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a b s t r a c t

Small solar system bodies such as asteroids and comets are of significant interest for

both scientific and human exploration missions. However, their orbital environments

are among the most highly perturbed and extreme environments found in the solar

system. Uncontrolled trajectories are highly unstable in general and may either impact

or escape in timespans of hours to days. Even with active control, the chaotic nature of

motion about these bodies can effectively randomize a trajectory within a few orbits,

creating fundamental difficulties for the navigation of spacecraft in these environments.

In response to these challenges our research has identified robust and stable orbit

solutions and mission designs across the whole range of small body sizes and spin

states that are of interest for scientific and human exploration. This talk will describe

the challenges of exploring small bodies and present the practical solutions that have

been discovered which enable their exploration across the range of small body types

and sizes.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The scientific exploration of small bodies such as aster-
oids and comets has become a major component of the
world’s space robotic fleets, and are poised to become of
sincere interest to human exploration as well. The motiva-
tion for the study of these bodies are several, and mainly
include the fact that they preserve the conditions that were
present at the formation of the solar system and can also
serve as a detailed record of the evolution of the solar
system up to the present time. By studying these pristine
relics from earlier epochs of the solar system we understand
our own existence. Development of an improved under-
standing of small bodies also impacts the future of human-
ity, as asteroids and comets also prove the greatest threat to
future civilizations through the impact hazard. Thus, moti-
vations for the study of these bodies abound.

While there has been much study and analysis of inter-
planetary trajectories to these small bodies, the real technical
challenges emerge once close proximity operations are
considered. The small body environment is perhaps the most
strongly perturbed astrodynamic environment found in the
solar system. A combination of factors create these chal-
lenges, including strongly distended body shapes, a range of
spin states and rates, the strength of solar perturbations from
gravity and radiation pressure, and non-gravitational forces
from the bodies themselves in the case of comets. Due to
these effects in isolation or combination it is possible for
seemingly stable orbits to impact or escape from these bodies
in a matter of a few orbits, causing severe constraints on the
remote operation of vehicles in these environments. Despite
this complexity, the application of methods from astrody-
namics, celestial mechanics and dynamical astronomy can be
used to find practical mission operations plans and designs
across the spectrum of body sizes, types and locations.

There has been significant research on this challenging
problem over the last 20 years, resulting in a rich set of
papers published on many aspects of these problems, and
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culminating in a soon to be released book on the topic
[21]. In this paper some of the main issues related to
satellite motion in the vicinity of small bodies are
reviewed, focusing on the major perturbations arising
from the body shape, spin state and solar influence. This
paper only focuses on orbital approaches to these issues,
although it must be acknowledged that in many circum-
stances hovering [14,2] or flyby [30] approaches may be
more relevant to the mission design goals. This paper is
also restricted to ‘‘solitary’’ bodies and does not discuss
the many interesting aspects of mission design about
binary asteroids [23,1].

Given the orbital mechanics focus, this paper reviews
the issues at play and the practical mission design

‘‘solutions’’ for some of these extreme environments. To
provide an example for how these environments interact
a case study for orbital motion about a pre-rendezvous
model of the target of the Rosetta spacecraft, Comet 67P/
Churyumov-Gerasimenko (comet ‘‘67P/CG’’) is provided.
The effect of non-gravitational accelerations due to out-
gassing are not considered in detail, although these are a
significant and difficult topic of relevance for the Rosetta
mission [4,12].

2. Motivation

To motivate the specific discussion and review in this
paper three examples of the extreme results that can be
found for small body orbiters are presented. Fig. 1 shows
three orbits about the asteroid 433 Eros, accounting only
for the gravitational attraction of that strongly distended
body. One of these orbits is started at local circular
conditions and remains stable and bounded for arbitrary
periods of time. Another is shifted by 451 in phase angle
from the initial stable orbit and escapes within two orbits.
The third is started at local circular conditions a few
kilometers closer to the body and impacts within two
orbits—each orbit lasting on the order of 16 h. This range
of effects in close proximity to one geometric location is
due entirely to interactions with the body’s rotating
gravity field, and can be completely understood and
accounted for using astrodynamics theory [28].

Figs. 2 and 3 show two spacecraft orbits about a small,
spherical asteroid with the only perturbation arising from
the solar radiation pressure from the sun. Both of these
plots are shown in frames rotating with the asteroid’s
orbit about the sun, on the order of 11 per day, and thus
keeping the solar location fixed. Fig. 2 presents an
example of an initially stable orbit which loses its stability
and escapes from the asteroid when the asteroid’s dis-
tance from the sun becomes closer than a limit which can
be explicitly predicted. Fig. 3 shows two orbits, started at
locally circular conditions a distance of 100 m apart from
each other. It can be seen that even across this small

Fig. 1. Stable, escape and impacting orbits at Eros. The plots are in an

inertial frame while the attitude of Eros is shown at the initial conditions.

Fig. 2. Escaping orbit due to SRP.
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range of initial conditions, one orbit impacts while the
other one escapes. This shows the sensitivity of orbits to
modest changes in initial conditions and explicitly shows
the challenges that small body orbiters may face. Despite
the complexity of these motions, again it is possible to
understand them at a deep level and, using astrodynamics
theory, develop mission design solutions [22].

3. Orbital mechanics

This section briefly reviews the fundamental equations
of motion in the small body environment with specific
specializations to gravity dominated and solar dominated
regimes of motion. The general problem is first stated and
then some specific cases are discussed in more detail in
following sections.

