
LECTURES ON BOUNCING BALLS.

1. Introduction.

1.1. Goals of the lectures. The purpose of these lectures is to illus-
trate some ideas and techniques of smooth ergodic theory in the setting
of simple mechanical systems.
Namely we consider either one or several particles moving on a line

either freely or in a field of a force and interacting with each other and
with the walls according to the law of elastic collisions.
The main questions we are going to address are the following.
(1) Acceleration. Is it possible to accelerate the particle so that its

velocity becomes arbitrary large? If the answer is yes we would like to
know how large is the set of such orbits. We would also like to know
how quickly a particle can gain energy both in the best (or worst) case
scenario and for typical initial conditions. We are also interested to
see if the particle will accelerate indefinitely so that its energy tend to
infinity or if its energy will drop to its initial value from time to time.
(2) Transitivity. Does the system posses a dense orbit? That is,

does there exist an initial condition (Q0, V0) such that for any ε and
any Q̄, V̄ there exists t such that

|Q(t)− Q̄| < ε, |V (t)− V̄ | < ε.

A transient system has no open invariant sets. A stronger notion is
ergodicity which says that any measurable invariant set either has mea-
sure 0 or its complement has measure 0. If the system preserves a finite
measure µ and the system is ergodic with respect to this measure then
by pointwise ergodic theorem for µ-almost all initial conditions we have

1

T
mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ A) → µ(A) as T → ∞.

If the measure of the whole system is infinite then we can not make
such a simple statement but we have the Ratio Ergodic Theorem which
says that for any sets A,B and for almost all initial conditions

mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ A)

mes(t ∈ [0, T ] : (Q(t), V (t)) ∈ B)
→ µ(A)

µ(B)
as T → ∞.

The purpose of the introductory lectures is to introduce several exam-
ples which will be used later to illustrate various techniques. Most of
the material of the early lectures can be found in several textbooks on
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dynamical systems but it is worth repeating here since it will help us
to familiarize ourselves with the main examples. The material of the
second part will be less standard and it will be of interest to a wider
audience.

1.2. Main examples. Here we describe several simple looking systems
which exhibit complicated behavior. At the end of the lectures we will
gain some knowledge about the properties of these systems but there
are still many open questions which will be mentioned in due course.
(I) Colliding particles. The simplest model of the type mentioned

above is the following. Consider two particles on the segment [0, 1]
colliding elastically with each other and the walls. Let m1 and m2

denote the masses of the particles. Recall that a collision is elastic if
both energy and momentum are preserved. That is, both

P = m1v1 +m2v2 and 2K = m1v
2
1 +m2v

2
2

are conserved. In particular if P = 0 then 2K = m2v
2
2
m2+m1

m1
and so in

this case (v+2 )
2 = (v−2 )

2. Similarly, (v+1 )
2 = (v−1 )

2, that is, the particles
simply change the signs of their velocities. In the general case we can
pass to the frame moving with the center of mass. The center of mass’
velocity is u = m1v1+m2v2

m1+m2
so in the new frame we have

ṽ1 = v1 − u =
m2(v1 − v2)

m1 +m2

and ṽ2 = v1 − u =
m1(v2 − v1)

m1 +m2

.

In our original frame of reference we have

v+1 = u− ṽ1 =
m1 −m2

m1 +m2
v−1 +

2m2

m1 +m2
v−2

and similarly

v+2 = u− ṽ2 =
m2 −m1

m1 +m2
v−2 +

2m1

m1 +m2
v−1 .

The collisions with the walls are described by the same formulas but we
consider the walls to be infinitely heavy. Thus if the particle collides
with the wall its velocity becomes v+ = 2vwall−v−. In particular, in the
present setting the wall is fixed so the particle’s velocity just changes
the sign.
Returning to our system introduce

(1.1) qj =
√
mjxj . Thus uj = q̇j =

√
mjvj .

The configuration space of the system becomes

q1 ≥ 0, q2 ≤
√
m2,

q1√
m1

≤ q2√
m2

.
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q1

q2

√
m1

√
m2

Figure 1. Configuration space for two points on the segment

This is a right triangle with hypothenuse lying on the line

q1
√
m2 − q2

√
m1 = 0.

The law of elastic collisions preserves

2K = u21 + u22 and P =
√
m1u1 +

√
m2u2.

In other words if we consider (q1(t), q2(t)) as a trajectory of the particle
in our configuration spaces then as the particle reaches hypothenuse
its speed is preserved and the angle which its velocity makes with
(
√
m1,

√
m2) remains the same. Since (

√
m1,

√
m2) is orthogonal to

the boundary this change satisfy the law of the elastic reflection. Simi-
larly if the particle hits q1 = 0 then u2 remains the same and u1 changes
to the opposite which is again in accordance with the elastic collision
law. Hence our system is isomorphic to a billiard in a right triangle.
A similar analysis can be performed for three particles on the circle

R/Z. In this case there are no walls so the velocity of the mass center
is preserved. It is therefore convenient to pass to a frame of reference
where this center is fixed at the origin. So we have

m1x1 +m2x2 +m3x3 = 0 and m1v1 +m2v2 +m3v3 = 0.

In coordinates from (1.1) the above relation reads
√
m1q1 +

√
m2q2 +

√
m3q3 = 0 and

√
m1u1 +

√
m2u2 +

√
m3u3 = 0.

Thus points are confined to a plane Π and the particle velocity lies in
this plane. The collisions of the particles have equations qi√

mi
− qj√

mj
= l.

These lines divide Π into triangles. We claim that dynamics restricted
to each triangle is a billiard. Consider, for example, the collision of
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Figure 2. Configuration space of three points on the
circle using the distance from the first point as coordi-
nates

the first two particles. Since
√
m1u1 +

√
m2u2 is preserved we see that

~u = (u1, u2, u3) is orthogonal to ~n12 = (
√
m1,

√
m2, 0). Note that n12

is ortogonal to the plane P l
12 = { q1√

m2

− q2√
m2

= l}. Denoting by ~n∗
12

the orthogonal projection of ~n12 to Π we see that ~n∗
12 is orthogonal to

Π∩P l
12 and that the angle between ~u and ~n∗

12 is preserved which again
agrees with the law of elastic collision.
We can also consider more particles on a line or a circe and show

that that system is isomorphic to a polyhedral billiard.
(II) Particle in a potential. Our second example is a particle

moving on the line under the force created by the potential U(x) = gxα

and colliding elastically with an infinitely heavy plate. We assume that
α > 0 since otherwise the particle can go to infinity after finitely many
bounces. Let f(t) denote the height of the plane at time t. We assume
that f(t) > 0 for all t so that U(x) is defined for all x > f(t) and that
f(t) is periodic. In fact, the case of f(t) = B + A sin t (where A < B)
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Figure 3. Impact oscillator (left) and Ulam pingpong
(right) are two systems fitting into our setting

is already quite interesting. Two cases attracted a particular attention
in the past.
(a) Gravity (α = 1). In this setting the acceleration question can be

posed as follows: how much can one accelerate a tennis ball by periodic
motion of a tennis rocket (of course one needs to be in a good fitness
condition for the infinitely heavy wall approximation to be reasonable).
(b) Impact oscillator (α = 2). In this case one has a particle attached

to a sting and colliding with the wall. Apart from an easy mechanical
implementation this system is also to an interesting geometric object-
outer billiard.
Outer billiards are defined in an exterior of a closed convex curve

Γ on the plane. Given a point A0 ∈ R
2 − IntΓ there are two support

lines from A0 to Γ. Choose the one for which if one walks from A0

to the point of contact then Γ is to the right of the line. Then we
reflect A0 about the point of contact to get its image A1. Applying this
procedure repeatedly we obtain the orbit of A0 under the outer billiard
map. Outer billiards were popularized by Moser as they provide simple
illustration to KAM theory.

A0

A1
A2

B0

B1

Figure 4. Outer billiard
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We now describe a construction of Boyland [2] which associates to
each outer billiard an impact oscillator. To this end we consider a third
system (see Figure 5). Its phase space consists of a pair (Γ0, A0) where
Γ0 is a closed and convex curve and A0 is the point in R

2 − IntΓ0 such
that the supporting line from A0 to Γ0 is vertical. To describe one
iteration of our system one first reflects A0 about the point of contact
to get the pair (Γ0, Ã1) and then rotates the picture counterclockwise
until the second support line becomes vertical. If (Γn, An) is the n-th
iteration of our system then clearly there exists a rotation Rn such
that Γ0 = RnΓn. Then RnAn = fn

Γ0
A0 where fΓ0

denotes the outer
billiard map about Γ0. On the other hand between the reflections the
point evolves according to the ODE ẋ = v, v̇ = −x while during
the reflection x is unchanged and v+ + v− = 2vtip where vtip denotes
the velocity of the rightmost point of Γ(t). One can check that the
motion of the tip is given by ẍ + x = r(x(t)) where r(x) is the radius
of curvature of point x. Thus given a curve Γ one can associate to it
an impact oscillator with the wall motion given by f̈ + f = r(f(t)).
Note that in that construct the frequencies of the wall and the spring
are the same. Conversely, given an impact oscillator one can consider
a curve whose radius of curvature is r(f(t)) = f̈ + f but the resulting
curve need not be either close or convex. Thus the class of impact
oscillators is much larger than the class of outer billiards but the later
is an important subclass supplying clear geometric intuition.

Figure 5. Outer billiards and Impact Oscillators

While α = 1 and α = 2 are the two most studied cases we will see
that the dynamics for α 6= 1, 2 is quite different. As it was mentioned
above one of the main question is large velocity behavior of the model.
Note that different collisions occur at different heights. However if the
particle’s velocity is high it takes a very short time to pass between
max f(t) and min f(t). Since the explicit computations of the height of
the next collision is usually impossible one often considers a simplified
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model which is called static wall approximation (SWA). In this model
one fixes a height h̄ and assumes that the next collision occurs at the
time tn+1 = tn + T (vn) where T (vn) is the time it takes the particle
to return to the height h̄. However velocity is still updated as vn+1 =
2ḟ(tn+1)−2ṽn where ṽn is velocity of the particle when it returns to h̄.
By energy conservation ṽn = −vn so SWA takes form

tn+1 = tn + T (vn), vn+1 = vn + 2ḟ(tn+1).

We note that while SWA provides a good approximation for the actual
system in high velocity regime for one or a few collisions, in general,
it is not easy to transfer the results between the original model and
SWA. However the SWA is an interesting system in its own right. In
addition, the SWA and the original system often have similar geometric
features and since formulas are often simpler for the SWA we will often
present the arguments for the SWA. For example, for α = 1 the SWA
takes from

(1.2) tn+1 = tn + 2
vn
g
, vn+1 = vn − 2ḟ(tn+1).

This system is the celebrated standard map. Phase portraits of the
map (1.2) for several values of parameters can be found in Section 2.4
of [11]. (1.2) is defined on R × T but it is a lift of T2 diffeomorphism
since the change of v by 2

g
commutes with the dynamics.

