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Abstract The stability of the Full Two-Body Problem is studied in the case where both
bodies are non-spherical, but are restricted to planar motion. The mutual potential is expanded
up to second order in the mass moments, yielding a highly symmetric yet non-trivial dynam-
ical system. For this system we identify all relative equilibria and determine their stability
properties, with an emphasis on finding the energetically stable relative equilibria and con-
ditions for Hill stability of the system. The energetically stable relative equilibria always
correspond to the classical “gravity gradient” configuration with the long ends of the two
bodies pointed at each other, however there always exists a second equilibrium in this config-
uration at a closer separation that is unstable. For our model system we precisely map out the
relations between these different configurations at a given value of angular momentum. This
analysis identifies the fundamental physical constraints and limitations that exist on such
systems, and has immediate applications to the stability of asteroid systems that are fissioned
due to a rapid spin rate. Specifically, we find that all contact binary asteroids which are spun
to fission will initially lie in an unstable dynamical state and can always re-impact. If the
total system energy is positive, the fissioned system can disrupt directly from this relative
equilibrium, while if it is negative the system is bound together.

Keywords Coupled rotational and translational motion · Asteroids · Stability

1 Introduction

The dynamics of two arbitrary rigid bodies in orbit about each other is a fundamental prob-
lem in Celestial Mechanics which has been studied extensively in the past. Classical stud-
ies, characterized by Kinoshita (1972), have often focused on applying perturbation theory
to the problem, under the assumption that one or both of the bodies are nearly spherical
and that the coupling between rotational and translational motion is weak and may even be
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104 D.J. Scheeres

separated from each other. A series of more recent studies have revisited this classical problem
allowing these restrictions on the bodies to be relaxed. Notable papers in this area are those by
Wang et al. (1991); Maciejewski (1995); Koon et al. (2004); Cendra and Marsden (2005).
We have also been studying this problem, under the name of the Full Two-Body Problem,
and have identified a number of fundamental stability criteria that tell when the two rigid
bodies are Hill stable and are stable against impact (Scheeres 2002). In (Scheeres 2006) we
developed a general analysis for computing relative equilibria in the problem when one of the
bodies is a sphere and the other has an arbitrary gravity field, and developed explicit methods
for evaluating the energetic and spectral stability of these relative equilibria. A specific study
of orbital equilibria for a sphere-ellipsoid system was made in Bellerose and Scheeres (2008).
This previous work has found application in studying the stability of asteroidal systems when
they are spun to rotation rates at which different parts of the body achieve orbit relative to
each other (Scheeres 2007, 2009).

In the current paper we continue to extend our explicit analysis of this problem for arbitrary
gravity fields. This paper reports our investigations of the stability of a Full 2-Body System
when the mutual potential between the two bodies is expanded to second order. In this case
the dynamical system can have a symmetry which allows the system to be constrained to lie
in a plane. This restriction is justified in that it allows us to easily reach definite conclusions
on the relative equilibria and their stability for this system. It will also serve as a first order
result that can lead to improved understanding of the more general problem. By emphasizing
the relation between fundamental system quantities such as energy and angular momentum
to the stability of the system, the methods we use to analyze the current, simplified problem,
should be transferrable to the full problem.

In addition to describing a complete analysis of the stability of this system, we also dis-
cover some new results that may have further implications for the evolution of small asteroidal
systems that have been spun to disruption. Specifically, we find that any contact binary that
has been spun to fission will initially lie in an unstable relative equilibrium. A study of the
properties of this equilibrium state show that, in the absence of energy dissipation, the system
may undergo disruption (i.e., mutual escape) or be trapped in a chaotic dynamical state as a
function of the body moments of inertia and the mass fraction between the bodies. We also
find that it is always possible for a fissioned contact binary to re-impact. If energy dissipation
occurs, we see that there always exists a second, stable relative equilibria at a larger distance
where the system is at its minimum energy configuration for a give value of angular momen-
tum. The implications of these mathematical results for physical systems will be explored in
the future.

2 Physical system and its equations of motion

Consider two bodies, P1 and P2, interacting gravitationally with each other, with an assumed
symmetry about a common equatorial plane allowing us to restrict our system to planar
motion. Thus we can consider the system as having two relative coordinates between the
centers of mass and for each body to only rotate about one of its moments of inertia, which
we always assume to be the maximum moment of inertia. We start in an inertial frame and
write the kinetic and potential energy. Then we transform to a rotating frame. Following
this we find the angular momentum integral and eliminate it from the system, resulting in a
reduced dynamical system. Figure 1 shows the physical set-up of the system, specified using
the degrees of freedom introduced later in this paper.
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Stability of the planar full 2-body problem 105

Fig. 1 Physical specification of the system, using the degrees of freedom of body separation, r , rotation of
the line connecting the mass centers, θ , and rotation of the bodies relative to the line connecting the centers,
φi

For the nominal, planar, system the entire assembly has 6 degrees of freedom, the center
of mass of the system (which we ignore), relative motion of the centers of mass in the plane,
r , and rotation of each body about its maximum moment of inertia, θi . Then, given the kinetic
energy T and the potential energy V expressed in these variables and their time derivatives
we can form the Lagrangian, L = T − V , and hence can define the equations of motion for
the system. We will also see that this system has an energy integral and an angular momentum
integral.