As in most orbit mechanics problems, the fundamental
equations of motion can be most simply stated in an
inertial frame. Take a small body-centered frame with an
inertially fixed orientation. Assume an attitude matrix C
that takes a vector expressed in the small body-fixed
frame and rotates it into the inertial frame. Thus, C is a
function of the small body’s rotational dynamics and
defines its attitude. Then the equations of motion for a
satellite in its vicinity can be generally described as

€r ¼
@UðCT

� rÞ

@r
þ
@RSðr,dÞ

@r
þ
@RSRPðr,dÞ

@r
ð1Þ

where r is the spacecraft position vector relative to the
small body center of mass, U is the gravitational force
potential of the body, RS represents the gravitational
perturbation from the sun, and RSRP represents the solar
radiation pressure perturbation. The vector d represents
the position of the small body relative to the sun
(assumed to follow 2-body motion). The gravitational
force potential is most generally defined as

U ¼ G
Z
B

dmðqÞ

9rþq9
ð2Þ

where G is the gravitational constant, B represents the
small body mass distribution, and q is the position of a
differential mass element dm in the small body fixed
frame. The representation of this gravity field is usually
performed using spherical harmonic expansions or, when
in close proximity to the body, with specialized closed-
form solutions for a polyhedral-shaped body [31].

The solar gravitational attraction and the solar radia-
tion pressure are represented using simplified models
that capture the main aspect of these forces. Higher-
accuracy models can be developed, but the essence of
the problem arises from these first-order perturbations

RS ¼
mS

2d3
½3ðd̂ � rÞ2�r2� ð3Þ

RSRP ¼
b
d3

d � r ð4Þ

where mS is the sun’s gravitational parameter and
b¼ PFð1þrÞðA=mÞ is a combination of the sun’s radiation
flux PF � 1� 108 kg km3=s2=m2, the satellite’s reflectance
ðrÞ and the satellite’s area to mass ratio in units of kg/m2.
This solar radiation pressure model is commonly referred
to as the ‘‘cannonball’’ model, and it suffices to capture
the main perturbations from SRP, although improved
models have been developed in the literature [10].

To simulate the general motion of a satellite about a
small body then requires the specification of that body’s
gravitational field, U , its rotational dynamics, C, its orbit
about the sun, d, and the satellite area-to-mass ratio and
its optical properties, contained in b. The analytical study
of all of these effects in conjunction is difficult, and only
limited results are available [22]. However, if these effects
are viewed independently, splitting gravitational and
solar effects, then significant progress has been made in
understanding and analyzing the resultant behavior.
These effects are first discussed in isolation, an investiga-
tion of what happens when they are combined is given
later in this paper, using the Rosetta spacecraft at comet
67P/CG as an explicit example.

4. Gravity regime

First consider the motion of a satellite in the ‘‘gravity
dominated’’ regime, defined as one where the perturba-
tions from the solar gravity and radiation are small
compared to the gravitational attraction of the central
body. This is the regime that was experienced by the
NEAR spacecraft at asteroid Eros, and in general will occur
for bodies several kilometers or larger at 1 AU, for
example. Under this assumption the only force acting on
the satellite is from the rotating gravity field of the
small body.

4.1. Body-fixed frame analysis

The dynamical properties of motion in such a system
are studied by transforming to a body-fixed frame, which
removes the attitude matrix C from the equation but
introduces the angular velocity vector of the small body
x. A usual assumption is that the body follows torque-free

Fig. 3. Escaping/impacting orbit due to SRP.

D.J. Scheeres / Acta Astronautica 72 (2012) 1–14 3



Author's personal copy

rotation, which is generally accurate over time spans of
interest to a space mission. The equations of motion are then

€qþ _x � qþ2x� _qþx�x� q¼
@U
@q

ð5Þ

where q denotes the satellite position in the rotating, body-
fixed frame and all time derivatives are taken with respect to
this rotating frame (leading to the inclusion of Coriolis and
centripetal accelerations). There are two general cases that
occur for these systems. One is that the small body is in an
arbitrary rotation state, tumbling in inertial space and
following the torque-free solution. Then the angular velocity
vector is time-periodic in the body-frame and the term _xa0.
Dynamics in such a case have been explicitly studied for the
tumbling asteroid Toutatis [6], and some representative
orbits are shown in Figs. 4 and 5.

The more usual case is for the small body to be
uniformly rotating about its maximum moment of inertia.
Then the angular velocity vector is a constant, _o ¼ 0, and
the equations of motion in the body-frame become time-
invariant. In this case the dynamical system has a Jacobi
integral which is conserved, expressed as

J¼ 1
2 v2þ1

2ðx� rÞ � ðx� rÞ�U ð6Þ

There are further implications for the time-invariance of
these equations of motion beyond the existence of a
Jacobi integral. First, the existence of this integral allows
the use of zero-velocity surfaces to be defined and used to
establish stability of motion. Second, this implies that
equilibrium points can exist and that periodic orbits are
dense in the phase space of this problem and can be used
to study the phase space structure of this system.

4.2. Equilibria and periodic orbits

The computation and study of special solutions to the
equations of motion can form a strong basis for under-
standing the stability of motion in the small body orbiter
problem. When a periodic orbit or equilibrium point is
found, there are well defined methods for determining the
stability of motion in the vicinity of these solutions. The
stability of these solutions generically applies to the
neighborhood of that point in phase space as well, and
thus informs whether motion will remain in the vicinity
of an orbit for some time period or whether it will rapidly
depart on an unstable trajectory.

For the more general case when the asteroid is tum-
bling, periodic orbits can only have periods commensu-
rate with the time-periodic angular velocity period in the
body-fixed frame. Due to this equilibria are not possible,
and periodic orbits in general are ‘‘isolated’’ in phase
space, only existing when specific resonances between
the orbit period (in the body-fixed frame) and the angular
velocity period exist. Fig. 5 shows some representative
periodic orbits for such a case.