(III) Fermi-Ulam pingpong. In model (II) the particle has infin-
itely many collisions with a moving wall because the force make it to
fall down. Another way to enforce infinitely many bounces is to put
the second stationary wall with which the particle collides elastically.
This model can be thought as a special case of the previous model

where

(1.3) U(x) =

{
0, if x ≤ h̄

∞ if x > h̄

where h̄ is the height of the stationary wall. Pingpong model was intro-
duced by Ulam to study Fermi acceleration. To explain the presence
of highly energetic particles in cosmic rays Fermi considered particles
passing through several galaxies. If the particle moves towards a galaxy
it accelerates while if it goes in the same direction it deccelerates. Fermi
argued that head-on collisions are more frequent than the overtaking
collisions (for the same reason that a driver on a highway sees more cars
coming towards her than going in the same direction even though the
effect becomes less pronounced if the car’s speed is 3000 m/h) leading
to overall acceleration. Pingpong was a simple model designed to test
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this mechanism. This model was one of the first systems studied by a
computer (first experiments were performed by Ulam and Wells around
1960). Since the computers were very slow at that time they chose wall
motions which made computations simpler, namely, either wall velocity
or interwall distance was piecewise linear. It was quickly realized that
the acceleration was impossible for smooth wall motions. The motions
studied by Ulam and Wells turned out to be more complicated and
there are still many open questions.
All of the above systems can be considered Hamiltonian with poten-

tial containing hard core part (1.3). Accordingly these systems preserve
measures with smooth densities. Consider for example models (II)
and (III). It is convenient to study the Poincare map corresponding to
collision of the particle with the moving wall. One can approximate
the hard core systems by a Hamiltonian system with the Hamilton-
ian Hε =

v2

2
+ U(x) +Wε(x − f(t)) where W (d) is zero for d < ε and

W (−ε) = 1
ε
. One can consider the collision map as the limit of Poincare

map corresponding to the cross section x−f(t) = ε. The map preserve

the form ω = dH ∧dt−dv∧dx. On our cross section we have dx = ḟdt
so the invariant form becomes

(1.4) ω = (v − ḟ)dv ∧ dt.
One can also directly show that the form (1.4) is invariant without
using approximation argument. Consider for example the pingpong
system

tn+1 = tn + T (tn, vn), vn+1 = vn + 2ḟ(tn+1).

This map is a composition of two maps

t̄n+1 = tn + T (tn, vn), v̄n+1 = vn

and

tn+1 = t̄n+1, vn+1 = vn + 2ḟ(t̄n+1).

Accordingly the Jacobian of this map equals to ∂tn+1

∂tn
. We have (see

Figure 6)

δhn = (vn − ḟn)δtn,

(1.5) δtn+1 =
δhn

vn + ḟn+1

=
vn − ḟn

vn+1 − ḟn+1

δhn.

Thus the Jacobian equals to vn−ḟn
vn+1−ḟn+1

proving the invariance of ω.

A similar calculation can be done for the model (II) using the fact
that autonomous Hamiltonian systems preserve the form dv ∧ dx.
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tn tn + δtn

δhn

Figure 6. Derivative of pingpong map.

2. Normal forms.

2.1. Smooth maps close to identity. Here we discuss the behaviour
of highly energetic particles using the methods of averagin theory. The
following lemma will be useful.

Lemma 2.1. Consider an area preserving map of the cylinder R × T

of the form

Rn+1 = Rn + A(Rn, θn), θn+1 = θn +
B(Rn, θn)

Rn

.

Assume that the functions A and B admit the following asymptotic
expansion for large R

(2.1) A =

k∑

j=0

aj(θ)

Rj
+O

(
R−(k+1)

)
, B =

k∑

j=0

bj(θ)

Rj
+O

(
R−(k+1)

)

where

b0(θ) > 0 (twist condition).

Then for each k there exists coordinates I(k), φ(k) such that I
R

is uni-
formly bounded from above and below and our map takes form

In+1 = O
(
I−(k+1)
n

)
, θn+1 = θn +

1

In

(
k∑

j=0

cj

Ijn
+O

(
I−(k+1)
n

)
)
.

Remark 2.2. I(0) is called adiabatic invariant of the system. I(k) for
k > 0 are called improved adiabatic invariants.
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Proof. We proceed by induction.First let I = RΓ(θ), φ = Φ(θ) then

In+1 − In = RnΓ
′(θn)

b0(θn)

Rn
+ a0(θn)Γ(θn) +O

(
1

Rn

)
.

So if we let Γ′

Γ
= −a0

b0
that is

Γ(θ0) = exp

[∫ θ

0

−a0(s)
b0(s)

ds

]

then In+1 − In = O(R−1
n ).

Next

φn+1 − φn = Φ′(θn)
b0(θn)

Rn
= Φ′(θn)

b0(θn)Γ(θn)

In
.

We let

Φ′(θ) =
c

b0(θ)Γ(θ)
so that Φ(θ) = c

∫ θ

0

ds

b0(s)Γ(s)
and c =

(∫ 1

0

ds

b0(s)Γ(s)

)−1

.

Note that Γ(1) = Γ(0) so that Γ is actually a function on the circle.
Indeed if Γ(1) < Γ(0) then there would exist a constant ε such that
after one rotation around the cylinder R decreases at least by the factor
(1− ε). So after many windings the orbit would come closer and closer
to the origin contradicting the area preservation. If Γ(1) > Γ(0) we
would get a similar contradiction moving backward in time.
This completes the base of iduction. The inductive step is even

easier. Namely if In+1 = In +
â(φn)

Ik+1
n

+ . . . then the changes of variables

J = I + γ(φ)
Ik

leads to

Jn+1 − Jn =
â(φn) + γ′n(φn)c0

Jk+1
n

so we can improve the order of conservation by letting γ′ = − â
c0
.

Next, if φn+1 − φn = 1
In

∑k−1
j=0

cj

Ijn
+ b̂(φn)

Ik+1
n

then letting ψ = φ+ Ψ(φ)
Ik

we

obtain

ψn+1 − ψn =
1

In

k−1∑

j=0

cj

Ijn
+
b̂(ψn) + Ψ′(φn)c0

Ik+1

allowing us to eliminate the next term if Ψ′ = ck−b̂
c0

where ck =
∫ 1

0
b̂(s)ds.

�



LECTURES ON BOUNCING BALLS. 11

2.2. Adiabatic invariants. It is instructive and useful to compute
the leading terms in several examples.
(I) Fermi-Ulam pingpong. We have

vn+1 − vn ≈ 2ḟ(tn), tn+1 − tn ≈ 2l(tn)

vn

where l(t) is the distance between the walls at time t.We have l = h̄−f
so ḟ = l̇ and the above equation is the Euler scheme for the ODE

dv

dt
= −v l̇

l
. Thus ldv + vdl = 0

so I = lv is an adiabatic invariant. In fact one can check by direct
computation that letting Jn = (vn + l̇(tn))l(tn) one gets

Jn+1 − Jn = O
(

1

J2
n

)
, tn+1 − tn =

2l2(tn)

Jn
+O

(
1

J2
n

)

so Jn is the second order adiabatic invariant.
(II) Outer billiard. If A0 is far from the origin then A1 is close to

−A0, however |A0A2| = 2|B0B1| there Bj denotes the point of tangency
of AjAj+1 with Γ (see Figure 4) and so |A0A2| ≤ 2diam(Γ). It fact it
is not difficult to see that we get the following approximation when
A0 is far from the origin: ~A0A2 ≈ 2~v(θ) where ~v(θ) is the vector joing
two points on Γ whose tangent line have slope θ. Let B0(θ) and B1(θ)
denote the tangency points and let Q be the point such that B1Q has
slope θ while B0Q is perpendicular to B1Q. Note that |B0Q| = w(θ)-the
width of Γ in the direction θ.

B0

B1 Q

Figure 7. Derivative of the support function.
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Fix a direction θ0 and choose coordinates on the plane so that θ0 is
equal to 0. Let Bj = (xj , yj). Then for θ near 0 we have

xj(θ) = xj(0) + θξj + . . . , yj(θ) = yj(0) + θ2ηj + . . .

and so

(x1 − x0, y1 − y0)(sin θ, cos θ) = −|QB1|θ + . . . .

Therefore the equation of motion takes the following form in polar
coordinates (up to lower order terms).

Ṙ = −w′(θ), θ̇ =
w(θ)

R
.

Hence
dR

dθ
= −Rw

′(θ)

w(θ)
or wdR+Rdw = 0.

Accordingly I = Rw is the adiabatic invariant and

θ̇ =
w(θ)

R
=
w(θ)R

R2
=

I

R2
.

In other words I = R2θ̇, that is the angular momentum is preserved
and so the point moves with constant sectorial velocity.
Consider, in particular, the case where Γ is centrally symmetric.

Then w(θ) = 2 supx∈Γ(e
⊥(θ), x) and since R = I

w(θ)
level curve of the

limiting equation are rescalings of the right angle rotation of Γ∗ where

Γ∗ = {D(e)e}e∈S1 and D(e) =
1

supx∈Γ(e, x)
.

Thus if Γ̂ = Int(Γ) then

Γ̂∗ = {e ∈ R
2 : |(e, x)| ≤ 1 for all x ∈ Γ̂}.

Thus for each x ∈ Γ and for all e ∈ Γ∗ we have |(x, e)| ≤ 1 and there is
unique e ∈ Γ∗ with (x, e) = 1. Therefore (Γ∗)∗ = Γ and so each smooth
convex centrally symmetric curve appears as an invariant curve for
motion at infinity for some outer billiard.

2.3. Systems with singularities. Lemma 2.1 describes the normal
form for smooth maps, so it is not applicable to systems with discon-
tinuities such as Fermi-Ulam pingpongs where l̇ or l̈ has jumps or to
outer billiards about nonsmooth curves such as circular caps or lenses.
It is turns out that for such maps it is convenient to consider the first
return map to a neighbourhood of singularities. In this section we
present the normal form of such first return maps.
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Figure 8. Large velocity phase portrait of piecewise
smooth pingpong looks similar for different values of time
so it makes sense to consider the first return map to a
neighbourhood of the singularity.

We assume that the cylinder is divided into a finite union of sectors
Sj so that our map is C∞ in Int(Sj), has C

∞ extenstion to a neigh-
bourhood of Sj , and satisfies the asymptotics (2.1) in each sector. We
suppose that the boundaries of Sj are γj and γj+1 where

γj =

{
θ = θj0 +

θj1
R

+
θj2
R2

+ . . .

}
.

By Lemma 2.1 we can introduce in each sector action-angle coordinates
(I, φ) so that the boundaries of the sector become

{φ = 0} and
{
φ = α0 +

α1

R
+
α2

R2
+ . . .

}

and the map takes form

In+1 = In +O
(
I−k
n

)
, φn+1 = φn +

1

In

[
k∑

m=0

cm
Imn

+O
(
I−k
n

)
]
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(we suppress the dependence of αs and cs on j since we will work with
a fixed sector for a while).
Let Πj be the fundamental domain bounded by γj and fγj and let

Fj be the Poincare map Fj : Πj → Πj+1.
It is convenient to introduce coordinates (I, ψ) in Πj where

φ =
(c0
I
+
c1
I2

+ . . .
ck
Ik+1

)
ψ

so that ψ changes between 0 and 1+O(I−(k+1)).We first describe Fj in
the action-angle variables of Sj and then pass to the new action-angle
variables of Sj+1. We have

φn − φ0 =
c0n

I
+
c1n

I2
+ . . .

