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PART I: Entropy in Ergodic Theory
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What is information?
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What is information?

How much information was that?
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What is information?

How much information was that?

one out of two choices = ONE BIT
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What is information?

one of four choices = TWO BITS
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What is information?
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What is information?

one of three choices = ONE AND HALF BITS
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What is information?

NO – this SCHOOL is about NONLINEAR SCIENCE!!!
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What is information?

0 BITS = 1 choice
1 BIT = 2 choices
2 BITS = 4 choices
3 BITS = 8 choices

etc.

# BITS = log2(# choices)

3 choices = log2(3) BITS ≈ 1.585 BITS
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What is information?

DID I WIN? (YES/NO)
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What is information?

NO - 999999 of a million chances
I KNEW IT ANYWAY...
(there was almost only one choice – nearly no information gained)
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What is information?

YES - 1 of a million chances
HURRA!!! (large information gained)
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What is information?

YES - 1 of a million chances
HURRA!!! (large information gained)
# BITS = log2(1000000) ≈ 19, 9 BITS
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What is information?

NO - 999999 of a million chances
I KNEW IT ANYWAY...
(there was almost only one choice – nearly no information gained)

# BITS = ???
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What is information?

YES - 1 of a million chances
HURRA!!! (large information gained)
# BITS = log2(1000000) ≈ 19, 9 BITS

log2(1000000) = − log2(
1

1000000) = − log2(probability of winning)
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What is information?

NO - 999999 of a million chances
I KNEW IT ANYWAY...
(there was almost only one choice – nearly no information gained)

# BITS = − log2(probability of loosing) = − log2(
999999

1000000) ≈ 0, 0000014
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Shannon information function

DEFINITION 1

If Ω is a finite probability space with atoms x1, x2, . . . of probabilities
P(xi), (i = 1, 2, . . . ), then the associated information function on Ω is
defined as

I(xi) = − log2(P(xi)).
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Shannon information function

DEFINITION 1

If Ω is a finite probability space with atoms x1, x2, . . . of probabilities
P(xi), (i = 1, 2, . . . ), then the associated information function on Ω is
defined as

I(xi) = − log2(P(xi)).

If Ω is finite and has n elements of equal probabilities 1
n then the

information function function is constant equal everywhere to log2(n).
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Shannon information function

DEFINITION 2

If (Ω,Σ, µ) is a (perhaps non-atomic) probability space and
P = {P1,P2, . . . } is a countable (or finite) measurable partition of Ω
then the associated information function on Ω is defined as

IP(x) = − log2(µ(Px)),

where Px is the unique element of P such that Px ∋ x .
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Shannon information function
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Shannon information function

Where are you?
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Shannon information function
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Shannon information function

x ∈ B, IP(x) = − logµ(B)
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Shannon entropy of a partition

DEFINITION 3

If (Ω,Σ, µ) is a probability space and P = {P1,P2, . . . } is a countable
measurable partition of Ω then the Shannon entropy of P is defined as
the expected value of the information function:

H(P) =

∫
IP dµ = −

∑
i

µ(Pi) log2 µ(Pi)

(The average over the space information delivered by the partition.)
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EXAMPLE

Consider the two bitmaps
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EXAMPLE

Consider the two bitmaps

They have the same sizes (even the same proportion of black and
white). Thus they carry the same Shannon information (= # pixels).

However...
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EXAMPLE

Consider the two bitmaps

Any zipping program compresses the left hand side bitmap about 5
times more than the right hand side bitmap. Why?

Tomasz Downarowicz (Poland) Recent Trends in Nonlinear Dynamics January 28–February 1, 2013 13 / 24



EXAMPLE

Consider the two bitmaps

Imagine that you explain how to draw each bitmap over the phone...
How much INFORMATION is needed for each of them?
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What makes the difference between these bitmaps, if both carry the
same Shannon information?
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What makes the difference between these bitmaps, if both carry the
same Shannon information?