2.1 Potential energy

First, we state the potential energy of the system. In the current paper we take this to be a
2nd order expansion in the moments of inertia, although in the future we plan to consider
higher-order expansions:

V (r,A1,A2) = −GM1 M2

|r| − G
2|r|3 [M2Tr (I 1) + M1Tr (I 2)]

+ 3G
2|r|5 r ·

[
M2A

T
1 · I 1 · A1 + M1A

T
2 · I 2 · A2

]
· r (1)

where r is the relative position between the centers of mass in an inertial frame, M1 and M2

are the masses of bodies P1 and P2, respectively, I 1 and I 2 are the inertia dyads of these
bodies, specified in a body-fixed frame as is usual, and A1 and A2 are the attitude dyads,
transforming a vector from an inertial frame to a body-fixed frame. For mutually planar
motion we note that each of these dyads is defined by a single rotation angle, θ1 and θ2, as:

Ai =
⎡
⎣

cos θi sin θi 0
− sin θi cos θi 0

0 0 1

⎤
⎦ (2)

The inertia dyads in the above equation are fully dimensional, with units of kg m2. We will
also find it convenient to define a mass-normalized inertia dyad by dividing by the body’s
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mass, Ī i = I i/Mi . With these definitions we can define a slightly different version of the
mutual potential:

V (r,A1,A2) = −GM1 M2

|r|
[

1 + 1

2|r|2
[
Tr
(
Ī 1
)+ Tr

(
Ī 2
)]

− 3

2|r|4 r ·
[
AT

1 · Ī 1 · A1 + AT
2 · Ī 2 · A2

]
· r

]
(3)

A convenient decomposition is to take the relative position vector as the frame of reference,
and separately track the orientation of the two bodies relative to this vector. Let us call this
vector the r̂ axis. Then we have a more symmetric form of the potential energy:

V (r,A) = −GM1 M2

r

{
1 + 1

2r2 [Tr
(
Ī 1
)+ Tr

(
Ī 2
)

−3r̂ ·
(
AT

1 · Ī 1 · A1 + AT
2 · Ī 2 · A2

)
· r̂]
}

(4)

For our specific case of planar motion these can be simplified to:

V (r, φ1, φ2) = −GM1 M2

r

{
1 + 1

2r2

[
Tr
(
Ī 1
)+ Tr

(
Ī 2
)− 3

2

(
I1x + I1y

− cos 2φ1
(
I1y − I1x

)+ I2x + I2y − cos 2φ2
(
I2y − I2x

)) ] }
(5)

where the angles φi define the orientation of body i relative to the r̂ line (see Fig. 1). For
3-dimensional rotational motion we need to add two additional angles to specify the orien-
tation of each body.

2.2 Kinetic energy

For the kinetic energy we again start relative to the inertial frame. For the relative motion of
the two mass centers with respect to each other, the kinetic energy is stated as:

T = 1

2
I1z θ̇

2
1 + 1

2
I2z θ̇

2
2 + 1

2

M1 M2

M1 + M2
v · v (6)

where v is the relative velocity of the mass centers. We neglect the motion of the system’s
center of mass. Also, the rotational kinetic energies assume that rotation only occurs about
principal moments of inertia of both bodies.

We again choose the relative position vector as the frame of reference. Now denote the
orbit angular rate as θ̇ , defined by θ̇ = |r × v|/|r|2, and the individual body rotation rates
relative to the orbit rate as φ̇i . Then we see that θ̇i = φ̇i + θ̇ , that the inertial speed of the
system is v = ṙ r̂ + r θ̇ θ̂ and that the kinetic energy in these coordinates is:

T = 1

2
I1z (φ̇1 + θ̇ )2 + 1

2
I2z (φ̇2 + θ̇ )2 + 1

2
mṙ2 + 1

2
m(r θ̇ )2 (7)

= 1

2
I1z φ̇

2
1 + 1

2
I2z φ̇

2
2 + 1

2
mṙ2 + 1

2

(
I1z + I2z + mr2) θ̇2

+ (I1z φ̇1 + I2z φ̇2
)
θ̇ (8)
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For notational convenience we define:

m = M1 M2

M1 + M2
(9)

ν = M1

M1 + M2
(10)

1 − ν = M2

M1 + M2
(11)

Iz(r) = I1z + I2z + mr2 (12)

where Iz is a function of r2 and is the total moment of inertia of the system about the z axis.

2.3 Lagrangian equations of motion

The Lagrangian of the system can then be formed as L = T − V . We choose to use as
coordinates the distance, orbit angle, and body rotation angles relative to the orbit frame,
denoted as r, θ, φ1, φ2, respectively. We find:

L = 1

2
I1z φ̇

2
1 + 1

2
I2z φ̇

2
2 + 1

2
mṙ2 + 1

2

(
I1z + I2z + mr2) θ̇2 + (I1z φ̇1 + I2z φ̇2

)
θ̇

−V (r, φ1, φ2) (13)

The general form of the equations are d/dt (∂L/∂ q̇i ) = ∂L/∂qi . We note that the equation
for r̈ is decoupled from the other equations, and so state that first:

r̈ = θ̇2r − 1

m

∂V

∂r
(14)

The remaining three equations are coupled to each other:

⎡
⎣

I1z 0 I1z

0 I2z I2z

I1z I2z Iz

⎤
⎦
⎡
⎣

φ̈1

φ̈2

θ̈

⎤
⎦ =

⎡
⎢⎣

− ∂V
∂φ1

− ∂V
∂φ2−2mrṙ θ̇

⎤
⎥⎦ (15)

The system can be decoupled by multiplying by the inverse of the mass matrix, yielding three
independent equations of motion for the system:

φ̈1 = −
(

1 + mr2

I1z

)
1

mr2 Vφ1 − 1

mr2 Vφ2 + 2
ṙ θ̇

r
(16)

φ̈2 = −
(

1 + mr2

I2z

)
1

mr2 Vφ2 − 1

mr2 Vφ1 + 2
ṙ θ̇

r
(17)

θ̈ = 1

mr2 Vφ1 + 1

mr2 Vφ2 − 2
ṙ θ̇

r
(18)

2.4 Integrals of motion and reduction of the system

The system, in either inertial or relative coordinates, is time invariant and thus has a Jacobi
integral. The standard form for the Jacobi integral is:

h = q̇ · ∂L

∂ q̇
− L (19)
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When applied to the inertial system we see that this recovers the classical energy of the
system, h = T + V . By necessity, this carries over to the relative system as well, providing
us with the first integral of motion.