When the body is uniformly rotating it is possible to
define equilibrium points and families of periodic orbits.
The asteroid Eros, for example, has been extensively
analyzed in terms of the periodic orbit structure about
that body [28,8]. Indeed, the orbits shown in Fig. 1 can in
part be explained with this analysis. The stable orbit
presented actually is in the vicinity of the ‘‘closest, stable
direct periodic orbit’’ about that body. Thus, by starting an
orbit in its vicinity (where the usual circular speed
happens to be close to the true periodic orbit speed at
that orientation), one can have some confidence that the

Fig. 4. A stable orbit about asteroid Toutatis, shown in the body-fixed frame. The orbit plane is dragged with the tumbling motion of the asteroid.
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resulting motion may stay in the vicinity of that periodic
orbit. For this case, motion close to a strongly distended
gravitational field, the radius and velocity of an orbiter is
found to vary significantly as a function of its phase angle
with respect to the mass distribution. Thus, by shifting the
phase angle by 451 but keeping the speed constant, the
initial conditions are moved away from the relatively
narrow stability zone about the stable periodic orbit
family members at that distance from the asteroid. Thus,
the resultant motion is highly unstable and the orbiter
escapes within a few orbits. Fig. 6 shows a direct applica-
tion of periodic orbit stability computations to mapping
out the phase space about a uniformly rotating body. By
computing families of periodic orbits that transitioned
from planar to out-of-plane and tracking the stability of
these orbits, the inclination at which these orbits transi-
tioned from unstable to stable enables a heuristic limit on
orbit semi-major axis and inclination for stability to be
developed.

The computation of equilibrium points (i.e., 1:1 reso-
nant orbits) also allows for such analyses to be made. It is
significant to note, however, that the majority of asteroids
have only unstable equilibria in their vicinity [15]. These
relative equilibria generally lie near the body’s equatorial

plane (the plane perpendicular to the body’s axis of
maximum moment of inertia), with the number of rela-
tive equilibria being controlled by the shape of the
body. Most small bodies have just four relative equilibria,
however cases have been analyzed that have several
additional equilibria. As an example of this, Fig. 7 shows
a pole-down view of the asteroid Betulia, which has a
triangular shape when viewed from this direction [9]. This
body has six relative equilibrium points, all near its
equatorial plane.

For a given shape and spin rate, the distance of these
points relative to the asteroid is a function of the body
density (which often must be assumed). For larger den-
sities the equilibrium points move further from the body
and the possibility for at most half of the equilibrium
points to become stable occurs. As the density decreases
these points all move toward the central body and in
general all become unstable.

Generally speaking, the placement of a satellite in or
near any of these relative equilibria is not a feasible
mission design. First, most of these points are unstable
for small bodies of interest. Further, the timescale of their

Fig. 5. Periodic orbits about asteroid Toutatis, shown in a body-fixed

frame. The top orbits have period equal to the Toutatis angular velocity

vector in the body frame. The bottom orbit has period equal to twice this.
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instability tends to be a factor of a few faster than the
asteroid’s rotation period. Thus at Eros, for example, which
has a 5.27 h period, the characteristic instability time of its
four equilibrium points ranges from 40 to 100 min [28].
Such a rapid divergence of a satellite from its nominal
location would be extremely challenging to control from the
ground. Similar results are found for almost all small bodies
studied to date.

4.3. Zero-velocity surfaces

For uniformly rotating bodies the existence of the
Jacobi integral allows for zero-velocity surfaces to be
defined and used to design trajectories that cannot impact
with the central body, of significant interest for close-
proximity orbit designs. If the z-axis is aligned with the
angular velocity vector, then the zero-velocity surfaces
can be stated in an implicit form as

1

2
o2ðx2þy2ÞþUðx,y,zÞZ�C ð7Þ

where C ¼ Jðx,y,z, _x, _y, _zÞ is the value of the Jacobi constant.
The Jacobi integral can also be stated in terms of a
Tisserand-condition like form in terms of the osculating
orbit elements of periapsis radius, eccentricity and incli-
nation

mð1þeÞ

2rp
�o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrpð1þeÞ

q
cosðiÞ�Uðrp,r̂Þ ¼ J ð8Þ

where the gravitational force potential is evaluated at a
position vector interpreted as periapsis, and rp ¼ að1�eÞ.
This allows the osculating orbit elements to be directly
related to the Jacobi constant.

Similar to the restricted 3-body problem, the applic-
ability of the zero-velocity surfaces as sharp constraints
for motion degrades as the inclination increases, thus this
is most applicable for direct motion (i.e., for inclinations
close to 01). Using these surfaces it is possible to delimit
relative locations and speeds that ensure that a spacecraft
will not be able to impact with the asteroid surface. Fig. 8
shows such an application for the asteroid Eros, delimit-
ing the combination of periapsis radius and eccentricity to
ensure that impact with the asteroid cannot occur. Note
the consistency with Fig. 1, where impact of any of these
orbits cannot be ruled out a priori.

4.4. Analytical constraints

Finally, it is possible to place sharp analytical limits
and predictions for long-term motion in the gravity
dominant regime through the application of traditional
celestial mechanics techniques of averaging, and other
related approaches. Using these techniques at small
bodies presents a challenge for these approaches as the
perturbation gravity coefficients are generally much lar-
ger than have been practically dealt with for precision
analytical theories of motion. Thus, inclusion of higher
order terms may still not yield a fully convergent solution,
taking away some of the motivation for the development
of such higher-order theories. Instead, relying on first-
order estimates of these results can often yield results of

sufficient precision to enable the first round of mission
design, with iterations relying on the use of detailed
simulations. Recall the simple formula for the precession
of an orbiter’s longitude of the ascending node and
argument of periapsis due to the oblateness gravity
coefficient C20.

