability in the full six-dimensional (reduced) phase space is obtained from the 6 × 6
matrix obtained by linearizing (5.16),

ḡsyn

⎡
⎢⎢⎢⎢⎢⎢⎣

2H ′ 0 0 −H ′ −H ′ 0
0 2H ′ 0 −H ′/2 −H ′ −H ′/2
0 0 2H ′ 0 −H ′ −H ′

−H ′ −H ′ 0 2H ′ 0 0
−H ′/2 −H ′ −H ′/2 0 2H ′ 0

0 −H ′ −H ′ 0 0 2H ′

⎤
⎥⎥⎥⎥⎥⎥⎦
,(5.18)

where the derivatives H ′ are evaluated at the appropriate (constant) phase differences. The
antiphase tripod ψL − ψR = π gives one zero eigenvalue with “equal phase” eigenvector
(1, 1, 1, 1, 1, 1)T, and the remaining eigenvalues and eigenvectors are as follows:

λ = ḡsynH
′ : (1, 0,−1, 1, 0,−1)T,

λ = 2ḡsynH
′, m = 2 : (1,−1, 1, 0, 0, 0)T, and (0, 0, 0,−1, 1,−1)T,

λ = 3ḡsynH
′ : (1, 0,−1,−1, 0, 1)T,(5.19)

λ = 4ḡsynH
′ : (1, 1, 1,−1,−1,−1)T.

Since ḡsynH
′(π) < 0 for the nominal parameters, this again indicates asymptotic stability with

respect to perturbations that disrupt the tripod phase relationships; moreover, the system
recovers fastest from perturbations that disrupt the relative phasing of the tripods (λ =
4ḡsynH

′: last entry of (5.19)). Since ḡsynH
′(0) > 0 (Figure 8(a)), the in-phase “pronking”

gait with all legs in phase is unstable.
Other gaits may be found by appealing to discrete symmetries of the network, as in

extensive work by Golubitsky and colleagues (see, e.g., [59]). Although they are not directly
relevant to cockroach running, we give two examples, shown schematically in Figure 12 along
with the antiphase tripod and pronking gaits.

Pace. An appeal to bilateral symmetry ψ1 = ψ5 = ψ3 = ψL and ψ4 = ψ2 = ψ6 = ψR also
yields two equations of the type (5.11), but with an additional term H(0) in each. Since this
cancels in subtracting the equations, in- and antiphase solutions again exist.

Gallop. A slightly more complicated gait is obtained by a subgroup of the symmetry
group D6. Setting ψ1 = ψ4 = ψF , ψ5 = ψ2 = ψM , and ψ3 = ψ6 = ψH , (5.16) collapses to the
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three differential equations

ψ̇F = ḡsyn [H(0) + H(ψF − ψM )] ,

ψ̇M = ḡsyn

[
H(0) +

1

2
H(ψM − ψF ) +

1

2
H(ψM − ψH)

]
,(5.20)

ψ̇H = ḡsyn [H(0) + H(ψH − ψM )] .

This can be further simplified by seeking solutions ψF = ψFH = ψH to obtain

ψ̇FH = ḡsyn[H(0) + H(ψFH − ψM )] and ψ̇M = ḡsyn[H(0) + H(ψM − ψFH)],(5.21)

which is again an instance of (5.11), admitting in-phase and antiphase solutions. The former
is just the pronk noted above, but the antiphase “gallop” is new.

5.6. Phase lags and asymmetric coupling. Nominally identical neural oscillators can
display differing cycle periods when isolated [60]. Indeed, phase relationships among cou-
pled oscillators can arise from differences in periods as well as from intersegmental coupling
characteristics such as strength, projection span, and degree of symmetry [61, 62]. Sensory
inputs, moreover, can alter oscillation periods and coordinate mechanical coupling between
limbs or segments; they may even form sensory-central oscillatory loops [60]. For example,
experimental evidence indicates that the activation of the depressor muscles in Blaberus dis-
coidalis does not occur simultaneously even within the tripod gait regime [37]; activation lags
are distributed in a range of 0–60% of the cycle. In section 5.3, Figure 8(c), we saw how
asymmetric coupling can induce a phase lag, within an antiphase (stable) solution. Here, we
extend the two-oscillator analysis to the hexapedal network.