The leading term here is the first one so that for the first n such that
φn ∈ Sj+1 we have c0n

I
≈ α0 and hence c1n

I2
≈ c1α0

c0I
. Therefore

φn+1 =
c0ψ0

I
+
c0n

I
+
c1α0

c0I
+ . . .

Now the condition

φn−1 ≤ α0 +
α1

I
≤ φn

reduces to

α0 +
α̃1

I
− c0ψ0

I
+ · · · ≤ c0n

I
≤ α0 +

α̃1

I
− c0ψ0

I
+
c0
I
+ . . .

where α̃1 = α1 − c1α0

c0
. For typical ψ0 this means that

n =

[
α0I + α̃1

c1
− ψ0

]
+ 1 =

α0I + α̃1

c1
− ψ0 + 1−

{
α0I + α̃1

c1
− ψ0

}
.

Then

φn = α0+
α1

I
+c0

(
1−

{
α0I + α̃1

c0
− ψ0

})
= α0+

α1

I
+c0

{
ψ0 −

α0I + α̃1

c0

}
.

Rescaling the angle variable so that it measures the distance from the
singularity ψ̄ = I

c0
(ψn − α0 − α1

I
+ . . . ) we get that Fj has form

Ī = I + . . . , ψ̄ =

{
ψ0 −

α0I + α̃1

c1

}
+ . . .

To pass to action coordinate of Sj+1 we note that

I(j) = Γ(j)(θ)R + . . . , I(j+1) = Γ(j+1)R + . . .

which implies that that the new addiabatic invariant satisfies

J = (1 + λ̃φ+ . . . ).
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Thus in terms of the new action-angle coordinates Fj takes the form

Ĵ = I + λψ̄ + . . . , ψ̂ = ψ̄

(to justify the last equation we note that if we just use the Taylor

expansion we would get ψ̂ = σψ̄ and then we get σ = 1 from the
condition that Fj is one-to-one). In terms of the original values of
(I, ψ) in Πj we get

ψ̂ = {ψ − β
(j)
0 I − β

(j)
1 }, Ĵ = I + λ(j)ψ̂.

Note that to find the leading term we used the first order Taylor expan-
sion, To compute 1

I
-term we need to use the second order expansion,

for 1
I2

we need the third order expansion and so on. hence we actually
have

Lemma 2.3. If the orbot does not pass in O(1/I2) neighbourhood of
the singularities then Fj has the following form
(
ψj+1

Ij+1

)
=

(
{ψj − (β

(j)
0 Ij + β

(j)
1 )}

Ij + λ(j)ψj+1

)
+

1

[Ij ]
R2 +

1

[Ij]2
R3 + . . .

where Rj are piecewise continuous and on each continity domain they
are polinomials in ({Ij}, ψj) of degree j.

We shall say that a map F is of class A if for each k

F

(
ψ
I

)
=

(
ψ
I

)
+L1

(
{ψ}
{I}

)
+

k∑

j=1

1

nj
Pj+1 ({ψ}, {I})+O(n−(k+1))

where L1 is linear, A = dL1 is constant and Pj are piecewise polyno-
mials of degree j.

Lemma 2.4. A composition of A maps is a A map.

Proof. We need to show that if

Fs(z) = L1,s(z) +

k∑

j=2

1

nj−1
Pj,s(z) for s = 1, 2

where Pj,s are polynomials of degree j then F2 ◦ F1 is also of the same
form. It is sufficient to consider the case where Pj,s have positive
coefficients since in the sign changing case there might be additional
cancelations. Observe that Fs(z) =

∑k
j=1

1
nj−1Pj where Pj are some

polynomials then the degree restriction amounts to saying thatGn(u) =
1
n
Fs(un) is bounded for each u as n→ ∞. But if Gn,1 and Gn,2 satisfy

this condition then the same holds also for their composition. �
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Corollary 2.5. The first return map F : Π1 → Π1 is an A map and
the same holds for any power Fm.

Remark 2.6. Corollary 2.5 applies in particular in the case where the
original map is smooth. In that case the coefficients λ(j) vanish so the
linear part is the intgrable twist map

(2.2) Î = I, ψ̂ = ψ − β0I − β1.

More generally, λ(j) depend only on the behaviour of the function Γ
near the singularities so the normal form (2.2) holds also in the case
where a0 and b0 from Lemma 2.1 are continuous (even though the
higher order terms may be nontrivial in that case).

We say that the original map f is hyperbolic at infinity if the linear
part L1 of the normal form of the first return map F is hyperbolic
and say that f is elliptic at infinity if L1 is elliptic. Recall that the
ellipticity condition is |Tr(L1)| < 2 and the hyperbolicity condition is
|Tr(L1)| > 2.
One can work out several leading terms in our main examples. Namely

for outer billiard about the semicircle it is shown in [10] that L1 = L2

where

(2.3) L(I, ψ) = (I − 4

3
+

8

3
{ψ − I}, {ψ − I}).

For Fermi-Ulam pingpongs where the wall velocity has one discontinu-
ity at 0 one has [7]

(2.4) L1(I, ψ) = (I +∆

(
{ψ − I} − 1

2

)
, {ψ − I}) where

∆ = l(0)∆l̇(0)

∫ 1

0

ds

l2(s)

and l(s) is the distance between the walls at time s.
For example, for motions studied by Ulam and Wells one has l(s) =

b+a({s}−1/2)2.We can choose the units of length so that b = 1, then
l(s) > 0 for all s provided that a > −4. Then ∆(a) = −2a(1+a/4)J(a)
where

J(a) =

∫ 1

0

ds

(1 + a(s− 1/2)2)2
=

2

a+ 4
+





1

2
√

|a|
ln

2+
√

|a|
2−
√

|a|
if a < 0

1√
a
arctan

(√
a
2

)
if a > 0.

One can check that f is hyperbolic at infinity if a ∈ (−4, ac) or a > 0
and f is elliptic at infinity for a ∈ (ac, 0) where ac ≈ −2.77927 . . .
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Figure 9. Dynamics of the first return map. Top: hy-
perbolic case. Bottom: elliptic case.



18 LECTURES ON BOUNCING BALLS.

Figure 10. ∆(a) for piecewise linear wall velocity

2.4. Accelerating orbits for piecewise smooth maps. Given an
A map f we say that p = (Ī , ψ̄) is an accelerating orbit if there exist
m, l > 0 such that Lm

1 (p) = p+ (l, 0).

Lemma 2.7. [10] Assume that f is elliptic at infinity and has an (m, l)
accelerating orbit such that the spectrum of Lm

1 does not contain k-th
roots of unity for k ∈ {1, 2, 3}. Suppose also that F preserves a smooth
measure with density of the form ρ(I, ψ) = Iρ0(ψ)+ρ1(ψ)+o(1). Then
f has positive (and hence infinite) measure of orbits such that In → ∞.

Proof. Consider a point {IN , ψN} in a small neighborhood of {Ī+Nl, φ̄}
and study its dynamics. For n ≥ N , we will denote {In, ψn} the point
F (n−N)l(IN , ψN). Set Un = In−(Ī+nL), υn = ψn−ψ̄. We can introduce
a suitable complex coordinate zn = Un + i(aUn + bυn) such that DF l

becomes a rotation by angle 2πs near the origin where s 6∈ 1
k
Z for

k ∈ {1, 2, 3}. In these coordinates F l takes the following form in a
small neighborhood of (0, 0)

(2.5) zn+1 = ei2πszn +
A(zn)

N
+O(N−2)

where

A(z) = w1 + w2z + w3z̄ + w4z
2 + w5zz̄ + w6z̄

2.

Lemma 2.8. (a) We have that Re(e−i2πsw2) = 0.
(b) There exists ǫ > 0 and a constant C such that if |zN | ≤ ǫ, then

for every n ∈ [N,N +
√
N ]

|zn| ≤ |zN |+ CN−1.

Part (b) is the main result of the lemma. Part (a) is an auxiliary
statement needed in the proof of (b). Namely, part (a) says that a
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certain resonant coefficient vanishes (this vanishing is due to the fact
that f preserves a measure with smooth density).
Before we prove this lemma, let us observe that it implies that for

sufficiently large N , all the points |zN | ≤ ǫ/2 are escaping orbits. In-

deed by [
√
N ] applications of lemma 2.8 there is a constant C such

that

|zl| ≤
ǫ

2
+ CN− 1

2

for every l ∈ [N, 2N ]. It now follows by induction on k that if l ∈
[2kN, 2k+1N ] then

|zl| ≤ ǫk

where

ǫk =
ǫ

2
+

C√
N

k∑

j=0

(
1√
2

)j

(N has to be chosen large so that ǫk ≤ ǫ for all k). This proves
lemma 2.7. �

Proof of lemma 2.8. Let n̄ = n−N. For n̄ ≤
√
N equation (2.5) gives

(2.6) zn = ei2πn̄szN +
1

N

n̄−1∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN+n̄−m) +O(N− 3

2 )

In particular for these values of n we have

zn = ei2πs(n−N)zN +O
(

1√
N

)
.

Substituting this into (2.6) gives

zn = ei2πn̄szN +
1

N

n̄−1∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN ) +O
(

1

N

)
.

To compute the sum above expand A as a sum of monomials and
observe that

n̄−1∑

m=0

ei2πms
(
ei2π(n̄−m−1)szN

)α (
e−i2π(n̄−m−1)sz̄N

)β

is bounded for α + β ≤ 2 unless α = β + 1 (that is α = 1, β = 0).
Therefore

(2.7) zn = ei2πn̄szN

(
1 + w̃2

n̄

N

)
+O

(
N−1

)

where w̃2 = e−i2πsw2.
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Consider now the disc DN around 0 of radius N−0.4. LetW (z) denote
the density of invariant measure in our complex coordinates. Then by
(2.7)

Area(F n̄DN )

Area(DN)
=
(
1 + 2Re(w̃2)

n̄

N

)
+O

(
N−0.6

)
.

On the other hand there exists z ∈ DN such that denoting z′ = F n̄z
we have

Area(F n̄DN)

Area(DN)
=

1 +W (z)/N

1 +W (z′)/(n̄+N)
+O

(
N−2

)
= 1 +O

(
N−1.4

)

since W (z)−W (z′) = O (N−0.4) . Comparing those two expressions for
the ratio of areas we obtain that Re(w̃2) = 0.
This proves part (a) of Lemma 2.8. Part (b) now follows from (2.7).

�

Corollary 2.9. mes(E) = ∞ for the following systems:
(a) outer billiards about circular caps with angle close to π;
(b) Ulam pingpongs with ∆ ∈ (2, 4).

Proof. For part (a) observe that map (2.3) has accelerating orbit (0, 7
8
)

and for part (b) observe that map (2.4) has accelerating orbit (0, 1
2
+ 1

∆
).

�

Problem 2.10. Does map (2.4) have stable accelerated orbits for all
∆ ∈ (0, 4)?