For the second integral of motion note that the orbit angle θ is ignorable, and thus that
∂L/∂θ = 0. From Lagrange’s equations we immediately see that d/dt (∂L/∂θ̇) = 0 or that
the angular momentum associated with the angle θ (which is also the total angular momentum
of the system) is conserved:

K = ∂L

∂θ̇
(20)

= (I1z + I2z + mr2) θ̇ + I1z φ̇1 + I2z φ̇2 (21)

The simple relationship between K and θ̇ allows us to eliminate the angular velocity θ̇ from
the Lagrangian, essentially performing a Routh reduction of the system. Solving for θ̇ as a
function of K and the other state variables we find:

θ̇ = 1

Iz(r)

[
K − (I1z φ̇1 + I2z φ̇2

)]
(22)

The rotation rate θ̇ only appears in the kinetic energy, so we substitute this relationship in T
to find:

T = 1

2

[
K 2 − (I1z φ̇1 + I2z φ̇2

)2]

Iz
+ 1

2
I1z φ̇

2
1 + 1

2
I2z φ̇

2
2 + 1

2
mṙ2 (23)

So reduced, the total energy of the system is then the only remaining integral of motion, and
is expressed as:

E = 1

2

[
K 2 − (I1z φ̇1 + I2z φ̇2

)2]

Iz
+ 1

2
I1z φ̇

2
1 + 1

2
I2z φ̇

2
2 + 1

2
mṙ2 + V (r, φ1, φ2) (24)

Note, this simple reduction is only possible in the planar problem.
It is instructive to rewrite the kinetic energy to separate the angular momentum term, K ,

from the other terms. Simplifying we find the result:

T = 1

2

K 2

Iz
+ 1

2Iz

[
I1z I2z

(
φ̇1 − φ̇2

)2 + mr2 (I1z φ̇
2
1 + I2z φ̇

2
2

)]+ 1

2
mṙ2 (25)

This formulation will allow us to investigate the zero-velocity surfaces of this problem later.
It is also possible to define a reduced set of equations of motion involving only r and φi ,

however they become rather algebraically complex. In practice it is often simpler to deal with
the equations of motion as derived in Eqs. 14, 16–18, and then apply the angular momentum
integral of motion to the system.

3 Equilibrium conditions

To solve for the equilibrium conditions the usual practice is to set all time derivative quantities
in the equations of motion to zero. We will take a slightly different approach, however, that
fits in better with our stability characterization.
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Stability of the planar full 2-body problem 109

3.1 Equilibrium from energy considerations

Instead of solving directly for the equilibrium conditions from the equations of motion, it is
simpler to apply Proposition 7 from Scheeres (2006) to this system and find the conditions for
the energy variations of the system to be stationary at a constant value of angular momentum.
Specifically, we find these by finding the zeros to the equations:

Er = 0 (26)

Eṙ = 0 (27)

Eφi = 0 (28)

Eφ̇i
= 0 (29)

where we must use the energy which has the angular momentum explicitly present, as given
in Eq. 24. Because of the symmetry of the problem, we know that the equilibria will occur
at the locally central points (defined in Scheeres 2006), when the principal axes of the two
bodies are aligned with each other. Given such relative orientations the only real condition
we need to evaluate is the level of angular momentum (i.e., spin rate θ̇ ) needed to maintain
a relative equilibrium. To be specific, we assume the equilibrium position is at a given value
of r , and that the orientation of the Pi take on one of the values φi = 0,±π/2, π . All we
need to find then is the spin rate to achieve relative equilibrium.

In the following we give the complete partial derivatives of the energy, as we will need
these later in our stability discussions.

Er = −mr
K 2 − (I1z φ̇1 + I2z φ̇2

)2
I 2
z

+ Vr (30)

Eφi = Vφi (31)

Eṙ = mṙ (32)

Eφ̇i
= Iiz φ̇i − Iiz

(
I1z φ̇1 + I2z φ̇2

)

Iz
(33)

The partials with respect to the potential energy are:

Vr = GM1 M2

r2

[
1 + 3

2r2

{
Tr
(
Ī 1
)+ Tr

(
Ī 2
)− 3

2

(
I1x + I1y

− cos 2φ1
(
I1y − I1x

)+ I2x + I2y − cos 2φ2
(
I2y − I2x

)) }]
(34)

Vφi = 3GM1 M2

2r3 sin 2φi (Iiy − Iix ) (35)

It is simple to show that the coordinate velocities must all be zero for an equilibrium, thus
ṙ∗ = φ̇∗

i = 0, where the ∗ signifies a relative equilibrium. Next consider the term Eφi = 0
which leads to the condition:

3GM1 M2

2r3 sin 2φi (Iiy − Iix ) = 0 (36)

If Iiy > Iix , which is our general assumption, we note that φ∗
i = 0,±π/2, π will satisfy

this equation. If Iiy = Iix then the body is rotationally symmetric and the angle φi is an
ignorable coordinate and the body preserves its rotational angular momentum and kinetic
energy independent of the system.
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110 D.J. Scheeres

Putting these constraints into the final condition, Er = 0, yields:

mr K 2

I 2
z

= GM1 M2

r2

[
1 + 3

2r2

{
Tr
(
Ī 1
)+ Tr

(
Ī 2
)

−3

2

(
I1x + I1y − ±1(I1y − I1x ) + I2x + I2y − ±2(I2y − I2x )

)}]
(37)

where the ±i corresponds to φ∗
i = 0, π/2, respectively.

It is also of interest to relate this to the original rotation rate θ̇ at equilibrium:

θ̇∗ = K

Iz
(38)

Substituting this into the above equations we find an explicit relationship for the equilibrium
rotation rate:

θ̇∗2 = G(M1 + M2)

r3

[
1 + 3

2r2

{
Tr
(
Ī 1
)+ Tr

(
Ī 2
)

−3

2

(
I1x + I1y − ±1(I1y − I1x ) + I2x + I2y − ±2(I2y − I2x )

)}]
(39)

where there are 4 possible values depending on the relative orientations of the bodies.

3.2 Number of equilibria

The above relations allow one to specify the separation between the bodies and body orien-
tations, and then solve for the necessary angular momentum of the system for this to be an
equilibria. We can also consider the converse problem, and ask how many relative equilibria
exist for a given value of angular momentum. This is a significant question, as system angular
momentum is nominally conserved unless there are significant exogenous perturbations act-
ing on the system. This is especially relevant when we consider the system energy at various
equilibria configurations, as under dissipative internal effects we will find that the system
can transition from one equilibrium to a different, lower energy equilibrium with the same
value of angular momentum.