Keeping the left-right symmetry unbroken, we introduce asymmetric ipsilateral coupling
(1− ḡF) and 2ḡF between front and middle legs and (1− ḡH) and 2ḡH between hind and middle
legs, as shown in Figure 2(d). This leads to modified phase equations

ψ̇1 = H(ψ1 − ψ4) + 2ḡFH(ψ1 − ψ5),

ψ̇2 = (1 − ḡF)H(ψ2 − ψ4) + H(ψ2 − ψ5) + (1 − ḡH)H(ψ2 − ψ6),

ψ̇3 = 2ḡHH(ψ3 − ψ5) + H(ψ3 − ψ6),

ψ̇4 = H(ψ4 − ψ1) + 2ḡFH(ψ4 − ψ2),(5.22)

ψ̇5 = (1 − ḡF)H(ψ5 − ψ1) + H(ψ5 − ψ2) + (1 − ḡH)H(ψ5 − ψ3),

ψ̇6 = 2ḡHH(ψ6 − ψ2) + H(ψ6 − ψ3),

where we have included the overall scaling factor ḡsyn in H. We seek solutions which preserve
the alternating tripod gait but exhibit phase lags within it:

ψ4 = ψ1 + π, ψ5 = ψ2 + π, ψ6 = ψ3 + π,
ψ2 = ψ1 + ∆F, ψ5 = ψ4 + ∆F, ψ3 = ψ2 + ∆H.

(5.23)

(Note that this implies that ψ6 = ψ5+∆H, and it automatically ensures phase locking between
the tripods: ψ̇1 − ψ̇4 = ψ̇5 − ψ̇2 = ψ̇3 − ψ̇6 = 0.) Substituting (5.23) into (5.22) and setting
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all time derivatives to zero, we obtain two expressions relating the lags (∆F,∆H) to the
asymmetry parameters (ḡF, ḡH):

2ḡFHπ−∆F
− (1 − ḡF)Hπ+∆F

− (1 − ḡH)Hπ−∆H
= 0,

ḡFHπ−∆F
− ḡHHπ+∆H

= 0.(5.24)

In deriving these, we use 2π-periodicity of H, implying that H(−π + ∆) = H(π + ∆), and
we adopt the abbreviated notation H(π ± ∆) = Hπ±∆. Lacking explicit formulae for H, we
cannot solve (5.24) analytically, but rearranging the equations to extract ḡF, ḡH,

ḡF =
Hπ+∆F

+ Hπ−∆H(
2 +

Hπ−∆H
Hπ+∆H

)
Hπ−∆F

+ Hπ+∆F

, ḡH = ḡF
Hπ−∆F

Hπ+∆H

,(5.25)

we can find semiexplicit solutions numerically. Typical slices of the functions ḡF(∆F,∆H) and
ḡH(∆F,∆H) are shown in Figures 13(a), (b). Solutions of (5.25) yield the relative synaptic
strengths required to achieve given phase lags: for example, Figure 13(a) indicates that setting
ḡF ≈ 0.6865, ḡH ≈ 0.1255 will give ∆F ≈ 15o ∆H ≈ 35o. Figures 13(c), (d) show that for these
coupling strengths the equations in (5.22) indeed lock into a tripod gait with ∆F = 14.96o and
∆H = 35.06o. Finally, Figures 13(e), (f) show that the lags predicted by the phase-reduced
theory agree extremely well with those obtained from direct numerical simulations of the full
network of (2.1) and (4.1)–(4.2), over a range of biophysically relevant coupling strengths.