3. Applications of KAM theory.

3.1. Absence of acceleration in strong potential.

3.2. Accelerating tennis ball.

3.3. Bounded orbits for piecewise smooth Ulam pingpong.

4. Recurrence.

4.1. Applications of Poincare Recurrence Theorem. In this sec-
tion we describe applications of ergodic theory to the dynamics of
bouncing balls. One of the basic results in ergodic theory is Poincare
Recurrence Theorem. It says that if a transformation T of a space X
preserves a finite measure µ then for each sets A alsmost all points
from A returns to A in the future. To see why this theorem is true let

B = {x ∈ A : T nx 6∈ A∀n > 0.}
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Then T nB ∩ B = ∅ and so T kB ∩ T k+nB = T k(B ∩ T nB) = ∅.
Thus for each N the sets B, TB . . . TN−1B are disjoint and therefore
µ(∪N−1

n=0 B) = Nµ(B) ≤ µ(X). Since N is arbitrary we have µ(B) = 0.
Poincare Recurrence Theorem need not hold for infinite measure

preserving transformations such as x → x + 1 on R. However in the
infinite measure case there exists a decomposition X = C ∪ D where
D = ∪n∈ZT

nB and B is wondering in the sense that T nB ∩ B = ∅
for n 6= 0 while C satisfies the Poincare Recurrence Theorem in the
sense that for any set A ⊂ C almost all points from A visit A. In
abstract ergodic theory C is called conservative part of X and D is
called dissipative part ofX. However in the setting of smooth dynamical
systems this terminology is misleading since D need not be dissipative
in the sense that Jac(f) < 1 as the above example of the shift on R

shows. Therefore we adopt the terminology of probability theory. That
is, we call C recurrent part of X and D transient part of X. If C = X
we say that the system is recurrent, if D = X we say that the system
is transient. In the setting of bouncing balls the system has nontrivial
transient component if the set

E = {(t0, v0) : vn → ∞}
has positive measure. More generally we have the following.

Lemma 4.1. Let T : X → X preserve an infinite measure µ. Suppose
that there is a set A such that µ(A) <∞ and an invariant set B such
that all points from B visit A. Then B ⊂ C. In particular if almost all
points from X visit A then T is recurrent.

Proof. Let S ⊂ B. For x ∈ B let r(x) = min(k ≥ 0 : T−kx ∈ A) so

that T r(x)x ∈ A. Let Ŝk = ∪x∈S:r(x)≤kT
r(x)x. It is sufficient to show that

almost all points from Ŝk visit Ŝk infinitely often since if T nx ∈ Ŝk then
T n−jx ∈ S for some j ≤ k. Note that Ŝk ⊂ A∩B. By assumption almost
all points in T (A∩B) visit A and so the first return map R : Ŝk → Ŝk

is well defined. Applying Poincare Recurrence Theorem to (Ŝk, R) we
obtain our claim. �

Lemma 4.1 implies that E is indeed the transient part of the phase
space since the compliment of E is ∪NZN where

ZN = {(t0, v0) : lim inf vn ≤ N}
and all points from ZN visit {v ≤ N + 1}.
While the proof of Lemma 4.1 is very easy there is no general recipy

for finding the set A and sometimes it can be tricky. In this section
though we present a few examples there the construction of A is rela-
tively simple.
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Corollary 4.2. mes(E) = 0 for the following systems

(a) Fermi-Ulam pingpongs there l and l̇ are continuous and l̈ has
finitely many jumps;
(b) outer billiards around lenses.

Proof. In both cases the return map F : Π1 → Π1 has the following
form

(I, ψ) → (I, {ψ − a0I − a1}) +O(1/I)

(see remark 2.6). That is, after one rotation the adiabatic invariant
changes by O(1/I). Therefore each unbounded orbit visits the set

A = ∪k

{
|I − 3k| < 1

2k

}
.

Since µ(A) <∞ the statement follows from Lemma 4.1. �

Problem 4.3. Do above systems have escaping orbits? In fact even
the existence of unbounded orbits is unknown.

4.2. Ergodicity and recurrence. To proceed further we need to re-
call some facts from ergodic theory. Let T : X → X be a map preserv-
ing a measure µ. T is called ergodic if for any T invariant set we have
µ(A) = 0 or µ(Ac) = 0. Next suppose that µ is a probability measure.
Then Pointwise Ergodic Theorem says that for every Φ ∈ L1(µ) the
following limits exist and are equal almost surely

Φ+(x) = lim
n→∞

1

n

n−1∑

j=0

Φ(T jx) = Φ−(x) = lim
n→∞

1

n

n−1∑

j=0

Φ(T−jx).

If T is ergodic then Φ+(x) = Φ−(x) = µ(Φ) almost surely.
We now consider skew product maps TΦ : (X ×R) → (X ×R) given

by TΦ(x, y) = (Tx, y + Φ(x)) preserving measure dν = dµdx.

Lemma 4.4. (Atkinson, [1]) Suppose that T is ergodic. If Φ ∈ L1(µ)
then TΦ is recurrent if µ(Φ) = 0 and transient if µ(Φ) 6= 0.

Proof. Suppose that µ(Φ) 6= 0. If C was nontrivial there would exist R
such that ν(CR) > 0 where CR = C ∩ {|y| ≤ R}. Then almost all points
from CR would return to CR infinitely often. However by Pointwise
Ergodic Theorem yn → ∞ giving a contradiction.
Our next remark is that TΦ commutes with translations. Hence if

(x, y) ∈ C then for each ỹ (x, ỹ) = τỹ−y(x, y) ∈ C. Therefore C and D
are of the form

C = C̃ × R and D = D̃ × R

where C̃ and D̃ are T -invariant. Thus either C̃ or D̃ has measure 0.
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We now consider the case µ(Φ) = 0. Assume that C̃ = ∅ so that D =
X×R.We shall show that this assumption will lead to a contradiction.
We have that almost all (x, y) with |y| ≤ 1 visit {|y| ≤ 2} only finitely
many times since

B = {(x0, y0) : |yn| ≤ 2 infinitely often}
is TΦ invariant and all points from B visit A = {|y| ≤ 2|} so if µ(B) > 0
TΦ would have a nontrivial recurrent part by Lemma 4.1.
Hence for almost all x the set Mx = {n : |Φn| ≤ 1} is finite where

Φn(x) =
∑n−1

j=0 Φ(T
jx). Let AN = {x : Card(Mx) ≤ N}. Pick N such

that µ(AN) > 1/2. Take n≫ N. Consider

Yn(x) = {y : ∃j ∈ [0, n− 1] : T jx ∈ AN and Φj(x) = y}.
By ergodic theorem applied to the indicator of AN for large n we have
Card(Yn(x)) ≥ n

2
and for each ȳ ∈ Yn(x) we have

Card

{
y ∈ Yn : |y − ȳ| < 1

2

}
≤ (N + 1)

since otherwise taking a point from this set with minimal j will lead
to a contradiction with the definition of AN . It follows that

max
j≤n

|Φj(x)| ≥ max
j≤n,T jx∈AN

|Φj(x)| ≥
n

8(N + 1)
.

On the other hand by ergodic theorem
Φj(x)

j
→ 0 as j → ∞ and hence

maxj≤n |Φj(x)|
n

→ 0 as n→ ∞ contradicting the last displayed inequality.
�

As an application of Lemma 4.4 consider SWA to an impact oscillator
with

ḟ(t) =

{
1 if {t} ≤ 1

2

−1 if {t} > 1
2

.

Choose h̄ = 0. Then f(v, t) = (t̄, v + ḟ(t̄) where t̄ = t+ T
2
and T is the

period of the spring. Therefore f is recurrent.
On the other hand if h̄ 6= 0 then Lemma 4.4 is not directly applicable

since t̄ = t+ T
2
+ 2h̄

v
+ o(1/v) weakly depends on v. To include this case

we need another lemma. Let S(x, y) = (T (x, y), y + φ(x, y)) be the
map which is well approximated by a skew product at infinity. Namely
let τm(x, y) = (x, y + m). We assume that S is defined on asubset
Ω ⊂ X ×R given by y ≥ h(x). We also assume that there exist a map
T : X → X and a function Φ : X → R such that T preserves measure
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µ and that for each k and each function bounded measurable function
h supported on X × [−M,M ] we have

||h ◦ Sk
m − h ◦ T k

Φ||L1(ν) → 0 as m→ ∞

where Sm = τ−m ◦ S ◦ τm and dν = dµdx.

Lemma 4.5. Assume that
(i) T is ergodic;
(ii) µ(Φ) = 0;
(iii) S preserves a measure ν̃ having bounded density with respect

to ν;
(iv) there exists a number K such that φ||L∞(µ) ≤ K.
Then S is recurrent.

In the proof we will need Rokhlin’s Lemma which says that if T :
X → X is an aperiodic transformation preserving a finite measure µ
then for each n, ε there is a set B such that B, TB, . . . , T n−1B are
disjoint and µ(X − ∪n−1

j=0T
jB) ≤ ε.

Proof. Let Ȳ = X × [0, K] where K is the constant from condition
(iv). By Lemma 4.4 TΦ is conservative and hence the first return map
R : Ȳ → Ȳ is defined almost everywhere. By Rokhlin Lemma applied
to R there exists a set Ωε and a number Lε such that ν(Ωε) < ε and

ν({(x, y) ∈ Ȳ : T j
Φ(x, y) 6∈ Ωε for j = 0, 1 . . . Lε − 1}) < ε.

It follows that there exists mε > 1/ε such that ν(Aε) < ε where

Aε = {(x, y) ∈ τmε Ȳ : Sj(x, y) 6∈ τmεΩε for j = 0, 1 . . . Lε − 1}.

In addition we have ν̃(Aε) < Cε and ν̃(τmεΩε) < Cε. Let

A =
⋃

n

(
τm

1/n2
Ω1/n2 ∪A1/n2

)
.

Then ν(A) <∞. Note that every unbounded orbit crosses τm
1/n2

Ω1/n2

for a sufficiently large n and so it visits A. Therefore S is recurrent by
Lemma 4.1. �

Lemma 4.5 shows recurrence of imapct oscillator SWA for all h̄. It
also implies recurrence of Fermi-Ulam pingpongs in the case where l̇ has
one discontinuity and the corresponding map is hyperbolic at infinity.
This follows from the normal form at infinity derived in Section 2 and
the ergodicity of hyperbolic sawtooth map proved in Section 5.
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5. Ergodicity of hyperbolic sawtooth maps.

5.1. The statement. In this section we will prove the following the-
orem of Chernov. Let T be a piecewise linear automorphism of T2.
Let S+ and S− denote thediscontinuity lines of T and T−1 respectively.
Denote Sn = T n−1S+, S−n = T−(n−1)S−. We assume that
(i) A = dT is constant hyperbolic SL2(R)-matrix.
(ii) S± are not parallel to eigendirections of A.

Theorem 5.1. [5] T is ergodic.

5.2. The Hopf argument. The proof relies on the Hopf argument.
To explain this argument we consider first the case where T is smooth,
that is fx = Ax mod 1 and A ∈ SL2(Z). Denote

W s(x) = {y : d(T nx, T ny → 0 as n→ +∞},
W u(x) = {y : d(T−nx, T−ny → 0 as n→ +∞}.