Consider Eq. 37, the defining equation for the angular momentum of a given relative
equilibrium. Rearranging this equation yields:

r6 − K 2

m2µ
r5 +

(
2

I1z + I2z

m
+ 3

2

(
C±

1 + C±
2

))
r4

+ I1z + I2z

m

(
I1z + I2z

m
+ 3

(
C±

1 + C±
2

))
r2 + 3

2

(
C±

1 + C±
2

) ( I1z + I2z

m

)2

= 0

(40)

where we define

C±
i = Tr( Īi ) − 3

{
Īix

Īiy

(41)

The roots of this polynomial are relative equilibrium solutions for the system. Application
of the Routh-Hurwitz criterion to this polynomial shows that there are always two positive
roots for a given set of C±

i , corresponding to two possible equilibria values at a given angular
momentum. Taking all possible non-trivial orientations between the two bodies we get 4
possible relative orientations, leading to a total of 8 possible relative equilibria at a given
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Stability of the planar full 2-body problem 111

angular momentum. Among all of these equilibria we expect the one with minimum energy
to be stable and all others to be unstable, with a larger energy. This will be borne out in our
subsequent analysis, where we will show that only one configuration can be stable for a fixed
value of angular momentum.

3.3 Orbit elements at equilibrium

It is of interest to compute the Keplerian orbit elements of the system at relative equilibrium.
The Keplerian orbit elements of interest are the semi-major axis, eccentricity, longitude of
periapsis and mean anomaly (or true anomaly). In classical tidal theories the assumption is
usually made that the fully relaxed equilibrium rotation rate of a system equals the Keple-
rian mean motion,

√
µ/r3 (Ferraz-Mello et al. 2008). This is an excellent assumption for

planetary satellites in general, however, in the following we can show that this is false to the
first order for closely spaced systems.

We first will deal with the true anomaly and longitude of periapsis. Since the angles
φ̇∗

i = 0, the only rotation occurs due to θ̇∗, and is computed using Eq. 39. We note that
this is a steady rate, however we also note that it does not equal the usual mean motion. The
difference between the usual mean motion squared and our equilibrium rotation rate squared,
�∗ = θ̇∗2 − µ

r3 , equals:

3µ

4r5

{
Tr
(
Ī 1
)+ Tr

(
Ī 2
)− 3

2

(
I1x + I1y − ±1

(
I1y − I1x

)+ I2x + I2y − ±2
(
I2y − I2x

))}

(42)

Consider the four terms separately:

�++ = 3µ

4r5

{
Ī1z + Ī1y − 2 Ī1x + Ī2z + Ī2y − 2 Ī2x

}
(43)

�+− = 3µ

4r5

{
Ī1z + Ī1y − 2 Ī1x + Ī2z + Ī2x − 2 Ī2y

}
(44)

�−+ = 3µ

4r5

{
Ī1z + Ī1x − 2 Ī1y + Ī2z + Ī2y − 2 Ī2x

}
(45)

�−− = 3µ

4r5

{
Ī1z + Ī1x − 2 Ī1y + Ī2z + Ī2x − 2 Ī2y

}
(46)

Under our assumption for the mass distribution we note immediately that �++ ≥ 0 but that
the others may either be positive or negative. If the quantity � > 0, then we note that the
system is at periapsis, since its rotation rate is greater than the mean motion for a circular
orbit and ṙ = 0. The fact that this situation persists means that the orbit is trapped at periap-
sis and the true anomaly equals 0 while the rotation rate θ̇ equals the time rate of change
of the argument of periapsis. Thus the osculating orbit is a constant ellipse with a constant
precession rate in the longitude of periapsis. If � < 0, then the system is trapped at apoapsis
but the rate of change of the longitude of periapsis still equals θ̇ . This is a modification that is
generally not accounted for in tidally locked systems, yet which may be relevant when they
are in close proximity.

Now, we note that the specific Keplerian energy E K = 1
2v2 − µ/r and specific orbital

angular momentum H K = |r × v| are computed using the translational motion alone, and
assuming a point-mass potential. Specifically, for our system at equilibrium where the speed
equals θ̇r ,
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112 D.J. Scheeres

E K = 1

2
θ̇2r2 − µ

r
(47)

= −µ

2r

[
1 − 3

2r2

(
C±

1 + C±
2

)]
(48)

H K = r2θ̇ (49)

= √
µr

[
1 + 3

2r2

(
C±

1 + C±
2

)]1/2

(50)

Thus we define the semi-major axis as:

a = −µ

2E K
(51)

= r

[
1 − 3

2r2

(
C±

1 + C±
2

)]−1

(52)

and the eccentricity as

e2 = 1 + 2E K H K 2

µ2 (53)

= 1 −
(

1 − 3

2r2

(
C±

1 + C±
2

))(
1 + 3

2r2

(
C±

1 + C±
2

))
(54)

=
(

3

2r2

(
C±

1 + C±
2

))2

(55)

Note that the eccentricity is linearly related to the moments of inertia as e = 3
2r2

(
C±

1 + C±
2

)
,

where a negative value implies that the system is at apoapsis. Relating this back to the spin rate
for equilibrium, we find a simple relation between the equilibrium spin rate, the eccentricity
of the equilibrium orbit, and the mass distribution:

θ̇2 = µ

r3 (1 + e) (56)

This can be a significant correction if the bodies are close to each other. We also note that
the semi-major axis at equilibrium is a function of the separation radius and the eccentricity:

a = r

1 − e
(57)

Physically, this makes sense, as the system is trapped at periapsis for e > 0 with a > r , and
if e < 0 the system is trapped at apoapsis with a < r .