The answer is delivered by the dynamic entropy and the
Shannon–McMillan–Breiman Theorem.
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Dynamical systems

Now we will assume that on our probability space (Ω,Σ, µ) we have a
measurable transformation T : Ω → Ω which preserves the measure µ,
that is µ(T−1(A)) = µ(A) for every A ∈ Σ.
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Dynamical systems

Now we will assume that on our probability space (Ω,Σ, µ) we have a
measurable transformation T : Ω → Ω which preserves the measure µ,
that is µ(T−1(A)) = µ(A) for every A ∈ Σ.

EXAMPLE

Let Ω = {0, 1}N, T = shift (T (x1, x2, . . . ) = (x2, x3, . . . )) and µ is some
shift-invariant measure. Every such measure is determined by its
values on cylinders C = [c1, c2, . . . , cn].
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Information in a dynamical system
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Information in a dynamical system

Where are you?
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Information in a dynamical system

x ∈ B, IP(x) = − logµ(B)
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Information in a dynamical system

Where are you going?
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Information in a dynamical system

Where are you going?
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Information in a dynamical system
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Information in a dynamical system
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Information in a dynamical system

x ∈ B ∩ T−1(A), IP2(x) = − logµ(B ∩ T−1(B))
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Shannon information function in a dynamical system

DEFINITION 4

Let (Ω,Σ, µ) be a probability space and let T : Ω → Ω be a measurable
and measure-preserving transformation. Let P = {P1,P2, . . . } be a
countable measurable partition of Ω. Then the information function in n
steps on Ω is defined as

IPn(x) = − log2(µ(P
n
x )),

where

Pn
x = Px ∩ T−1(PTx) ∩ T−2(PT 2x) ∩ · · · ∩ T−n+1(PT n−1x)

(it is the unique element of the partition Pn :=
∨n−1

i=0 T−i(P) containing
x , and is called the n-cylinder of x).
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EXAMPLE

x ∈ [0, 1]
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EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

Tomasz Downarowicz (Poland) Recent Trends in Nonlinear Dynamics January 28–February 1, 2013 18 / 24



EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.
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EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.

With each digit we acquire log2(10) BITS of information.
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EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.

With each digit we acquire log2(10) BITS of information.

This corresponds to the flow of information in the dynamical system:
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EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.

With each digit we acquire log2(10) BITS of information.

This corresponds to the flow of information in the dynamical system:

T : [0, 1] → [0, 1],
T (x) = 10x mod 1,

µ is the Lebesgue measure

Tomasz Downarowicz (Poland) Recent Trends in Nonlinear Dynamics January 28–February 1, 2013 18 / 24



EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.

With each digit we acquire log2(10) BITS of information.

This corresponds to the flow of information in the dynamical system:

T : [0, 1] → [0, 1],
T (x) = 10x mod 1,

µ is the Lebesgue measure
T (0.765900862...) = 0.65900862...,

T 2(0.765900862...) = T (0.65900862...) = 0.5900862...
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EXAMPLE

x ∈ [0, 1]

x = 0.765900862...

To fully identify x we need infinite amount of information.

With each digit we acquire log2(10) BITS of information.

This corresponds to the flow of information in the dynamical system:

T : [0, 1] → [0, 1],
T (x) = 10x mod 1,

µ is the Lebesgue measure
T (0.765900862...) = 0.65900862...,

T 2(0.765900862...) = T (0.65900862...) = 0.5900862...

P = {[0, 0.1), [0.1, 0.2), . . . , [0.9, 1]}
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Dynamic entropy
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Dynamic entropy

Pn(x) =
{points that give the same answers as x through n times}
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Dynamic entropy

Pn(x) =
{points that give the same answers as x through n times}

IPn(x) = − logµ(Pn(x))
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Dynamic entropy

Pn(x) =
{points that give the same answers as x through n times}

IPn(x) = − logµ(Pn(x))

H(Pn) :=
∫

IPn dµ (average over space information in n steps)
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Dynamic entropy

Pn(x) =
{points that give the same answers as x through n times}

IPn(x) = − logµ(Pn(x))

H(Pn) :=
∫

IPn dµ (average over space information in n steps)

DEFINITION 5

The dynamic entropy of the partition P is defined as

h(T ,P) := lim
n

1
n H(Pn).
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Dynamic entropy

Pn(x) =
{points that give the same answers as x through n times}

IPn(x) = − logµ(Pn(x))

H(Pn) :=
∫

IPn dµ (average over space information in n steps)

DEFINITION 5

The dynamic entropy of the partition P is defined as

h(T ,P) := lim
n

1
n H(Pn).