It is easy to see that W ∗(x) = {x + ξe∗}ξ∈R where es and eu are con-
tracting and expanding eigenvectors of A.
Let R0 be the set of regular points, that is, the points such that

for any continuous function Φ we have Φ+(x) = Φ−(x). By Pointwise
Ergodic Theorem R0 has full measure in T

2. For j > 1 we can define
inductively

Rj = {x ∈ Rj−1 : mes(y ∈ W u(x) : y 6∈ Rj−1) = 0 and mes(y ∈ W s(x) : y 6∈ Rj−1) = 0}.
Then we can show by induction using Fubini Theorem that Rj has full
measure in T

2 for all j.
For x ∈ cR0 and Φ ∈ C(T2) let Φ̄(x) denote the common value

of Φ+(x) and Φ−(x). We say that x ∼ y if for all continuous Φ we
have Φ̄(x) = Φ̄(y). Note that if x, y ∈ R0 and y ∈ W s(x) then for all
Φ ∈ C(T2) we have Φ−(x) = Φ−(y) and so x ∼ y. Similarly if x, y ∈ R0

and y ∈ W u(x) then x ∼ y, . Given x ∈ R2 and ρ ∈ R+ let

Γρ =
⋃

y∈Wu
ρ (x)

W s(y), Γ̃ρ =
⋃

y∈R1∩Wu
ρ (x)

(W s(y)
⋂

R0).

Then if ρ is large enough then Γρ = T
2 and by Fubini theorem mes(Γρ−

Γρ) = 0 so Φ̄(z) = Φ̄(x) for almost all z. Therefore Φ̄ is constant almost
surely and hence T is ergodic.

5.3. Long invariant manifolds and ergodicity. The Hopf argu-
ment has been expanded in several directions. Already Hopf realized
that the same argument works for nonlinear systems provided that the
stable and unstable foliations are C1. This condition however is too
restricitve. Versions of the Hopf argument under weaker conditions
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have been presented by Anosov, Pesin, Pugh-Shub, Burns-Wilkinson.
We need a version of the Hopf argument for systems with singularities.
The approach to handle such systems is due to Sinai and it has been
extended by Chernov-Sinai and Liverani-Wojtkowski. The proof given
here follows the presentation of [6] a slightly different argument can be
found in [14].
The difficulty in the nonsmooth case is that it is no longer true that

W ∗(x) coincides with W̃ ∗(x) = {x + ξe∗}. Indeed if y ∈ W̃ s(x) and x
and y belong to the same continuity domain then d(Tx, Ty) = 1

λ
d(x, y)

where λ is the expanding eigenvalue of A. However if Tx and Ty are
separated by a singularity then Tx and Ty can be far apart. In fact,
there might be points which come so close to the singularities that
W s(x) is empty. This is however, an exception rather than a rule. Let

ru(x) = max{δ : W̃ u
δ (x) ⊂ W u(x)}, rs(x) = max{δ : W̃ s

δ (x) ⊂W s(x)}.
Lemma 5.2.

mes{x ∈ T
2 : ru(x) ≤ ε} ≤ Cε, mes{x ∈ T

2 : rs(x) ≤ ε} ≤ Cε.

Proof. We prove the second statement, the first one is similar. Note
that {rs(x) ≤ ε} =

⋃
n Sn(ε) where

Sn(ε) =
{
x : d(T nx, S−) ≤

ε

λn

}
.

Since our system is measure preserving

mes(Sn) = mes
{
x : d(x, S−) ≤

ε

λn

}
≤ C̄

ε

λn
.

�

The proof of Theorem 5.1 relies on a local version of this result.
Namely, the following statement holds.

Lemma 5.3. Pick y, δ and k such that d(T jW̃ u(y), S−) ≥ ε for j =
0 . . . k. Then

mes{x ∈ W̃ u(y) : ru(x) ≤ ε} ≤ Cε.

A similar statement holds with s and u interchanged.

We first show how Lemma 5.3 can be used to derive Theorem 5.1
and then present the proof of the lemma.
Pick k such that Cθk < 0.001. We first establish local ergodicity.

Namely letM be a connected component of continuity for T k and T−k.
We shall show that almost all points in M belong to one equivalence
class. This will imply that every invariant function is constant on M,
that is, any invariant set is a union of continuity domains. Then we
conclude the global ergodicity by noticing that there are no nontrivial
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invariant sets which are union of continuity components because the
boundary would be a collection of line segments and this boundary
can not be invariant since the segements in Sn have different slopes for
different n.
Let us prove local ergodicity. To simplify the exposition we will refer

to W̃ u leaves as horizontal lines and to W̃ s leaves as vertical lines.
Take a rectangle U ⊂ Int(M). It is enough to show that all points are
equivalent. Given N consider all squares with sides 1

N
and centers in(

0.1Z
N

)2 ∩ U.

Figure 11. Each square intersect its neighbours by 0.9
of their area

We say that a points z in a square S is typical if z ∈ R2 and both
W u(x) and W s(x) cross S completely.

A B C

Figure 12. A is typical in S, B is not typical in S but
it is typical in anearby square, C is not typical in any
square
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Note that all typical points in S are equivalent. Indeed denote

Σ(z) = ∪x∈Wu(zj)W
u(x)

z

Figure 13. Hopf brush Σ(z)

Note that if z1, z2 ∈ S then by Lemma 5.3 Σ(zj)∩ S has measure at
least 0.999mes(S) and by the Hopf argument almost all points in Σ(zj)
are equivalent to zj. Also by Lemma 5.3 the set of typical points in S
has measure at least 0.998mes(S). Since for two neighbouring squares
we have mes(S1 ∩ S2) = 0.9mes(S1) it follows that all typical points in
neighbouring squares are equaivalent. Therefore all typical points in
all squares in Int(M) are equivalent. On the other hand by Lemma 5.2
for almost all x ∈ R2 we have ru(x) > 0 and rs(x) > 0 so such x is
typical for sufficiently large N. Local ergodicity follows and Theorem
5.1 is proven.

5.4. Growth Lemma. It remains to prove Lemma 5.3. To this end
fix a curve γ ⊂ W̃ u(x). Due to singularities T n(x) consists of many
components. Let rn(x) be the distance from x to the boundary of the
component containing x. We claim that there are constants θ < 1 and
Ĉ > 0 such that

(5.1) P(rn ≤ ε) ≤ 2(θn|γ|+ Ĉ)ε.

(5.1) implies Lemma 5.3 since it implies that

P(Λn) ≤ 2(θn|γ|+ Ĉ)
ε

λn
.

Summing this for n ≥ k we obtain the statement of Lemma 5.3.
The proof of (5.1) relies on complexity bound. Let κn(δ) be the

maximal number of continuity components of T n an unstable curve
of length less than δ can be cut into. Set κn = limδ→0 κn(δ). For
the case at hand there is a constant K such that κn ≤ Kn since the
singularities of T n are lines and there at most Kn possibilites for their
slopes. Accordingly there exist numbers n0, δ0 such that κn0

(δ0) ≤
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Figure 14. The complexity is determined by the largest
number of lines passing through one point since one can
always take δ so small that any curve of length less than
δ can not come close to two intersection points

2λn0. Replacing T by T n0 we can assume that this inequality holds for
n0 = 1 (clearly it is sufficient to prove (5.1) for T̄ = T n0 in place of T ).
Given a curve γ we define r̄n(x) as follows. Tγ is cut into several com-

ponets. Some of them can be longer than δ0. Cut each long component
into segments of length between δ0/2 and δ0. For each of the resulting
curves γj consider Tγj and repeat this procedure. Let r̄n(x) be the dis-
tance to the boundary of the new components. Thus r̄n(x) ≤ rn(x). In
fact, r̄n equals to rn if each continuity component has width less than
δ0 so we can think of r̄n as the length of continuity components then
we partition T

2 into the strips of width δ0 and regard the boundaries
of the strips as ”artificial singularities”.
It suffices to prove (5.1) with rn replcaed by r̄n. To this end let

Zn = sup
ε>0

mes(x ∈ γ : r̄n(x) ≤ ε)

ε
.
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Figure 15. Dynamics of components

Then Z0 = 2
|γ| . We claim that there are constants θ < 1, C > 0 such

that

Zn+1 ≤ θZn + C|γ|.
Indeed r̄n(x) is less than ε if T n+1x passes near either genuine or

artificial singularity. In the first case T nx is ε
λ
close to the preimage of

sinularity. Since each curve is cut into at most κ1(δ0) components, we
conclude that each component of T n contributes by less than

κ1(δ0)mes(x : rn(x) ≤
ε

λ
) ≤ κ1(δ0)

λ
Zn.

On the other hand for long curves the relative measure of points with
small r̄n+1 is less than C(δ0)ε so their contribution is less than C(δ0)ε|γ|.
The result follows.

6. Central Limit Theorem for Dynamical Systems.

In Section 5 we saw that the hyperbolic sawtooth map is ergodic.
Ergodocity means that for a smooth function we have

1

n

n−1∑

j=0

A(f jx) → µ(A)

so there is a natural question about the rate of convergence. If the
system is sufficiently chaotic we expect that the behavior of the above
sum is similar to the case of independent identically distributed (iid)
random variables that is the fluctuations satisfy the Central Limit The-
orem (CLT). In the first part of this section we review the methods to
prove the CLT for dynamical systems while the second part contains
applications to bouncing balls.
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6.1. iid random variables. In order to explain how the method works
we start with simplest possible settings. Let Xn be independent iden-
tically distributed random variables which are uniformly bounded. (Of
course the assumption that Xn are bounded is unnecessary. We im-
pose it in order to simplify the exposition.) We assume that E(X) =

0,E(X2) = D2. Denote SN =
∑N

n=1Xn. The classical Central Limit

Theorem says that SN√
N

converges weakly to the normal random vari-

able with zero mean and variance D2. Our idea for proving this result
is the following. We know the distribution of S0 so we want to see how
the distribution changes when we change N. To this end let M → ∞
so that M/N → t. Then

SM√
N

=

√
M√
N

SM√
M

≈
√
t
SM√
M
.

The second factor here is normal with zero mean and variance tD2.
Since multiplying normal random variable by a number has an effect
of multiplying its variance by the square of this number the classical
Central Limit Theorem can be restated as follows.

Theorem 6.1. As N → ∞ SNt√
N
, converges weakly to the normal ran-

dom variable with zero mean and variance tσ2.

Thus we wish to show that for large N our random variables behave
like the random variables with density p(t, x) whose Fourier transform
satisfies

p̂(t, ξ) = exp

(
−tD

2ξ2

2

)
.

Hence

∂tp̂ = (iξ)2
D2

2
p̂ and so ∂tp =

D2

2
∂2xp.

Recall that any weak solution of the heat equation is also strong solu-
tion so we need show that if v(t, x) is a smooth function of compact
support in x then

(6.1)

∫
v(T, x)p(T, x)dx− v(0, 0) =

∫∫
p(t, x)

[
∂tv +

σ2

2
∂2xv

]
dxdt.

In case v(t, x) = u(x) is independent of t the last equation reduces to

(6.2)

∫
u(x)p(T, x)dx− u(0) =

∫∫
p(t, x)(Lu)(x)dxdt.