_O ¼
3nC20R2

2p2
cos i ð9Þ

_o ¼ 3nC20R2

2p2

5

2
sin2 i�2

� �
ð10Þ

As a simple way to compare the orbital environment
about a small body with an Earth orbiter, compare the
magnitude of ð3n9C209R

2
Þ=2a2 of the NEAR spacecraft

about Eros with those of an Earth orbiter. Making this
comparison at a similar distance from each body (as
measured in mean radii) shows that the precession rate
about Eros is over 200 times faster than an Earth orbiter’s
precession rate.

A more serious issue for analytical theories for orbiters
is the strong influence that the C22 gravity coefficient has
on the orbital dynamics about a strongly-distended small
body. For Earth orbiters, this is a very small perturbation
and its effect generally averages out over time (except for
orbits in a 1:1 resonance). At small bodies this gravity
coefficient is extremely important and is what causes
most of the observed chaotic motion in these systems. In
particular, in Fig. 1 both the impacting and the escaping
trajectories occur so rapidly because of the interaction of
the satellite with Eros’ C22 gravity coefficient. The chal-
lenge is that averaging procedures no longer work for
such time-varying components of a gravity field, as the
resultant change in an orbit depends sensitively on initial
conditions. Taking a different analytic approach to this
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problem, it is possible to develop explicit predictions on
the expected change in an orbit’s state over one interac-
tion with such a rotating gravity field [19]. Ignoring terms
that can be demonstrated to be small, it is possible to
predict the change in an object’s energy and angular
momentum over one orbit about a system as

DE¼�6oC22R2

ffiffiffiffiffi
m
p3

r
cos4ði=2Þ sin 2ðyÞI1

2ðrp,eÞ ð11Þ

DG¼�6C22R2

ffiffiffiffiffi
m
p3

r
cos4ði=2Þ sin 2ðyÞI1

2ðrp,eÞ ð12Þ

I1
2 ¼ 2

Z p

0
ð1þe cos f Þ cosð2f�2otÞ df ð13Þ

where E is the Keplerian energy, G is the angular momen-
tum magnitude, o is the asteroid rotation rate, C22R2

is the gravity coefficient times the normalizing radius
squared, m is the asteroid gravitational parameter, p is the
orbit parameter, i is the inclination from the equatorial
plane, y is the longitude that the periapsis makes in the
body-fixed frame, measured from the long-end of the
asteroid. The integral I1

2 is a Hanson Coefficient [20], in the
integral t is time and f is true anomaly. The integral can be
expressed as a function of periapsis radius rp and orbit
eccentricity e, and is shown in Fig. 9.

From these functional relations it can be noted that
orbit-to-orbit change in a trajectory depends on where in
the body-fixed frame periapsis passage occurs. When it lies
in the first and third quadrants (i.e., over the leading edges
of the rotating body) the energy and angular momentum
are both decreased, while when over the trailing edges
(the second and fourth quadrants) the energy and angular
momentum are boosted. These changes are strong enough
to change an orbit’s energy from negative (bound) to
positive (unbound) over one passage (cf., Fig. 1).

These results also suggest a mission design strategy. As
the inclination increases (up to retrograde, or 1801 in the
limit) these effects become diminished. There are other

terms that contribute to changes in the energy and angular
momentum as the orbit becomes retrograde, however they
tend to have a much smaller magnitude. Thus, an effective
strategy for minimizing the perturbations from these terms
is to place spacecraft in retrograde orbits about the body,
which is precisely the strategy taken by the NEAR mission at
Eros [17]. This analysis also provides an analytical under-
standing for the stability of high inclination orbits apparent
in Fig. 6.

5. Solar dominated regime

Now consider orbital mechanics about small bodies
when the Sun is the dominant source of perturbations.
There are two primary effects from the Sun that influence
motion, its gravitational attraction and the solar radiation
pressure (SRP) that acts on an orbiter. Except for objects
with very low area to mass ratios, SRP is usually dominant
over tides for spacecraft orbit dynamics. There are two
items of interest when dealing with solar perturbations.
First is under what conditions an orbiter will be able to
stay bound to a small body in the presence of these
additional forces. Second is how their orbital dynamics
will evolve over time due to these perturbations. The
methodology for answering these questions are quite
different, and each is reviewed below. The assumption
for this section is that the central body is spherical and
modeled as a point mass. In later sections this assumption
is relaxed.

5.1. Escape limits

Two different approaches have been taken in the
literature to establish limits for orbital motion about a
spherical body in orbit about the Sun and subject to solar
radiation pressure (SRP). Using a non-rotating model that
does not include the solar gravitational attraction, Dan-
kowicz [5] established a conservative maximum limit for
when a satellite would escape from its orbit about a
central body. This was expressed in terms of orbit semi-
major axis by Scheeres [22] and gives an upper limit
beyond which a spacecraft will escape

aMax ¼

ffiffiffi
3
p

4

ffiffiffiffi
m
b

r
d ð14Þ

Using a different approach, with a more realistic model
incorporating the elliptic motion of the small body about
the Sun and the solar gravitational attraction, Scheeres
and Marzari [25] derived an exact necessary condition for
escape from a spherical body in orbit about the Sun. The
full criterion is complex, but it can be simplified under a
few assumptions to yield a similar form to the Danck-
owicz bound. It is a sufficient condition for stability, and
thus for a spacecraft to be definitely bound in orbit about
a small body the semi-major axis should be less than

ao
1

4

ffiffiffiffi
m
b

r
d ð15Þ

and differs from the other result by a factor of
ffiffiffi
3
p

. The
true limit depends on a number of additional parameters,
and this sufficiency condition has been validated with

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized Periapsis Radius

Lo
g 1

0 
(e

)

I12/p3/2

1

3 2

1
22 -0.1 2

3

-0.1
0.1

0.1

-3

Fig. 9. Integral I1
2 as a function of normalized radius of periapsis and

eccentricity. Note that 9I1
29rp [19].