The dynamic entropy is interpreted as the average over space and
time gain of information per step.
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Shannon–McMillan–Breiman Theorem
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Shannon–McMillan–Breiman Theorem

THEOREM 1

If µ ergodic then
1
n IPn(x)

µ−a.e.
−→
n→∞

h(T ,P)
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Shannon–McMillan–Breiman Theorem

THEOREM 1

If µ ergodic then
1
n IPn(x)

µ−a.e.
−→
n→∞

h(T ,P)

That is, the average gain of information per step does not depend on
the initial point.
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EXAMPLE

Let Ω = {0, 1}N, T = shift and µ is some ergodic shift-invariant
measure. Then for a µ-“typical” point x = (x1, x2, . . . ) the measure of a
long initial cylinder x [1, n] := [x1, x2, . . . , xn] is approximately 2−nh(T ,P),
where P is the two-element partition {[0], [1]}.

Tomasz Downarowicz (Poland) Recent Trends in Nonlinear Dynamics January 28–February 1, 2013 21 / 24



EXAMPLE

Let Ω = {0, 1}N, T = shift and µ is some ergodic shift-invariant
measure. Then for a µ-“typical” point x = (x1, x2, . . . ) the measure of a
long initial cylinder x [1, n] := [x1, x2, . . . , xn] is approximately 2−nh(T ,P),
where P is the two-element partition {[0], [1]}.

The meaning of “approximately” is very rough, it means only that
−1

n log2 µ(x [1, n]) ≈ h(T ,P).
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EXAMPLE

Let us go back to our example with the two bitmaps:
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Roughly speaking, the bitmaps represent long pieces of orbits of
“typical points” in symbolic systems (over two symbols “white” and
“black”), with two different invariant and ergodic measures having
different entropies h1, h2.
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Roughly speaking, the bitmaps represent long pieces of orbits of
“typical points” in symbolic systems (over two symbols “white” and
“black”), with two different invariant and ergodic measures having
different entropies h1, h2.

The first bitmap is “highly organized” (in fact periodic), hence has small
entropy, the second one is “highly random”, hence has large entropy,
thus h1 << h2.
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Roughly speaking, the bitmaps represent long pieces of orbits of
“typical points” in symbolic systems (over two symbols “white” and
“black”), with two different invariant and ergodic measures having
different entropies h1, h2.

The first bitmap is “highly organized” (in fact periodic), hence has small
entropy, the second one is “highly random”, hence has large entropy,
thus h1 << h2.

The entropies represent the average information contents per symbol.
By the Shannon–McMillan–Breiman Theorem, the same average
information contents per symbol occurs already in these orbits
(bitmaps).
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Roughly speaking, the bitmaps represent long pieces of orbits of
“typical points” in symbolic systems (over two symbols “white” and
“black”), with two different invariant and ergodic measures having
different entropies h1, h2.

The first bitmap is “highly organized” (in fact periodic), hence has small
entropy, the second one is “highly random”, hence has large entropy,
thus h1 << h2.

The entropies represent the average information contents per symbol.
By the Shannon–McMillan–Breiman Theorem, the same average
information contents per symbol occurs already in these orbits
(bitmaps).

So the effective information carried by the bitmaps is proportional to h1

and h2, respectively (times the # of pixels). This explains the huge
difference.
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Everything that was said in this presentation will be given rigorous
explanation during the rest of the course...
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Everything that was said in this presentation will be given rigorous
explanation during the rest of the course...

using more traditional media, such as blackboard (or whiteboard) and
chalk (or markers).

Tomasz Downarowicz (Poland) Recent Trends in Nonlinear Dynamics January 28–February 1, 2013 24 / 24