Conversely if (6.2) holds for each T and if St is any limit point of SNt√
N

then
∂tE(u(St)) = E((Lu)(St))
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where L =
D2

2
∂2x which implies (6.1) for functions of the form v(t, x) =

k(t)u(x) and hence for the dense family
∑

j kj(t)uj(x). Thus p satisfies

the heat equation as claimed. Thus we have to establish (6.2). For
discrete system in amounts to showing that

(6.3) E

(
u

(
SM√
N

))
− u(0)− 1

N

N−1∑

n=0

E

(
(Lu)

(
Sn√
N

))
= o(1).

where M ∼ tN. Consider the Taylor expansion

u

(
Sn+1√
N

)
− u

(
Sn√
N

)
=

(6.4) (∂xu)

(
Sn√
N

)
Xn√
N

+
1

2

(
∂2xu
)( Sn√

N

)
X2

n

N
+O(N−3/2).

Taking the expectation and using the fact that E(Xn) = 0 we obtain
(6.3).
Keeping the above example in mind we can summarize martingale

problem approach as follows.
In order to describe the distribution of St we need to compute the

averages E(u(St)) for a large class of test functions u. However rather
than trying to compute the above averages directly we would like to
split the problem in two two parts. First we find an equation which
this average should satisfy. Secondly we show that this equation has
unique solution. Only the first part involves the study of the system
in question. The second part deals with a PDE question.
For the first step we need to compute the generator

(Lu)(x) = lim
N→∞

lim
h→0

E(u(SN
t )|SN

0 = x)− u(x)

h
.

For the second step we need to establish the uniqueness for the equation

∂tu = Lu.
Once this is done we conclude that for a large class of test functions
we have

E(v(T,St))− E(v(0),S0) =

∫ T

0

E(∂tv + Lv)(t,St)dt.

Choosing here v satisfying the final value problem

(6.5) ∂tv + Lv = 0, v(T,S) = u(S)

we can achieve our goal of finding E(u(ST )).
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6.2. Hyperbolic systems. Now let us discuss how to extend this ap-
proach to the dynamics setting. Namely, we consider the case where

Sn =
n−1∑

j=0

A(f jx)

where f is an Anosov diffeomorphism of T2 and A is a smooth function.
In fact the Anosov property was not important for our argument. The
natural setting for the our approach is the following
(1) There is an invariant cone family df(K) ⊂ K and for each v ∈ K

we have

(6.6) ||df(v)|| ≥ Λ||v||, Λ > 1.

(2) f is mixing in the following sense. There exists a measure
µSRB called SRB (Sinai-Ruelle-Bowen) measure such that the follow-
ing holds. Let γ be a curve of length between 1 and 2 whose tangent
direction lies inside K and ||γ||C2 ≤ C̄. Let ρ be a Holder probability
density on γ then

(6.7)

∣∣∣∣
∫

γ

ρ(x)A(fnx)dx− µSRB(A)

∣∣∣∣ ≤ Cθn||A||Cr ||ρ||Cα(γ).

In fact we will need an extension of (6.7) to the case ρ is not probability
density. In case ρ > 0 we can apply (6.7) to ρ̃ = ρ/

∫
γ
ρdx to get

(6.8)

∣∣∣∣
∫

γ

ρ(x)A(fnx)dx−
∫

γ

ρdx µSRB(A)

∣∣∣∣ ≤ Cθn||A||Cr ||ρ||Cα(γ).

Finally in case ρ changes sign we can apply (6.8) to ρ+ = max(ρ, 0)
and ρ− = min(ρ, 0) to show that (6.8) is valid for arbitrary Holder
densities.
We assume that µSRB(A) = 0. This does not cause a loss of generality

since we can always replace A by A− µSRB(A). Concerning the initial
condition x we assume that it is distributed on γ with a density ρ where
γ and ρ are as above.
The difference with the previous example is that A(fnx) and Sn are

no longer independent so a more careful analysis of (6.4) is needed.
Take LN = N0.01 and let n̄ = n− LN . We have

E

((
∂2xu
)(Sn(x)√

N

)
A2(fnx)

)
= E

((
∂2xu
)(Sn̄(x)√

N

)
A2(fnx)

)
+O

(
LN√
N

)

To estimate this expression we assume temporarily that

(6.9) || ln ρ||Cα ≤ C.
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Decompose f n̄γ = ∪βγβ where 1 ≤length(γα) ≤ 2. Then
∫

γ

ρ(x)
(
∂2xu
)(Sn̄(x)√

N

)
A2(fnx)dx =

∑

β

cβ

∫

γβ

ρβ(y)
(
∂2xu
)(Sn̄(f

−n̄y)√
N

)
A2(fLNy)dy

where cβ = P(x ∈ γβ) and ρβ(y) = ρ(f−n̄y)|(df−n̄y|Tf n̄γ)|/cβ. Next we
claim that the Holder norm of ln |(df−n̄y|Tf n̄γ)| is uniformly bounded
(in n̄). Indeed

∣∣ln |(df−n̄y1|Tf n̄γ)− ln |(df−n̄y2|Tf n̄γ)
∣∣

≤
n̄−1∑

j=0

∣∣ln |(df−1f−jy1|Tf n̄−jγ)− ln |(df−1f−jy2|Tf n̄−jγ)
∣∣ ≤ C

n̄−1∑

j=0

d(f−jy1, f
−jy2).

Due to (6.6) the individual term in this sum is bounded by 2Λ−j prov-
ing our claim. Here we have used the fact that C2 norms of T jγ are
uniformly bounded. The proof of this can be found in [18].
Our claim implies in particular that for each y1, y2 ∈ γβ we have

1

C
≤ |(df−n̄y1|Tf n̄γ)|

|(df−n̄y2|Tf n̄γ)| ≤ C.

Since due to (6.9) we also have

1

C
≤ ρ(y1)

ρ(y2)
≤ C

it follows that ||ρβ||Cα(γβ) ≤ C. A similar argument shows that
∥∥∥∥
(
∂2xu
)(Sn̄(f

−n̄y)√
N

)∥∥∥∥
Cα(γβ)

≤ C.

Now applying (6.8) we obtain

(6.10) E

((
∂2xu
)(Sn̄(f

−n̄y)√
N

)
A2(fLNy)

)

= E

((
∂2xu
)(Sn̄(f

−n̄y)√
N

))
µSRB

(
A2
)
+O

(
θLN

)

= E

((
∂2xu
)(Sn(x)√

N

))
µSRB

(
A2
)
+O

(
LN√
N

)
.

The above argument relies on (6.9). However by decomposing arbitrary
density

ρ = 10||ρ||Cα − (10||ρ||Cα − ρ)

we see that (6.10) is valid in general.
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(6.10) takes care about the second derivative However he first deriv-
ative term is more difficult since it comes with smaller prefactor 1√

N
.

We have

E

(
(∂xu)

(
Sn√
N

)
A(fnx)

)

= E

(
(∂xu)

(
Sn̄√
N

)
A(fnx)

)
+E

(
(
∂2xu
)( Sn̄√

N

)
A(fnx))

n−1∑

k=n̄

A(fkx)√
N

)
+O

(
L2
N

N

)
.

As before

E

(
(∂xu)

(
Sn̄√
N

)
A(fnx)

)
= O

(
θLN

)
.

To address the second term fix a large M0, let m = n− k and consider
two cases
(I) m > M0. Then letting y = fkx and arguing as in the proof of

(6.10) we get

E

((
∂2xu
)( Sn̄√

N

)
A(fkx))A(fnx)

)
= E

((
∂2xu
)(Sn̄(f

−ky)√
N

)
A(y))A(fmy)

)

= E

((
∂2xu
)( Sn̄√

N

)
A(fkx))

)
µSRB(A) +O(θm) = O(θm).

(II) m ≤M0. Denote Bm(y) = A(y)A(fmy). Then we have

E

((
∂2xu
)( Sn̄√

N

)
A(fkx))A(fnx)

)
= E

((
∂2xu
)(Sn̄(f

−n̄y√
N

)
Bm(f

ky))

)

= E

((
∂2xu
)( Sn̄√

N

))
µSRB

(
Bm(f

ky))
)
+O

(
θLN

)
.

Summation over m gives

E

(
u

(
SM√
N

))
−u(0) = 1

N

M−1∑

n=0

D2
M0

2
E

((
∂2xu
)( SM√

N

))
+O

(
θM0
)
+o(1)

where

D2
M0

= µSRB(A
2)+2

M0∑

m=1

µSRB(A(x)A(f
mx)) =

M0∑

m=−M0

µSRB(A(x)A(f
mx)).

Letting M0 → ∞ we obtain that SN√
N

is asymptotically normal with

zero mean and variance given by the Green-Kubo formula

D2 =
∞∑

m=−∞
µSRB(A(x)A(f

mx)).
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6.3. Bouncing balls in very weak potentials. Last subsection shows
how to obtain the CLT for systems satisfying (6.6) and (6.7). This con-
ditions are quite restrictive and to enhance the applicability of CLT one
needs to rely on wearer versions of those conditions. Here we explain
how to do this for systems with multiple scales. As an example we con-
sider a ball in weak potential gxα for α ≪ 1. To simplify the formulas
we consider the SWA

tn+1 = tn + T (vn), vn+1 = vn + 2ḟ(tn+1).

An easy calculation using energy conservation shows that

T (v) ∼ cvσ, T ′(v) ∼ cσvσ−1, T ′′(v) ∼ cσ(σ − 1)vσ−2

where σ = 2
α
− 1. Suppose that v0 ≫ 1 so that the relative change of

velocity is small. Our goal is to show that if σ ≫ 1 then the change of
velocity is well approximated by the Brownian Motion.
In fact, take N ∼ v20 and consider WN(t) = 1√

N
vtN . In order to

keep v of order
√
N during the time [0, N ] we stop process when either

vN ≥ M
√
v0 or vN ≤ M

√
v0 for some (large) constant M. Take a test

function u and consider

u

(
vn+1√
N

)
− u

(
vn√
N

)
= ∂u

(
vn√
N

)
ḟ(tn+1)√

N
+

1

2
∂2u

(
vn√
N

)
g2(tn+1)

N

where g = (ḟ)2. We have

dF =

(
1 T ′(vn)

ḟ(tn+1) 1 + ḟ(tn+1)T
′(vn)

)
.

This shows that if δvn is not too small then dF (δtn, δvn) is almost

parallel to (1, ḟ). More precisely let

K(t, v) =

{
(ξ, η) :

∣∣∣∣
ξ

η
− ḟ(t)

∣∣∣∣ < v−β

}

Then dF (K) ⊂ K unless ḟ(tn+1)T
′(v)| ≤ Cv−β. If ḟ is Morse then this

amounts to (t, v) ∈ C where

(6.11) C =
{
|tn+1 − tcr| < C̄v−β−σ for some critical point of ḟ

}

In other words, the cones are preserved on the major part of the phase
space.
Next let γ be a curve with TΓ ⊂ K and let ρ be a smooth denisty

on γ. Then
(6.12)∫

u′
(
vn√
N

)
ḟ(tn+1)ρ(tn)dtn =

∫
u′
(
vn√
N

)
ρ(tn)

(
dtn+1

dtn

)−1

df.
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Let γ = {(t, h(t)}. Note that dtn+1

dtn
= ∂tn+1

∂tn
+ ḣ(tn)

∂tn+1

∂tn
. Therefore

|dtn+1

dtn
| > cvσ−1−β if (tn, vn) 6∈ C. We now integrate (6.12) by parts. We

have

d

dtn

(
dtn+1

dtn

)−1

= −
(
dtn+1

dtn

)−2 [
ḧ(tn)V

′(vn) + h2(tn)V
′′(vn)

]
= O

(
v2β−σ−1

)
= O

(
v−β
)

if we choose β = σ − 1 − 2β. The same bounds hold for other terms
which we need to integrate by parts and we have

∫

γ

u′
(
vn√
N

)
ḟ(tn+1)ρ(tn)dtn = O

(
v−β
)
.