D.J. Scheeres / Acta Astronautica 72 (2012) 1–14 7



Author's personal copy

numerical simulations and shown to be sharp for some
orbit geometries [25].

Note that these limits explicitly predict that as a small
body moves on an elliptical orbit about the Sun that it is
possible for a previously stable orbiter to escape from
the body, as d will decrease as perihelion is approached.
In Fig. 2 this is explicitly shown, as the orbit is initially
bound to the body but abruptly escapes once the small
body’s distance from the Sun passes a given limit. Simi-
larly, in Fig. 3 the initial orbit semi-major axis is chosen to
just barely violate the appropriate stability limit, leading
to immediate escape for the larger orbit and to a bound
orbit for the closer one (which eventually impacts). These
bounds serve as a crucial design tool for developing
mission plans about smaller bodies.

5.2. Secular orbital evolution

Using the above limits to ensure bounded orbits about
the central body, it becomes possible to perform an aver-
aging analysis to extract the averaged equations of motion
for the orbit constants of a satellite. These can then be
solved to develop specific predictions on the secular evolu-
tion of orbits subject to SRP. The first-order average of the
SRP potential yields a particularly simple result

RSRP ¼
1

2p

Z 2p

0
RSRP dM ð16Þ

RSRP ¼�
3

2

b
d2

âd̂ � e ð17Þ

where the average is over one orbit of the satellite about the
small body and e is the eccentricity vector. This problem has
been studied in the past, with Hénon and Mignard [11] first
noting that the averaged equations can be solved in closed
form for a non-rotating SRP force (i.e., a body not moving
relative to the Sun), and Scheeres [18] explored this solution
and generalized it to elliptic motion about the Sun. Richter
and Keller [13] developed a simpler solution technique for
the non-rotating case and Scheeres [22] again generalized
this case to elliptic motion about the Sun, and explored
several aspects of its solution that are relevant for mission
design, reviewed here.

The solution procedure adopted by Richter and Keller
and further generalized by Scheeres uses the eccentricity
vector and the scaled angular momentum vector as
orbital elements. Since the semi-major axis is conserved
for the secular potential defined above, the usual angular
momentum vector is scaled by

ffiffiffiffiffiffima
p

, or r � V=
ffiffiffiffiffiffima
p

¼ h.
Then the magnitude of h is

ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2
p

and the scaled angular
momentum and eccentricity vectors satisfy the identities
e � h¼ 0 and e � eþh � h¼ 1. With these definitions, the
eccentricity and scaled angular momentum vector of a
small body orbiter subject to solar radiation pressure
varying with the elliptic orbit of the small body about
the Sun can be solved in closed form, with the details
given in Scheeres [22]. When transformed into a rotating
frame with the small body’s heliocentric true anomaly as
the independent variable the equations are reduced to a
time-invariant linear system, and thus can be solved in

closed form. This solution is expressed as

e

h

� �
¼FðcÞ

eo

ho

" #
ð18Þ

where the ‘‘o’’ subscript denotes an initial condition. The
matrix F is an orthonormal 6�6 matrix and has compo-
nents

FðcÞ ¼ cosðcÞI6�6þð1�cosðcÞÞ

�
cos2 Lẑ ẑþsin2 Ld̂d̂ �sin L cos Lðẑ d̂þ d̂ẑÞ

�sin L cos Lðẑ d̂þ d̂ẑÞ cos2 Lẑ ẑþsin2 Ld̂d̂

" #

þsinðcÞ �cos L ~̂z sin L ~̂
d

sin L ~̂
d �cos L ~̂z

" #
ð19Þ

where c¼ f=cos L, ẑ is the axis about which the asteroid
revolves about the Sun (perpendicular to d̂), two multi-
plied vectors is a dyad, and ~̂z signifies the skew-sym-
metric cross-product tensor. The parameter L is defined
as a function of the asteroid mass, orbit satellite’s orbit
and SRP parameter as

tan L¼
3b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

mmSunasð1�e2
s Þ

s
ð20Þ

where mSun is the Sun’s gravitational parameter and as and
es are the asteroid’s heliocentric semi-major axis and
eccentricity. The parameter L is a constant and is well
defined for any asteroid and satellite in orbit about it. As
the SRP perturbation becomes large L-p=2, while L-0
for a weak SRP perturbation. The NEAR spacecraft at Eros
had a small value for this parameter, while the Hayabusa
spacecraft at Itokawa and the Rosetta spacecraft at comet
67P/CG will have large values greater than 451. Note that
the solution is periodic in c, and that over one asteroid
year the SRP solution advances 2p=cos L times. Thus for a
strongly perturbed system this solution will repeat fre-
quently, and for a weakly perturbed system will repeat
approximately once per year. Note that the solution is
expressed relative to a frame rotating with the Sun about
the small body and incorporates the effect of varying SRP
strength with distance.

Despite its simple form, the solutions for eccentricity,
inclination, longitude of the ascending node and argument
of periapsis are quite complex and change drastically as a
function of their initial conditions and parameter L. Two
general cases are discussed. First, if the angular momentum
vector of the satellite is parallel to the vector ẑ (i.e., the orbit
is in the ecliptic) and the orbit is initially circular the
evolution of eccentricity will follow the equation

eðcÞ ¼ 2 sin L9sinðc=2Þ9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2L sin2

ðc=2Þ

q
ð21Þ

The evolution of the eccentricity as a function of c is shown
in Fig. 10 for a range of L. Note the complex behavior and
that the maximum value of eccentricity goes to unity when
LZ451. This result precisely explains the bound orbit that
impacts shown in Fig. 3. Even though an orbit’s eccentricity
goes through unity (i.e., its periapsis radius goes to zero)
does not mean that it will immediately impact, as periapsis
may increase above the asteroid surface by the time the
satellite passes through periapsis again. However, if the
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eccentricity repeatedly goes through unity (as in the exam-
ple) it becomes likely that it will eventually impact.