4 Stability

Having computed the conditions for the system to be in relative equilibrium, it is now of inter-
est to determine the conditions which control the stability of the system. We will focus on
four different types of stability, called energetic stability, spectral stability, Hill stability and
impact stability. Energetic stability is the most fundamental, and will determine whether the
system can seek out a lower energy state by dissipation of energy. If a system is energetically
stable, than it has reached its lowest energy configuration for a given angular momentum
(assuming that the bodies are rigid). Spectral stability, on the other hand, just determines
whether the system will stay in the vicinity of its relative equilibria if perturbed from it,
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Stability of the planar full 2-body problem 113

assuming that no energy dissipation occurs. Spectral stability is a necessary condition for
energetic stability, but is not sufficient. Thus, we can sometimes find instances where an
equilibrium solution is spectrally stable but is not energetically stable. For the motion and
dynamics of natural bodies, we are generally more interested in energetic stability. Next we
compute Hill stability. A system is Hill stable if it cannot undergo a mutual escape. If a system
is energetically stable, then it is Hill stable, although the converse is not true in general. Hill
stability is not as focused on motion in the vicinity of a relative equilibria, but instead is more
concerned with placing absolute limits on where the system can evolve dynamically. Finally,
a system has impact stability if it cannot, under its internal dynamics alone, result in the
two bodies impacting each other. In general, systems that have energetic stability also have
impact stability. In this case we find that the converse is also true, and that systems which
are not energetically stable do not have impact stability, meaning that it is possible for them
to re-impact.

4.1 Energetic stability

For energetic stability we follow the approach given in (Scheeres 2006), which can be derived
from the more fundamental study given in (Simo et al. 1991). Since we have the angular
momentum explicitly contained in our expression for the energy, we can directly take the
second variation of the energy and check if it is positive definite. If it is, then we have
shown that the relative equilibrium in question is stable. If we represent our coordinates as
q = [r, φ1, φ2] and the state X = [q, q̇], then we must compute the matrix

EXX =
[

Eqq Eqq̇
Eqq̇ Eq̇q̇

]
(58)

evaluated at the equilibrium condition. Due to the symmetry of the mutual potential, and the
assumed planarity of the system, this matrix is simplified at equilibrium, which allows us to
easily identify the conditions for stability.

We first note that there are several cross terms that are identically equal to zero. Specifi-
cally, these are: Eṙr = Eṙφi = Eṙ φ̇i

= Eφi φ j ≡ 0, where i �= j . Other coupling terms that
are not identically zero, yet are when evaluated at equilibrium, include E∗

r φ̇i
= E∗

rφi
= 0.

Thus, the only coupling term that is not zero is :

E ∗̇
φi φ̇ j

= Iiz

(
δi j − I jz

Iz

)
(59)

where δi j = 0 for i �= j and 1 for i = j .
For the second variation to be positive definite then requires the following conditions:

E∗
rr > 0 (60)

E ∗̇
rṙ > 0 (61)

E∗
φi φi

> 0 (62)[
E ∗̇

φ1φ̇1
E ∗̇

φ1φ̇2

E ∗̇
φ2φ̇1

E ∗̇
φ2φ̇2

]
> 0 (63)
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We first note that E ∗̇
rṙ = m and Eq. 61 is positive trivially. Next we compute the eigenvalues

of the matrix in Eq. 63:
⎡
⎣ I1z

(
1 − I1z

Iz

)
− I1z I2z

Iz

− I1z I2z
Iz

I2z

(
1 − I2z

Iz

)
⎤
⎦ (64)

The characteristic equation is:

I 2
z λ2 − [2I1z I2z + (I1z + I2z )mq2] Izλ − (I1z I2z

)2 = 0 (65)

The solution is:

Izλ = 1

2

[
2I1z I2z + (I1z + I2z

)
mq2]± 1

2

√
[2I1z I2z + (I1z + I2z

)
mq2]2 − 4

(
I1z I2z

)2

(66)

= 1

2

[
2I1z I2z + (I1z + I2z

)
mq2]± 1

2

√
4I1z I2z

(
I1z + I2z

)
mq2 + (I1z + I2z

)2
m2q4

(67)

By inspection of Eq. 66 we note that the eigenvalues are always positive, and by inspection
of Eq. 67 we note that they are always real. Hence Eq. 63 is always positive definite.

Next we consider the term E∗
φi φi

= V ∗
φi φi

. The term Vφi φi equals:

Vφi φi = 3GM1 M2

r3 cos 2φi (Iiy − Iix ) (68)

and we recall our assumption that Iy ≥ Ix . Now we note that the solutions with the long
axis pointing at the other body, φi = 0, π , yield positive values and that the other solutions,
φi = ±π/2, are negative definite and thus are always energetically unstable. We can note
that the relative equilibria for φi = ±π/2 can sometimes be spectrally stable (Scheeres
2006), however they will always be unstable in the presence of energy dissipation. Thus we
set φi = 0 henceforth, unless otherwise noted.

Finally, consider the remaining term, Err . With our above assumptions, this term becomes:

Err = −mK 2

I 2
z

+ 4m2 K 2r2

I 3
z

− 2GM1 M2

r3

[
1 + 3

r2 C12

]
(69)

= mK 2

I 3
z

[
3mr2 − I1z − I2z

]− 2GM1 M2

r3

[
1 + 3

r2 C12

]
(70)

where we recall the constants

Ci = Tr( Īi ) − 3 Īix (71)

C12 = C1 + C2 (72)

and assume the φi = 0 orientation unless specified otherwise. We note two properties of
the quantity Ci . First, Ci ≥ 0 for all possible mass distributions, given our assumptions on
Iy ≥ Ix . Second, Ci = 0 if and only if all of the moments of inertia of the body are equal,
i.e., if the body is a sphere to 2nd order.

Substituting for the equilibrium conditions into the angular momentum, we wish to eval-
uate when the following inequality is satisfied:

3mr2 − I1z − I2z

Iz

GM1 M2

r3

[
1 + 3

2r2 C12

]
− 2GM1 M2

r3

[
1 + 3

r2 C12

]
> 0 (73)
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Clearing terms and simplifying we find:

(3mr2 − I1z − I2z )

(
r2 + 3

2
C12

)
− 2(mr2 + I1z + I2z )(r

2 + 3C12) > 0 (74)

Now we extract the mass m from the equation, noting that I1z /m = Ī1z /ν and I2z /m =
Ī2z /(1 − ν). This leads to the final condition for stability:

r4 − 3

[
Ī1z

ν
+ Ī2z

1 − ν
+ 1

2
C12

]
r2 − 15

2
C12

(
Ī1z

ν
+ Ī2z

1 − ν

)
> 0 (75)

Factoring the quadratic we find the following roots for the radius, r2 = q2± where:

q2± = 3

2

[
Ī1z

ν
+ Ī2z

1 − ν
+ 1

2
C12

]

±1

2

√√√√9

[
Ī1z

ν
+ Ī2z

1 − ν
+ 1

2
C12

]2

+ 30C12

(
Ī1z

ν
+ Ī2z

1 − ν

)
(76)

Only q2+ is positive, and we take the positive root of that, +
√

q2+, to find the limiting value
of r for the system to be energetically stable. Any system with r < q+ will be energeti-
cally unstable. Whenever this situation occurs it means that there exists a second equilibrium
separation at the same value of angular momentum which has a lower energy, this second
position always lying at a distance r > q+. This situation was discussed earlier, and we will
consider some specific examples of it later.