Next starting with γ such that Tγ ⊂ K we see that F nγ = (∪jγj) ∪ Z
where Z corresponds to the points which visit C defined by (6.11) for
the first n iterates so that mes(Z) = O

(
nv−β

)
. Accordingky we have

E

(
u′
(
vn√
N

)
ḟ(tn+1)

)
= O

(
nv−β

)
.

A similar argument shows that

E

(
u′′
(
vn√
N

)
g(tn+1)

)
= E

(
u′′
(
Sn√
N

))∫ 1

0

g2(t)dt+O
(
nv−β

)
.

Combining the above bounds we get

E

(
u

(
vn√
N

)
− u

(
v0√
N

))
=

1

N

N−1∑

k=0

D2

2
E

(
u′′
(
vk√
N

))
+O

(
N3/2v−β

)
.

where

D =

∫ 1

0

(
ḟ(t)

)2
dt.

Recall that v ∼ N2 so that the error term is small if β > 3, that is
σ > 10 or α < 1

5
.

6.4. Recurrence in very weak potentials. In this section we present
an application of the Central Limit Theorem to recurrence.

7. Invariant comes and hyperbolicity.

7.1. Dimension 2. In Sections 5 and 6 we saw that in order to ensure
strong stochasticity we need to construct a cone family K(x) such that
this family is invariant: df(K(x)) ⊂ K(x) and df expands the cones,
that is, there is a constant λ > 1 such that for all v ∈ K(x) we have
||df(v) ≥ λ||v||. Here we shall show that in the area preserving case the
mere existence of invariant comes implies expansion. We begin with
the following elementary fact.
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Lemma 7.1. If A ∈ SL2(R) has positive elements then it is hyperbolic.

This result is quite intuitive. If A has positive elements then the
angle between Ae1 and Ae2 is less than

π
2
and since due to area preser-

vation

||Ae1||||Ae2|| sin∠(Ae1, Ae2) = 1

there should be some expansion. The analytic prove is also easy. If

A =

(
a b
c d

)
then ad = 1 + bc > 1 and so a+ d ≥ 2

√
ad > 2.

The above proof does not show where the expanding direction is
located. There is another argument which is equally simple but has
an advantage that it works for a product of different matrices. This
argument is based on the classical notion of Lyapunov function. Let
φ0 be the angle which vector (x0, y0) makes with x axis and φ1 be
the angle which vector (x1, y1) = A(x0, y0) makes with x axis. Then
φ1 = g(φ0) for a continuous function g satisfying 0 < g(0) < g(π

2
) < pi

2
.

By the intermediate value theorem there exists φ such that g(φ) = φ
and hence (x1, y1) = λ(x0, y0). To estimate λ let Q(x, y) = xy. Then

Q(x1, y1) = λ2x0y0 = x1y1 = acx20+bdy
2
0+(ad+bc)x0y0 > (ad+bc)x0y0 = (1+2b0c0)x0y0.

It follows that λ >
√
1 + 2bc > 1.

The previous argument shows that Q increases after the applica-
tion of A. The same argument works for compositions. Namely, if
A1, A2 . . . An are positive SL2(R) matrices and

vn = An . . . A2A1v0

then

||vn|| ≥ 2
√
Q(vn) ≥ 2Q(v0)

n∏

j=1

Λj

where Λj = (1 + 2bjcj).
To get a coordinate free interpretation of this result suppose that

f :M2 →M2 preserves a smooth measure given by µ(A) =
∫∫

A
ω and

that there is a family of cones K(x) such that along an orbit xn = fnx0
we have df(K(xn) ⊂ Kn+1. Choose a basis in TxM so that

K(x) = {e = α1e1 + α2e2 : α1 > 0 and α2 > 0}

and ω(e1, e2) = 1. Then df can be represented by an SL2(R) matrix and

by the above inequality we have ||dfn(v0) ≥ 2
√
Q(v0)

∏n−1
j=0 Λj where

Λj = 1 + 2bjcj.
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7.2. Higher dimensions. Here we present a multidimensional version
of this estimate which is due to Wojtkowski. Consider a symplectic
space (R2d, ω). Let V1 and V2 be two transversal Lagrangian subspaces
(ω|Vj

= 0). Than each vector v ∈ R
2d has a unique decomposition

v = v1 + v2, vj ∈ Vj. Let Q(v) = ω(v1, v2). We can choose frames in V1
and V2 so that if

u1 = (ξ1, η1), u2 = (ξ2, η2) where ξj ∈ V1, ηj ∈ V2

then ω(v1, v2) = 〈ξ1, η2〉 − 〈ξ2, η1〉. Then Q((ξ, η)) = 〈ξ, η〉. Define K =
{v : Q(v) ≥ 0.
Let L be a linaer symplectic matrix. We can write L in the block form

with respect to the decomposition R
2d = V1 ⊕ V2 : L =

(
A B
C D

)
.

The symplecticity condition amounts to the equations

A∗D − C∗B = I, A∗C = C∗A, D∗B = B∗D.

One important case is L̃ =

(
I R
P C

)
. Then we have

P ∗ = P, R∗S = S∗R and S − PR = I.

The last two equations give

R∗S −R∗PR = R∗ that is (S∗ − R∗P )R = R∗.

But S∗ − R∗P = (S − PR)∗ = I. Therefore the symplecticity of L̃
amounts to

(7.1) R∗ = R, P ∗ = P, S − PR = I.

We say that L is monotone if LK ⊂ K and strictly monotone if LK ⊂
Int(K) ∪ {0}.
Lemma 7.2. If L is monotone then LV1 is transversal to V2 and LV2
is transversal to V1.

Proof. Suppose to the contrary that there is 0 6= v1 such that Lv1 ∈ V2.
Take v2 ∈ V2 such that ω(v1, v2) > 0. We have

ω(v1, v2) = ω(Lv1, Lv2) = ω(Cv1, Bv2).

Take vε − v1 + εv2. Then vε ∈ K for ε > 0. On the hand

Q(Lvε) = 〈εBv2, Cv1 + εDV2〉 = −εω(v1, v2) + ε2ω(Bv2, Dv2)

is negative for small positive ε giving a contradiction. �
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Lemma 7.2 implies that A is invertible, so we can consider L̂ =(
A 0
0 (A∗)−1

)
. Note that L̂ preserves Q since

Q(L̂v) = 〈Aξ, (A∗)−1η〉 = Q(v).

We therefore have a decomposition L = L̂L̃ where L̃ =

(
I R
P A∗D

)

for some matrices P and R.

Theorem 7.3. L is monotone iff Q(Lv) ≥ Q(v) for all v ∈ R
2d.

L is strictly monotone iff Q(Lv) > Q(v) for all 0 6= v ∈ R
2d.

Proof. We prove the first statement, the second is similar.
Clearly, if L increases Q and v ∈ K then Q(Lv) ≥ Q(v), so Lv ∈ K.
Conversely, suppose K is monotone. Since L̂ preserves Q, we need

to show that Q(L̃v) ≥ Q(v). Due to (7.1) we have

L̃(ξ, η) = (ξ +Rη, Pξ + η + PRη)

so

(7.2) Q(L̃(ξ, η))−Q(ξ, η) = 〈Rη, η〉+ 〈Pζ, ζ〉
where ζ = ξ +Rη. Since Q(L̃(ξ, 0)) = 〈Pξ, ξ〉 so P ≥ 0. Our next goal
is to sho that R ≥ 0. To this end consider an eigenvector Rη = λη.
Take ξ = aη. Then (ξ, η) ∈ cK if a > 0. On the other hand

Q(L̃(ξ, η)) = (a + λ)〈η, η〉+ (a + λ)2〈Pη, η〉.
Therefore Q(L̃(ξ, η)) < 0 for a = −λ− ε. Hence −λ < 0, that is λ > 0.

This proves that R ≥ 0 Now (7.2) gives Q(L̃(ξ, η)) ≥ Q((ξ, η)) as
claimed. �

This proves shows in particular that if L is monotone then it is
strictly monotone iff P > 0 and R > 0, that is, if L(Vj) ⊂ Int(K)∪{0}.
Next let L1, L2 . . . Ln be a sequnce of monotone maps. Pick c so that

||v|| ≥ c
√
Q(v). Let vn = Ln . . . L2L1v0. Then for v0 ∈ Int(K) we have

||vn|| ≥ c
√
Q(vn) ≥ c

√
Q(v0)

n∏

j=1

Λj

where Λj = Λ(Lj) and Λ(L) = minv∈Int(K)

√
Q(Lv)
Q(v)

.

To compute Λ(L) note that
(
R−1/2 0
0 R1/2

)(
I R
P I + PR

)(
R1/2 0
0 R−1/2

)
=

(
I I
K I +K

)
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where K = R1/2PR1/2 = R1/2(PR)R−1/2. Note that PR = A∗D− I =
C∗B. Choose an orthogonal matrix F such that F−1KF is diagonal.
Then

(7.3)

(
F−1 0
0 F−1

)(
I I
K I +K

)(
F 0
0 F

)
=

(
I I
T I + T

)

where T = F−1KF is diagonal and Sp(T ) =Sp(C∗B). We can also
assume by choosing F appropriately that the diagonal elements of T
are increasing. Denoting byM the RHS of (7.3) we have Λ(M) = Λ(L).
We have

Q(Mv) = 〈ξ, η〉+ 〈η, η〉+ 〈T (ξ + η), (ξ + η)〉

=

d∑

j=1

[
tjξ

2
2 + (1 + 2tj)ξjηj + (1 + tj)η

2
j

]

∑

ηj≥0

[(√
tjξj −

√
1 + tjηj

)2 (√
1 + tj +

√
tj
)2
ξjηj

]

+
∑

ηj<0

[(√
tjξj +

√
1 + tjηj

)2 (√
1 + tj −

√
tj
)2
ξjηj

]

≥ m(L)
∑

j

ξjηj = m(L)Q(v)

where

m(L) = min
j
(
√

1 + tj −
√
tj)

2 = (
√
1 + t1 −

√
t1)

2

and t1 ≤ t2 ≤ · · · ≤ td are the eigenvalues of T. The equality is achived
if ξj = ηj = 0 for j ≥ 2 and

√
t1ξ1 =

√
1 + t1η1.