The most important aspect of this solution, however, is
that it admits constant orbital elements for special initial
conditions. Specifically, if the angular momentum is initially
directed toward or away from the Sun, the eccentricity
vector directed above or below the ecliptic plane (respec-
tively), and the eccentricity chosen to equal cos L, then the
orbit remains constant on average. As described, these orbits
lie in the terminator plane of the orbit, although they are
slightly displaced away from the Sun [16]. Thus, these orbits
automatically track the Sun, due to SRP torques acting on
the orbit angular momentum. Also significant, the frozen
eccentricity becomes more circular as the orbit perturbation
becomes stronger, and thus these orbits are well defined for

very small bodies, so long as the orbit remains bounded.
Finally, the orbit remains frozen even as the asteroid travels
through perihelion and aphelion, due to the balance
between true anomaly rate of change and variation in SRP,
as both vary as 1=d2. Fig. 11 shows a frozen terminator orbit
about asteroid 1989ML numerically simulated over a full
asteroid year, incorporating the full elliptic motion of that
body about the Sun.

These orbits serve as the nominal choice for any orbital
mission to a small asteroid, as almost all other orbits
about these bodies will suffer large variations in eccen-
tricity and the other orbit elements. In a recent paper,
Shupe and Scheeres [29] probe the minimum asteroid size
for when such orbits remain feasible. For an Orion-class
spacecraft they were able to find a feasible range of orbits
about a body as small as 10 m across.

6. Mixed results

The above analyses are each idealized in that they
neglect the effect of the other perturbation. For real systems,
however, both gravity and SRP perturbations are present
and can provide real limitations on the mission design
results discussed above. Analyzing both gravity and SRP
perturbations jointly is difficult, and only limited analytical
results have been found [22]. In one set of analyses it was
shown that despite the joint effects of gravity and SRP it
would have been feasible for the Japanese Hayabusa space-
craft to orbit about the asteroid Itokawa [24]. Thus, the
mission design principles outlined here can still be applied
and used for the initial design of a close proximity orbital
mission at a small body. As a case in point, in the following
such an analysis is performed for the Rosetta spacecraft at
Comet 67P/Churyumov-Gerasimenko, using previously pub-
lished shape models of that body.

7. Rosetta at 67P/CG

7.1. Model for Rosetta and 67P/CG

Table 1 summarizes the various gravitational and non-
gravitational parameters used to describe the Rosetta space-
craft at comet 67P/Churyumov-Gerasimenko (67P/CG). The
derivation of these results is outlined in the following. All of
the following simulations incorporate all of the perturba-
tions arising from the above models, while the specific
design results only focus on the ideal equations.

The model for the Rosetta spacecraft is not precise
but based on descriptions of the satellite size and
probable mass taken from the gray literature. The space-
craft is rather massive with its total mass ranging from
2300-1700 kg over the life of the mission, however the
total projected area that the satellite will present to the
Sun is also large, at approximately 77 m2. Thus this yields an
area to mass ratio that ranges from 0.033 to 0.045 m2/kg.
For definiteness in the following a value of 0.0385 is taken
with a zero reflectance model. This leads to a value of
b¼ 3:85� 106 km3=s2 or 1:711� 10�10 km AU2=s2. More
useful sometimes is a direct comparison of b to the solar
gravitational parameter of mSun � 1:33� 1011, yielding
b=mSun ¼ 2:89� 10�5.

Fig. 10. Time histories of eccentricity for a range of perturbation

strengths [22].

Fig. 11. Frozen terminator orbit propagated in a numerical simulation

over a full asteroid year [22].
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The comet model is based on observations of this
target and, while of low overall resolution, should be a
reasonable stand-in for the real shape pending high
precision observations of the comet by the Rosetta space-
craft. The specific shape and other information is taken
from Lamy et al. [7]. The shape has a mean radius of
1.9 km and an assumed density of 0.37 g/cm3. Taken
together they give a total gravitational parameter of
� 7� 10�7 km3=s2. Its spin period was estimated to be
12.55 h and its spin state assumed to be uniform rotation,
with its pole at a 1381 obliquity. Fig. 12 shows this
shape model.

From the shape the constant density gravity coeffi-
cients C20 and C22 can be computed, shown in Table 1.

Finally, the comet orbit is specified by a semi-major
axis of 3.468 AU and an eccentricity of 0.64. Thus, over a
course of its year its distance from the Sun ranges from
1.25 to 5.69 AU, a sizable range. Given these specifications
it is possible to define a relationship for the angle L as

tan L¼ 1:08
ffiffiffi
a
p

ð22Þ

tan L¼ 1:488
ffiffiffiffiffiffiffiffi
a=R

p
ð23Þ

where a is specified in kilometers and R is the mean
radius in kilometers. Thus, at the mean radius of the
comet the angle L� 561 and grows larger as the semi-
major axis increases. Recall from Eq. (21) that for LZ451
all planar solutions will go through a unity value of
eccentricity, barring other perturbations. Thus for all orbit
radii about comet 67P/CG the solar radiation pressure will
be an important and potentially dominant force.

7.2. Analytic results

First consider the limiting semi-major axis for the
spacecraft to be in a bound orbit about the body. Using
the previously defined values amax ¼ 27:7d km, where d is
the comet-Sun distance in AU. Thus this limit varies
from 34.6 to 157.6 km between perihelion and aphelion,
respectively.