4.2 Spectral stability

It is also of interest to briefly consider the spectral stability of the system, as this provides
insight into the motion of the system when perturbed from equilibrium. We will consider a
system perturbed from the necessary configuration for energetic stability, i.e., with the long
axes of the bodies facing each other. To find the equations for our system, we go back to the
original equations of motion and linearize about an equilibrium solution. The equilibrium
solution is represented as r∗, φ∗

i = 0, ṙ∗ = φ̇∗
i = 0 and with θ̇∗ being solved for from Eq. 39.

The linear variations are expressed as δr , δφi , and δθ̇ .
The full equations of motion become, under this linearization:

δr̈ =
[
θ̇2 − 1

m
Vrr

]
δr + 2r θ̇ δθ̇ (77)

δφ̈i = −
(

1 + mr2

Iiz

)
1

mr2 Vφi φi δφi + 2θ̇

r
δṙ (78)

δθ̈ = 1

mr2 Vφ1φ1δφ1 + 1

mr2 Vφ2φ2δφ2 − 2θ̇

r
δṙ (79)

where i = 1, 2 in the second equation. We note that the system is closed in r and φi except for
the δθ̇ in the first equation. In the following we use the conservation of angular momentum
to remove this variation, thus giving us a 3 degree of freedom problem.

First, take the variation of the angular momentum integral given in Eq. 21 evaluated at
equilibrium:

0 = Izδθ̇ + 2mr θ̇ δr + I1z δφ̇1 + I2z δφ̇2 (80)
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Solving for δθ̇ and substituting into the first equation above yields:

δr̈ =
[(

1 − 4mr2

Iz

)
θ̇2 − 1

m
Vrr

]
δr − 2r θ̇

Iz

[
I1z δφ̇1 + I2z δφ̇2

]
(81)

Now define the state-space form of the system, using q = [r, φ1, φ2] and X = [q, q̇], we
find:

δẊ = AδX (82)

A =
[

03x3 I3x3

aqq bqq̇

]
(83)

where aqq is a diagonal matrix with entries:

arr = µ

r3

[(
1 − 4mr2

Iz

)(
1 + 3

2r2 C12

)
+ 2

(
1 + 3

r2 C12

)]
(84)

aφi φi = −3µ

r5

(
Īiy − Īix

) (
1 + mr2

Iiz

)
(85)

for i = 1, 2. The matrix bqq̇ has relatively few terms, defined to be:

br φ̇i
= −2r Iiz

Iz

√
µ

r3

(
1 + 3

2r2 C12

)
(86)

bφi ṙ = 2θ̇

r
(87)

= 2

r

√
µ

r3

(
1 + 3

2r2 C12

)
(88)

where we recall that µ = G(M1 + M2).
To evaluate the stability of the system we compute the characteristic equation, and to

evaluate the dynamical motion of the system we compute the eigenvectors of the matrix A.
We note that the spectral stability and energetic stability coincide for this configuration, as is
expected. Further, when either of the bodies has an orientation φi = π/2 it is possible for the
system to be spectrally stable, however it will never be energetically stable. The eigenvectors
are rather complex to represent, but by studying the characteristic directions in which δq and
δq̇ move one may gain insight into the system dynamics.

4.3 Hill stability

Hill stability is distinguished from energetic and spectral stability. Those types of stability are
focused on motion relative to a specific point in phase space, while Hill stability is focused
on whether the general motion of the system is bounded or not. For our system, we can state
that it will be Hill stable if r < c < ∞ for all time, where c is a constant. Conversely, it will
be Hill unstable if r → ∞ as t → ∞. We find necessary conditions for our system to be
Hill unstable, and can find sufficient conditions for it to be Hill stable.

4.3.1 Necessary conditions for Hill instability

Following from the analysis given in (Scheeres 2002), we note that the necessary condition
for our system to be Hill unstable is that the Free Energy of the system be positive. The
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Free Energy is defined as the total energy of the system minus the self-potential energy of the
bodies and equals Eq. 24. For this particular paper we are especially interested in determining
whether a given relative equilibrium point has a positive Free Energy. To do this we substitute
our candidate equilibrium solution into the total energy and evaluate whether it is positive or
negative.

E = 1

2

K 2

I1z + I2z + mr2 − GM1 M2

r

[
1 + 1

2r2

{
Tr
(
Ī 1 + Ī 2

)− 3
(
Ī1x + Ī2x

)}]
(89)

which, when the angular momentum is substituted and the expression simplified, yields

E = 1

2

GM1 M2

r3

[
1

ν
Ī1z + 1

1 − ν
Ī2z − r2

+ 1

2r2

{
3

(
1

ν
Ī1z + 1

1 − ν
Ī2z

)
+ 2r2

} {
Tr
(
Ī 1 + Ī 2) − 3( Ī1x + Ī2x

)}]
(90)

The specific condition of interest is the value of separation between the components when
the energy goes from positive to negative. Again, we see that for large enough r the energy
is always negative, meaning the system is bound, but is not necessarily stable. Setting the
energy to zero, we can arrange this equation into a bi-quadratic for r again:

r4 −
(

1

ν
Ī1z + 1

1 − ν
Ī2z + {Tr

(
Ī 1 + Ī 2) − 3( Ī1x + Ī2x

)})
r2

−3

2

(
1

ν
Ī1z + 1

1 − ν
Ī2z

){
Tr
(
Ī 1 + Ī 2

)− 3
(
Ī1x + Ī2x

)} = 0 (91)

Only taking the positive solution we find a similar limit for the zero-energy of the system as
we found for the stability of the system:

q2
E = 1

2

(
1

ν
Ī1z + 1

1 − ν
Ī2z + {Tr(Ī 1 + Ī 2) − 3

(
Ī1x + Ī2x

)})

⎡
⎢⎢⎣1 +

√√√√√√1 + 6

(
1
ν

Ī1z + 1
1−ν

Ī2z

) {
Tr(Ī 1 + Ī 2) − 3

(
Ī1x + Ī2x

)}
(

1
ν

Ī1z + 1
1−ν

Ī2z + {Tr(Ī 1 + Ī 2) − 3
(
Ī1x + Ī2x

)})2

⎤
⎥⎥⎦ (92)

If the equilibrium separation between the bodies, r , satisfies r < qE , then the system is Hill
unstable and can escape.