5.7. Comparison of phase-reduced and full CPG models. We have already noted (Fig-
ures 13(e), (f)) that the phase-reduced model (5.22) and the phase lag/coupling strength
relations (5.25) derived from it can predict lags observed in the full network model (2.1),
(4.1)–(4.2). We also noted that the symmetric phase-reduction (5.16) correctly captures the
stability of the antiphase and instability of of the in-phase solutions for the standard parameter
set.

We may go further and observe that the phase-reduced model predicts a timescale for
antiphase locking to occur between pairs of oscillators (or, indeed, between left and right
tripods). Specifically, linearizing (5.12) at θ = π and using the slope G′(π) ≈ −0.15/ms from
Figure 9(a4) (solid line), we expect locking to be accomplished within one bursting cycle,
and the data of Figures 3, 4, and 5 indicates that this is indeed correct. We also recall that
the simple two-oscillator analysis of section 5.3 ((5.9)–(5.10)) predict that pairs of unilaterally
coupled CPG and motoneurons should phase lock more readily when the uncoupled frequencies
of the former are lower that those of the latter. Figures 14(a)–(d) confirm this with direct
simulations of the full network (2.1), (4.1)–(4.2).

The averaged coupling functions obtained in phase reduction also suggest considerable
robustness of the (stable) antiphase solution. The multiparametric analyses of section 5.4,
illustrated in Figures 9 and 11, show that the slope of G near θ = π remains essentially un-
changed even when burst properties are significantly modified (existence of the antiphase fixed
point is ensured for any H for the symmetric network of Figure 2(c), as noted in section 5.3).
This robustness is implicit in Figure 6, which shows that antiphase tripod solutions of (2.1),
(4.1)–(4.2) were found over a substantial domain of a four-dimensional parameter space.
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Figure 13. Phase lagged tripod solutions for the hexapedal network of Figure 2(d). Top panels show ḡF

(solid) and ḡH (dashed) as functions of (a) ∆F for fixed ∆H = 35o, and (b) ∆H for fixed ∆F = 25o, computed
from (5.25). Values ḡ > 1 invert the synapse’s “sign” and are invalid, causing broken curves. Panels (c), (d)
show time histories and polar plots of the six phases with ḡF = 0.6865, ḡH = 0.1255, computed from phase-
reduced model (5.22). Phases start at t = 0 on the outer circle and end at t = 350 msec on the inner circle,
having attained the desired lags. Panels (e), (f) compare predictions of phase-reduced theory with direct network
simulations using (2.1), (4.1)–(4.2): Phase lags ∆F and ∆H from (5.25) are shown as solid and dashed lines,
and from (2.1), (4.1)–(4.2) as squares and diamonds, respectively. In panel (a), ḡF, ḡH are chosen to keep ∆H

fixed, and in (f), to keep ∆F fixed.

Predictions of in-phase solutions with inhibitory synapses are even more interesting and
potentially delicate. Recalling Figures 9(a4) and (b4), we expect stable in-phase solutions for
excitatory synapses but also for slow inhibitory synapses. That this indeed occurs in the full
network is shown in Figures 14(e)–(h): (e) and (f) show anti- and in-phase solutions with
excitatory coupling, (g) an in-phase solution which coexists with an antiphase solution, and
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Figure 14. Membrane voltages of CPG neurons in the hexapedal network of Figure 2(c). Panels (a), (c)
show uncoupled CPG (dark) and fast motonuerons Df (grey) with fCPG = 10.5 Hz < fDf = 15.4 Hz and
fCPG = 18.1 Hz > fDf = 15.4 Hz, respectively, and (b), (d) show that unidirectional coupling causes 1:1 phase
locking in the first case, but not the second, which yields 1:2 locking. Panels (e)–(h) show mutually coupled
contralateral CPG neurons 1 and 4, indicating antiphase locking with inhibitory coupling (e), in-phase locking
with excitatory coupling (f), and coexistence of in-phase (g) and antiphase (h) locking with slow inhibitory
coupling, as in Figure 9(b4); (g) and (h) are obtained for the same parameter values but different initial
conditions. Some panels show the effects of transients, and (in the case of (f) and (g)) the relatively slow
approach to in-phase solutions.