Now consider motion close to the body. The comet has
four relative equilibria about it, shown in Fig. 13. All four
of these points are unstable, and thus are not viable
candidates for placement of an orbiter or any other sort
of vehicle. Also shown in this figure are the projection of
the zero-velocity surfaces onto the equatorial plane of the
comet. The colors indicate the surface slopes on the
comet, and range from 301 (red) to near 01 (blue). Note
that these slopes are relatively coarse, given the poor
resolution of the shape model. The histogram of slopes
over the current shape model (incorporating both grav-
itational attraction and centripetal accelerations [27]) is
shown in Fig. 14.

Eq. (11) can be used to estimate the effect of the C22

gravity field on close proximity dynamics. Assuming
a conservative value of I1

2 ¼ p (which is close to the
expected value for an orbit close to the surface of the
comet) an orbit with semi-major axis equal to the comet’s
mean radius can suffer a change in its energy (and of its
semi-major axis) on the order of 20% from orbit to orbit.
This is an extremely large perturbation and indicates that
direct orbits close to the comet nucleus will suffer large

Table 1
Assumed Rosetta and 67P/CG parameters.

Parameter Value Units

b 3.85�106 km3/s2

tan L 1:08
ffiffiffi
a
p

(–)

Mean radius 1.9 km

Density 0.37 g/cm3

m 7�10�7 km3/s2

C20 �0.4599 km2

C22 0.0876 km2

Period 12.55 h

Obliquity 138 1

Semi-major axis 3.468 AU

Eccentricity 0.64 (–)

Perihelion 1.25 AU

Aphelion 5.69 AU

Fig. 12. Shape model of Comet 67/P CG [7].

Fig. 13. Zero-velocity curves and equilibrium points about comet

67P/CG. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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perturbations. Note that polar orbits will have a quarter of
this perturbation and that the strength of these perturba-
tions (in terms of relative change in orbit energy) will
scale as 1=

ffiffiffi
a
p

. Relevant to this, it is found in Scheeres
et al. [28] that a reasonable limit in fluctuations in the
orbit energy for stability is that they be less than � 5%.
For a terminator orbit, the inclination will be on the order
of 421 or greater with a scaling of the fluctuation term
on the order of 0.75. Thus, to have the orbit-per-orbit
fluctuations to be reduced to 5% would require an orbit
semi-major axis on the order of 17 km. This is not a
rigorous limit, however, and only provides some guidance
on where the approximate minimum orbit should be.

Finally, the highly oblate shape of the comet will also
affect the secular rates of the longitude of the node and
the argument of periapsis when close to the body. Using
the classical formula for the longitude of the node to
estimate the order of magnitude of this effect, allows its
coefficient 3n=2=½a2ð1�e2Þ�9C209 to be used as a measure.
For an orbiter at the surface of the comet this angular rate
is 2:2� 10�4 rad=s, or 451=h. This rate will decay as 1=a3:5.

7.3. Direct simulations

In the following a range of orbits about the comet
nucleus are simulated, using the above perturbations. This
allows the mission design results and limits outlined in
this paper to be verified, and to arrive a set of feasible
trajectories that an orbiter could take at this comet.
Fig. 15 shows the range of distances between the comet
and the Sun over the simulation timescale. Note that
perihelion occurs at approximately 7500 h (312.5 days)
into the simulation.

7.3.1. Direct orbits

Orbits in close proximity to the comet are probed first. It
is expected that direct orbits close to the nucleus should be
highly unstable, which is verified with numerical integra-
tions. As the initial orbit radius becomes higher, these orbits
are stable over longer periods of time, however the effect
of the SRP perturbations also influences their motion, and if
left uncontrolled drives these orbits into instability. Figs. 16

and 17 show the semi-major axis and eccentricity of a
number of initially circular orbits propagated up to
100 days. Note the instability of the closest orbit, but that
higher orbits may be stable over longer time spans. All of
the orbits experience a growth in eccentricity, however.
Note that these orbits are in the comet nucleus’ equatorial
plane, which is inclined by up to 481 from the comet’s
heliocentric orbit plane. From these figures note that larger
direct orbits can be maintained, although if uncontrolled
will have unacceptably high eccentricities.

7.3.2. Retrograde orbits

As a possible remedy to the instability of direct orbits,
consider the dynamics of retrograde orbits about the
comet. Very close orbits are stable, as shown in Figs.
18–20. As the comet may be outgassing, these orbits may
be, in fact, too close for comfort to the surface. Also, even
though they are in close proximity, they are not ideal for
deployment of a lander as the relative speed with respect
to the comet surface is relatively large as the spacecraft
and comet nucleus are counter-rotating. Note that
when in close proximity to the gravity field, the large

Fig. 14. Slope histogram for comet 67P/CG.

Fig. 15. Comet 67P/CG radial history over the simulations presented

below.

Fig. 16. Semi-major axes of a number of direct orbits about 67P/CG.
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C20 coefficient causes the argument of periapsis and
longitude of the node to have very fast precession rates.
This allows these close orbits to forestall the secular
growth in eccentricity that would otherwise occur due
to the SRP perturbation. As larger semi-major axis values
are considered, however, an increase in the secular

growth of the eccentricity does occur and is clearly seen
in Fig. 19. These lead to a decrease in the periapsis and
close interactions with the rotating mass distribution.
While these are not as strong as the direct interactions,
they can affect the orbit dynamics, which is seen in the
fluctuations of the semi-major axis in Fig. 18. Note the
clear correlation between the fluctuations in eccentricity
and proximity to perihelion (comparing times with
Fig. 15). Also note that orbits at a semi-major axis of
5 km remain reasonable over a long time span, and only
suffer larger excursions in eccentricity when around
perihelion. Even at a distance of 7.5 km, however, the
fluctuations in eccentricity already become significant
well before perihelion and would require some active
monitoring and control. Thus, retrograde orbits could be
considered for operational use at the comet, pending
investigation of the effects of outgassing.