Next, suppose that f : M → M is a symplectic map and there is
a transverse family of Lagrangian subspaces V1(x), V2(x) and an orbit
xn = fnx such that df(K(xn)) ⊂ K(xn+1). Let Q be the associated

quadratic form and take small c so that ||v|| ≥ c
√
Q(v). Choose frames

so that
ω((ξ1, η1)(ξ2, η2)) = 〈ξ1, η2〉 − 〈ξ2, η1〉.

Let df : TxM → TfxM have block form df =

(
A(x) B(x)
C(x) D(x)

)
. Let

(7.4) Λ(x) = min
t∈Sp(C∗B)

(
√
t +

√
1 + t).

Then for x ∈ K(x0) we have

(7.5) ||dfn(v0)|| ≥ c

(
n−1∏

j=0

Λ(xj)

)
√
Q(v0).
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7.3. Lyapunov exponents. Now we pass from the individual orbits
to typical ones. Recall that given a diffeomorphism f : M → M, a
point x and a vector v in Tx, one can define the forward and backward
Lyapunov exponents

λ±(x, v) = lim
n→±∞

1

n
ln ||dfn(x)(v)||.

If f presereves a probability measure µ then, by Multiplicatie Ergodic
Theorem, for µ−almost all x λ±(x, v) exist for all v and they can take
at most dim(M) different values.
In fact, there exists a splitting TxM = ⊕s

j=1Ej and numbers λ1 >
λ2 > λs such that if v = vi1 + vi2 + . . . vik where i1 < i2 < · · · < ik and
0 6= vik ∈ Eik then λ+(x, v) = λi1 and λ−(x, v) = λik . If µ is ergodic
then λj are constant almost surely.
In case µ is a smooth measure and λj 6= 0 almost surely (in which

case we say that the system has non-zero Lyapunov exponents or that
it is (nonuniformly) hyperbolic) there are strong methods to control the
statistical properties of f. In particular Pesin theory guarantees the ex-
istence of stable and unstable manifolds tangent to E− = ⊕λj<0Ej and
E+ = ⊕λj>0Ej respectively. (Pesin theory was extended to systems
with singularities by Katok-Strelcyn [13]. The main idea is to show
that most orbits do not come to close to the singularities in the spirit
of Lemma 5.2 of Section 5.) Also taking Σ(x) = ∪y∈Wu(x)W

s(x) we
obtain a set of positive measure and if x ∈ R2 then almost all points in
Σ(x) have the same averages for all continuous functions. Therefore the
systems with non-zero exponents has almost countable many ergodic
components, that isM is a disjoint unionM = ∪Bj where Bj are invari-
ant and f restricted to Bj is ergodic. In case they hyperbolicity comes
from invariant cones as we describe below Chernov-Sinai-Wojtkowski-
Liverani theory provides sufficient conditions for ergodicity. Namely
one needs to ensure appropriate transversality conditions between the
singularity manifolds and stable/unstable manifolds of f. Unfortunetly
those transversality conditions are not easy to verify in practise so the
ergodicity is not yet proven in all the examples where we can ensure
nonzero exponents.
Returning to the computations of the Lyapunov exponents let us

consider the setting of 2d dimensional symplectic manifold. In this
case one can show that (Ej)

⊥ =
∑

i 6=s−j Ei and so dim(Ej) = dimEs−j.
Therefore in order to prove that the system has nonzero exponents it
suffices to check that

(7.6) dim(E+) ≥ d.
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Suppose now that at each point there are transversal Lagrangian
subspaces V1(x), V2(x) such that df is monotone with respect to the
cone KV1,V2

. Let Λ(x) be defined by (7.4). In order to establish (7.6)
we consider the smallest j such that dim(E−

j ) > d where

E−
j = Ej ⊕ Ej+1 ⊕ Es.

Lemma 7.4. If µ is ergodic then λj ≥
∫
ln Λ(x)dµ(x).

Proof. Let D = (ξ, ξ) where we use the coordinates of Theorem 7.3.
Then E−

j ∩ D contains a nonzero vector v. Then λ+(x, v) ≤ λj. On
the other hand in view of (7.5) and the Pointwise Ergodic Theorem we
have

λ+(x, v) = lim
n→∞

1

n

∑

j

ln Λ(f jx) =

∫
ln Λ(x)dµ(x).

�

In general it is possible to have Λ(x) ≡ 1 (consider for example the
map (I, φ) → (I, φ+ I). Let

G = {x : Λ(x) > 1} = {x : df(x) is strictly monotone}.
Consider now the smooth invariant measure

µ(A) =

∫

A

ω ∧ · · · ∧ ω.

Note that µ need not be ergodic.

Corollary 7.5. If almost all points visit G then the system has nonzero
Lyapunov exponents.

Proof. We apply Lemma 7.4 to each ergodic component of G. The
assumption that ν(G) > 0 for each ergodic component implies that∫
ln Λ(x)dν > 0. �

7.4. Examples. Here we present several examples of systems poss-
esing invariant cones. We discuss two dimensional examples in more
detail since the computations are simpler in that case.
(I) Dispersing billiards. Consider a particle moving in a domain

with piecewise concave boundaries. Let s be the arclenth parameter
and φ be the angle with the tangent direction.

Lemma 7.6. df has the following form in (s, φ) variables
(

κ0τ+sinφ0

sinφ1

τ
sinφ1

κ0κ1τ+κ1 sinφ0+κ0 sinφ1

sinφ1

κ1τ+sinφ1

sinφ1

)

where κ0 (κ1) is the curvature of the boundary at the initial (final) point
and τ is the flight length.
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Figure 16. Two tables with nonzero Lyapunov expo-
nents: dispersing billiard on the left and Bunimovich
stadium on the right

Note that f preserves the form ω = sinφds ∧ dφ. The above matrix
has all elements positive therefore df increases the qudratic form Q =
sinφdsdφ. Moreover the product of the off diagonal terms with sinφ1

is uniformly bounded from below so Λ(s, φ) is uniformly bounded away
from 1.

Proof. We compute ∂s1
∂s0
, the other terms are similar. Consider figure

17. Let |AB| = δs0. We have

|CB| ≈ sinφ0δs0, |DE| = |BC|, |EF | ≈ τ sin∠FBE,

∠BFE ≈ κ0δs0, |DG| ≈ δs1 ≈
|DF |
sinφ1

.

�

For dispersing billiards we have κ0 > 0, κ1 > 0. Another way to
make all elements of df positive is to have κ0, κ1 negative but require
that

τ ≥ sinφ0

|κ0|
+

sinφ0

|κ0|
.

The billiards satisfying the above condition are called defocusing. Per-
haps the most famous example of the defocusing billiard is Bunimovich
stadium.
Ergodicity of dispersing billiards is shown in [20]. Ergodicity of Buni-

movich stadium is shown in [3]. Further properties of dispersing and
defocusing billiards are discussed in [6].
(II) Dispersing pingpongs. Consider pingpong whose wall motion

satisfies f̈(t) < 0 at all points of continuity.

Lemma 7.7. In (t, v) varaibles the derivative takes form



vn−ḟn
vn+ḟn+1

− Ln

v2n(vn+ḟn+1)
vn−ḟn

vn+ḟn+1

f̈n+1 1− Lnf̈n+1

v2n(vn+ḟn+1)
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G

A B

C

D

E

F

v(A)

v(B)

Figure 17. Computing
∂s1
∂s0

where Ln is the distance traversed by the particle between n-th and
(n+ 1)-st collisions.

Note that the off diagonal entries of the above matrix are negative
so the form Q = −dtdv is increasing.

Proof. Let us compute ∂vn+1

∂tn
. Refering to figure 6 we have

δhn = (vn − ḟn)δtn, δtn+1 =
δhn

vn + ḟn
, δḟn+1 = f̈n+1δtn+1.

This proves the formula for ∂vn+1

∂tn
. Together with (1.5) this completes

the estimate of t derivatives. v derivatives are computed similarly. �
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(III) Balls in gravity field. Consider two balls on the line moving
in a gravity field and colliding elastically with each other and the fixed
floor. Let m1 be the mass of the bottom ball and m2 be the mass of the
top ball. It is convenient to use h and z as variables where h = h1 is the
energy of the bottom ball and z = v2− v1 is the relative velocity of the
second ball. We consider the balls at the moments when the bottom
particle collides with the floor. During the collisions of the bottom ball
with the floor our variables change as follows (h̄, z̄) = F1(h, z) where

F1(h, z) = (h, z + c
√
h) where c =

√
8

m1
.

Next we consider the collision between the walls. Using the formulas
of Section 1 we find that the changes of energy and velocity are the
following

z̄ = −z, v̄ = u+
2m2

m1 +m2
z

where u is velocity of the first ball at the moment of collision. Accord-
ingly

h̄ = h+
2m1m2uz

m1 +m2

+
2m1m

2
2z

2

(m1 +m2)2
.

To find u note that u = v1 − τz where τ is the time between collisions
of the first ball with the floor and with the second ball. Next, τ = −x

z
where z is the height of the second ball when the first one hits the floor.
Therefore uz = v1z + gx. The energy of the system is

E = h+
m2(v1 + z)2

2
+m2gx. Thus v1z+gx =

E

m2
− h

m1
− h

m2
− z2

2
.

Accordingly h̄ = b− h− az2 where b = 2m1E
m1+m2

and

a =
m1m2

m1 +m2

− 2m1m
2
2

(m1 +m2)2
.

Therefore if the ball returns to the floor after the collision we have

(h̄, z̄) = F1 ◦ F2 where F2(h, z) = (b− h− az2,−z).
We assume that m1 > m2 so that a > 0. Note that

dF1 =

(
1 0
c

2
√
h

1

)
, dF2 =

(
−1 −2az
0 −1

)
= −I ×

(
1 2az
0 1

)
.

Both (
1 0
c

2
√
h

1

)
, and

(
1 2az
0 1

)

have positive elements so they are monotone with respect to Q = dhdz
while −I is Q-isometry. Also note that d(F2 ◦F k

1 ) is strictly monotone
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for each k and since starting from any initial condition we will eventu-
ally have a collision between the balls, Corollary 7.5 implies that this
system has nonzero Lyapunov exponents.
Ergodicity of two balls in gravity under the condition m1 > m2 is

proven in [14].
On the other hand if m1 = m2 then the particles just exchange their

enrgy during the collisions so the function I = min(h1, h2) is the first
integral of this system. One can also show [4] that for m1 < m2 elliptic
islands are present so the system is not ergodic.
One can also construct multidimensional examples satisfying the

above criteria. In particular n particles of the line in gravity field
have nonzero exponents provided that m1 > m2 > · · · > mn when
the particles are numbered from the bottom up. The monotonicity of
this system was proven in [22] while [19] showed that the conditions of
Corollary 7.5 are satisfiedfor this system. One can also consider non-
linear potentials. [23] shows that the following conditions are sufficient
for nonzero Lyapunov exponents
(i) m1 > m2 > · · · > mn; (ii) U

′(q) > 0; (iii) U ′′(q) < 0.

Figure 18. Wojtkowski wedge

Another example is the particle in gravity field moving in a two
dimensional domain whose boundary consists of two concave broken
lines meeting at a right angle. It is shown in [24] that this system has
nonzero Lyapunov exponents.

Problem 7.8. Show ergodicity of the last two examples.
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