(h) for slow inhibitory coupling, the latter two solutions being found for identical parameter
values but different initial conditions. For such a network both the tripod and the pronk gaits
are stable.

6. Conclusions. This paper develops a minimal model for the CPG and representative
motoneurons responsible for insect locomotion. We incorporate sufficient biophysical detail
to permit appropriate parameter choices and variations to reproduce experimental data, fo-
cusing on the cockroaches Blaberus discoidalis and Periplaneta americana, but we strive for
generality and (relative) simplicity. Much current research concerns subcellular details of
ionic currents and channels and molecular messengers [63, 64, 65], but despite the ability of
“detailed” models to reproduce experimental data (e.g., [66, 7, 67]), their complexity and
sensitivity to parameter variations renders them effectively unanalyzable. We believe that
massive simulations or experiments alone do not provide global understanding, which profits
more from the identification of a few key mechanisms. Thus, our aim is to extract “princi-
ples for locomotion” by judicious selection, rather than inclusion, of biological data, and in
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doing so to provide a flexible and tractable mathematical framework within which biological
hypotheses can be investigated and novel experiments suggested.

The bursting model (2.1) developed in the preceding paper [1], along with a single equation
(4.1) describing synaptic dynamics, is used as the basic subunit to describe the neural archi-
tecture of cockroach locomotion. The overall model, which is a “cartoon” representing only
a single power stroke (depressor) output per leg, comprises six coupled CPG (inter)neurons,
six fast motoneurons, and six slow motoneurons. With appropriate parameter choices, all
18 neurons can be described by the same “minimal” ODE (2.1), and we show how a variety
of behaviors, encompassing the range observed in the animals, can be achieved by varying
two control parameters separately in the CPG and motoneurons. Since motoneurons are en-
trained, external currents to CPG interneurons (presumably deriving from higher brain areas
and proproceptive feedback) set the stepping frequency, and a CPG conductance primarily
determines the duty cycle. Numbers of APs of fast motoneurons and spike rates of slow mo-
toneurons can be separately adjusted by their external currents and conductances, thereby
determining muscle forces in coarse and fine manners.

Finally we show how to prove existence, and investigate stability and phase relationships,
of gait patterns through an additional reduction using PRCs and averaging theory. This
collapses some 60 ODEs of the hexapedal model to six equations for “leg phases” (5.16) and
shows that a single network architecture produces a variety of gaits, whose stability properties
are primarily determined by the magnitudes and signs of synaptic conductances. We show
that the phase-reduced models reproduce the behaviors of the full hexapedal model remarkably
well; in particular, Figures 13(e), (f) show phase lags predicted to better than 5% accuracy
over a substantial parameter range. It also suggests that further questions regarding how gaits
and their stability depend upon neuronal and synaptic parameters will be accessible via the
coupling functions Hji of (5.5)–(5.6).

This study, which builds upon earlier work on conservative mechanical and simple actuated
models [17, 18, 12, 19, 20], is another step toward integrated neuromechanical models for legged
locomotion. In future work we will couple the CPG model developed here to models of muscles
and body-limb mechanics and introduce reflexive feedback. In addition to questions on the
dynamics and stability of natural gaits such as the double tripod employed by Blaberus, and
the roles of intrinsic neural parameters and preflexive and reflexive feedback in the CPG, this
will allow investigation of questions such as how Periplaneta switches to high speed bipedal
locomotion [16] and how animals adjust their gaits to quadrupedal patterns within few steps
following middle leg amputation [68, pp. 95–99]. Our framework is sufficiently flexible to
allow for different numbers of legs and/or motoneurons, for proprioceptive reflexes and CNS
feedforward control, as well as for more detailed models of CPG circuitry, and we anticipate
that reduced-phase models, with appropriate modifications to PRCs and coupling functions,
will continue to provide analytical understanding of such generalized models. Indeed, they
hold promise that a CPG model can be coupled to a simple mechanical model to form an
integrated neuromechanical system, all in less than 10–15 ODEs.
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