It can be shown that the separation between bodies for E = 0 is less than the separation
for the bodies to be stable, or qE < q+. Thus, a relative equilibrium with a positive free
energy is always unstable. This is interesting and implies that these positive energy equilibria
can transition directly from an equilibrium state to a disrupted binary. More specifically, it
implies that the unstable manifolds of these relative equilibria can escape to infinity, and
conversely that a stable manifold may come in from infinity to the equilibrium configuration.

4.3.2 Sufficient conditions for Hill stability

A sufficient condition for Hill stability is always that the Free Energy be negative, as can
be inferred by applying the converse to the necessary condition for instability. However, we
can often state more than this and actually define the envelope of possible distances and
orientations that the system is limited to. These more stringent constraints arise in the form
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of zero-velocity curves and surfaces, and act as a physical barrier that a system cannot cross,
as a function of its energy.

To derive the zero-velocity surfaces recall that the energy of the system can be written in
the form:

E = 1

2

K 2

Iz
+ 1

2Iz

[
I1z I2z

(
φ̇1 − φ̇2

)2 + mr2 (I1z φ̇
2
1 + I2z φ̇

2
2

)]+ 1

2
mṙ2 + V (r, φ1, φ2)

(93)

We can rearrange this as:

1

2Iz

[
I1z I2z

(
φ̇1 − φ̇2

)2 + mr2 (I1z φ̇
2
1 + I2z φ̇

2
2

)]+ 1

2
mṙ2 = E − 1

2

K 2

Iz
− V (r, φ1, φ2)

(94)

We note by inspection that the left-hand side is always positive, and thus we find the funda-
mental inequality:

E − 1

2

K 2

Iz
− V (r, φ1, φ2) ≥ 0 (95)

Recall that V < 0, V ∝ −1/r , and that Iz ∝ r2. Thus we immediately note that if E > 0,
or if the free energy is positive, that there is no barrier to r → ∞. Conversely, if E < 0, we
note that it is not possible for the system to disrupt, and it is bound.

For the case where the relative equilibrium is unstable, but E < 0, the current constraint
can help in delimiting the range of configuration space where the system can evolve. For this

system, the surfaces defined by E − 1
2

K 2

Iz(r)
− V (r, φ1, φ2) = 0 delimit the possible range

of motion for the system. The surfaces that arise from this constraint define a surface in the
3-dimensional r, φ1, φ2 configuration space.

Finally, we note that if the system is stable and the energy and angular momentum are
chosen at the equilibrium values, then E is at its absolute minimum and there are no recon-

figurations such that E > 1
2

K 2

Iz
+ V (r, φ1, φ2), meaning that only the equality can apply.

This is so as Eqq is positive definite in this case. These three different cases are explicitly
discussed at the end of the paper for a sphere-sphere system with graphical examples.

4.4 Impact stability

A counterpart to stability against escape is stability against impact. For this study we are
specifically interested in whether there are any conditions which control whether two bodies
started close to or at equilibrium can impact each other. In (Scheeres 2002), a sufficient condi-
tion for impact stability of two mass distributions was derived without the planar restriction,
and is stated below. For a given system at a distance r with an energy E and angular momen-
tum K , if a number d < r can be found such that:

1

2
Tr (I 1 + I 2) + md2 ≤ K 2

2(E − Vm(d))
(96)

where Vm(d) = minφi V (d, φ1, φ2), and is the minimum value of the mutual potential at a
given distance d , then r > d in all subsequent motion. If d is greater than the separation
between the bodies, the system cannot impact.

This condition shares similarities with the zero-velocity conditions, although it is sub-
tly different. The two conditions can be made more similar if we literally treat our mass
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distributions as planar. Then the term 1
2 Tr (I 1 + I 2) = Iz1 + Iz2 and the equation is of

the same form as the zero-velocity condition given in Eq. 95. Then, restating the sufficient
condition for impact to mimic the zero-velocity condition we find:

E − 1

2

K 2

Iz(d)
− Vm(d) ≤ 0 (97)

which goes in the opposite sense as the zero-velocity curve. A deeper analysis of this con-
dition shows that the above inequality can be satisfied for a number d < r , where r is the
relative equilibrium separation, when the equilibrium point is energetically stable. When the
equilibrium point is energetically unstable, it is not possible to satisfy that condition, due to
the energy decreasing as one moves away from the equilibrium point, as in that case Err < 0.

This can also be understood in terms of dynamical systems theory. For an unstable rel-
ative equilibrium, there will be unstable manifolds that extend interior and exterior to the
equilibrium point. The manifold that extends interior to the equilibrium point constitutes the
solution branch, at a given equilibrium value of E and K , than can lead to an impact between
the bodies. Instead, when the system is energetically stable there are only central manifolds
around the equilibrium, which cannot depart from the neighborhood of the equilibrium point
due to the positive definite structure of the energy.

5 Example computations and special cases

In the following we specialize the above analysis to definite cases, that of two ellipsoids
and the even simpler case of two spheres. These examples allow us to make some general
observations about the physical relevance of this study, and point out some interesting results
for the stability and fission of contact binary asteroids.