7.3.3. Terminator orbits

Finally, consider the dynamics of terminator orbits for
the Rosetta spacecraft about the comet. It has been noted
that these orbits will remain ‘‘frozen’’ in the frame
rotating with the comet Sun-line. Even though the Sun-
line has a wide range of rotation rates, the balance
between the SRP torque and the true anomaly rate is
such that the orbiter will nominally remain close to the
terminator plane throughout the comet year, if designed
correctly. Note that the SRP angle L ranges from 561 at
the surface to 811 at 35 km, the limit for bounded motion
at perihelion. Thus the eccentricity of these orbits should
range from 0.56 to 0.155 at the upper limit of semi-major
axis. For orbits away from perihelion, this upper limit can
be higher and the eccentricity even lower.

In addition to this upper limit on orbit size, arising
from the limits for bounded motion about the nucleus,
there will also be a lower limit in orbit size related to the
interaction of the spacecraft with the comet gravity field.

Fig. 17. Eccentricities of a number of direct orbits about 67P/CG.

Fig. 18. Rosetta retrograde orbits: semi-major axis.

Fig. 19. Rosetta retrograde orbits: eccentricity.

Fig. 20. Rosetta retrograde orbits: trajectory plots.
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Recall that the secular orbit rates in longitude and argu-
ment of periapsis are quite large. Thus, for a low enough
semi-major axis, the secular rate of the orbit node due to
the C20 and higher order zonals can start to act against the
torque on the orbit that SRP provides. This mismatch can
cause the orbit to librate about the terminator plane,
allowing the SRP perturbation to start acting on the orbit
eccentricity. This in turn causes the orbit periapsis to drop
closer to the mass distribution and can excite fluctuations
in orbit energy and angular momentum due to interac-
tions with the C22 coefficient. Thus, as the orbit radius
drops it is expected that there will be a lower limit
for long-term orbit stability. This has been analyzed in
some detail in Scheeres [22]. Figs. 21–23 show numerical
integrations of a series of Rosetta orbits started at differ-
ent frozen orbits about comet 67P/CG. The initial condi-
tions were all chosen in accordance with e¼ cos L for the
given semi-major axes, and thus would have had fixed
values of eccentricity for orbits about a sphere.

Looking at Fig. 23 explicitly, note that the orbit at a
distance of � 35 km is bounded, and shows mild signs
of instability at perihelion. The larger orbit is definitely
stripped out of orbit by the time perihelion is reached. Note
that with such a high comet eccentricity, the rate of
decrease in the orbit distance d is very high around
perihelion, and thus orbits that would eventually be
stripped out of orbit may not have sufficient time to realize
this final state. At the lower range of semi-major axis a
different behavior is seen, with interactions between the
mass distribution and the orbiter eventually destabilizing
their orbits and leading to impact. The interactions in this
regime are difficult to analyze—as a case in point the
intermediate orbit actually impacts prior than the closer
orbit. The specific reason for this may be complex and relate
to the detailed dynamical evolution of each case.

One conclusion which can be drawn for this current
model is that orbits with semi-major axis between 15 and
35 km are definitely bound to the nucleus and, barring
other perturbations such as comet outgassing, would
remain in orbit about the nucleus indefinitely. Given this
robust range of orbits, it is easy to assert that the
terminator class of orbit are a feasible orbit design with
respect to long-term stability.

7.4. Outgassing

Finally, a few observations about outgassing at comets
are given. There have been a few analyses of orbital
motion about comets accounting for outgassing effects
in addition to solar radiation pressure and nucleus gravity
effects. Scheeres et al. [26] study the orbital dynamics for
the Rosetta orbiter about the original target, Wirtanen.
Papers by Byram et al. [4,3] have studied aspects of comet
outgassing models, navigation and mission designFig. 21. Rosetta terminator orbits: Sun-view.

Fig. 22. Rosetta terminator orbits: transverse view.

Fig. 23. Rosetta terminator orbits: semi-major axis.
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questions for cometary orbiters. More recently Mysen
et al. [12] have started modeling more complex out-
gassing fields and, in preparation for the rendezvous of
Rosetta with comet 67P/CG, have begun to develop a high
fidelity model.

The truth of the matter is that the outgassing environ-
ment close to a comet nucleus is not well understood.
Thus, the data which the Rosetta spacecraft acquires on
these effects will be of fundamental importance in under-
standing how spacecraft interaction with these fields
should be modeled. Despite this large uncertainty there
are still a few principles which can indicate how stable
orbits could be developed. The fundamental observation
is that the cometary activity should be most active at the
sub-solar point and later in the day, while being mini-
mum at the Sun-rise terminator. Of course, this depends
on the orientation of the comet rotation state as well.
Depending on the thermal inertia of the nucleus, the
outgassing may also be past its peak at the Sun-set
terminator. This sets up the terminator orbits as having
an additional advantage, as they may be exposed to the
least extreme outgassing environment, a similar conclu-
sion to that reached in Scheeres et al. [26] and studied
further in Byram et al. [3]. We do not comment on the
outgassing environment beyond this.

8. Conclusion

The orbital environment about small solar system bodies
such as asteroids and comets has been analyzed in detail.
Specific mission design solutions have been formulated
across the range of body size and shape. As a specific
application, the orbital dynamics environment which the
Rosetta spacecraft will encounter at Comet 67P/Churyu-
mov-Gerasimenko was studied and specific predictions and
design suggestions made. Orbital mechanics about these
bodies serve as a challenging problem for astrodynamics,
and present real opportunities for the continued advance-
ment of the field in pursuit of better understanding motion
in these extreme environments.
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