5.1 Ellipsoidal shapes

To provide some specific examples of these results, we will choose ellipsoid shapes for our
bodies, compute the moments of inertia, and find, as a function of mass fraction, the value of
separation for which the equilibrium configuration becomes stable. Before proceeding, how-
ever, we must account for the relation between the size of the bodies and the mass fraction,
assuming constant density. To facilitate this, we will assume an ellipsoid shape for each of
the bodies. To set this up, we note a few things. The general formula for a moment of inertia
of an ellipsoid with semi-major axis α ≥ β ≥ γ is:

Īix = 1

5

(
β2

i + γ 2
i

)
(98)

Īiy = 1

5

(
α2

i + γ 2
i

)
(99)

Īiz = 1

5

(
α2

i + β2
i

)
(100)

Next, define the total effective radius of the system as R3 = α1β1γ1 + α2β2γ2, where we
note that ν = α2β2γ2/R3 and 1 − ν = α1β1γ1/R3. From these relations we can define the
size of the ellipsoid given its shape ratios:
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α1 =
(

1 − ν

β̄1γ̄1

)1/3

R (101)

α2 =
(

ν

β̄2γ̄2

)1/3

R (102)

where β̄i = βi/αi and γ̄i = γi/αi and both of these follow the inequalities 1 ≥ β̄i ≥ γ̄i . The
proposed unit of length for each mass fraction value and set of shapes is then the minimum
distance between the two bodies in their relative equilibrium configuration, or l = α1 + α2:

l =
[(

1 − ν

β̄1γ̄1

)1/3

+
(

ν

β̄2γ̄2

)1/3
]

R (103)

Now introduce the normalized distance between the two bodies as q̄ = q/ l. The normalized
moments of inertia for the bodies are then Ii/ l2 and equal:

Ī1x / l2 = 1

5

β̄2
1 + γ̄ 2

1[
1 + σ 1/3

]2 (104)

Ī1y / l2 = 1

5

1 + γ̄ 2
1[

1 + σ 1/3
]2 (105)

Ī1z / l2 = 1

5

1 + β̄2
1[

1 + σ 1/3
]2 (106)

Ī2x / l2 = 1

5

β̄2
2 + γ̄ 2

2[
1 + 1

σ 1/3

]2 (107)

Ī2y / l2 = 1

5

1 + γ̄ 2
2[

1 + 1
σ 1/3

]2 (108)

Ī2z / l2 = 1

5

1 + β̄2
2[

1 + 1
σ 1/3

]2 (109)

where

σ = ν

1 − ν

β̄1γ̄1

β̄2γ̄2
(110)

We note that σ → 0 as P2 becomes small and that σ → ∞ as P1 becomes small.
Then the normalized value of q̄2+ where the system transitions from a stable to an unstable

equilibrium, Eq. 76, is:

q̄2+ = 3

10

[(
1 + β̄2

1 + ν − ν
2

(
β̄2

1 + γ̄ 2
1

))

ν(1 + σ 1/3)2 +
(
1 + β̄2

2 + 1 − ν − 1−ν
2

(
β̄2

2 + γ̄ 2
2

))

(1 − ν)(1 + 1/σ 1/3)2

]

⎡
⎢⎢⎢⎢⎢⎢⎣

1 +

√√√√√√√√√
1 + 10

3

[
1+β̄2

1
ν(1+σ 1/3)2 + 1+β̄2

2
(1−ν)(1+1/σ 1/3)2

] [
2−(β̄2

1 +γ̄ 2
1

)
(1+σ 1/3)2 + 2−(β̄2

2 +γ̄ 2
2

)
(1+1/σ 1/3)2

]

[(
1+β̄2

1 +ν− ν
2

(
β̄2

1 +γ̄ 2
1

))
ν(1+σ 1/3)2 +

(
1+β̄2

2 +1−ν− 1−ν
2

(
β̄2

2 +γ̄ 2
2

))

(1−ν)(1+1/σ 1/3)2

]2

⎤
⎥⎥⎥⎥⎥⎥⎦

(111)
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Fig. 2 Plot showing the stability limit, Hill stability limit, and conjugate solution for two spheres in relative
equilibrium. The conjugate solution has the same angular momentum as the solution for a touching system,
at a distance of 1

where q̄ = 1 corresponds to the two ellipsoids touching each other. We note that 1 < q+,
which means that all binary ellipsoid systems that fission are formally unstable when the full
coupling between the bodies is taken into account.

We can apply the same normalization to the condition for the Free Energy to be positive,
Eq. 24, to find:

q̄2
E = 1

10

[(
1 + β̄2

1 + ν − ν
2

(
β̄2

1 + γ̄ 2
1

))

ν(1 + σ 1/3)2 +
(
1 + β̄2

2 + 1 − ν − 1−ν
2

(
β̄2

2 + γ̄ 2
2

))

(1 − ν)(1 + 1/σ 1/3)2

]

⎡
⎢⎢⎢⎢⎣

1 +

√√√√√√√√
1 + 6

[
1+β̄2

1
ν(1+σ 1/3)2 + 1+β̄2

2
(1−ν)(1+1/σ 1/3)2

] [
2−(β̄2

1 +γ̄ 2
1

)
(1+σ 1/3)2 + 2−(β̄2

2 +γ̄ 2
2

)
(1+1/σ 1/3)2

]

[(
1+β̄2

1 +2ν−ν
(
β̄2

1 +γ̄ 2
1

))
ν(1+σ 1/3)2 +

(
1+β̄2

2 +2(1−ν)−(1−ν)
(
β̄2

2 +γ̄ 2
2

))
(1−ν)(1+1/σ 1/3)2

]2

⎤
⎥⎥⎥⎥⎦

(112)

In the following we plot a number of different curves for a range of different ellipsoid shapes,
for values of ν in the range of [0, 1]. In these plots the distance has been normalized to the
distance of the two long-axes added together. Thus, at each value of ν a separation of 1
corresponds to when the two bodies are in contact. If the system is formed by fission of
a contact binary, then this unity distance will define the initial orbital equilibrium that the
system enters. We note that all such equilibria are apparently unstable and that those with a
mass fraction close to 0 or 1 will also have a positive free energy.

The matter in which these curves scale with the different shapes is interesting and shows
little deviation from the ideal case of two spheres. First consider Fig. 2, plotting the curves for
two spherical bodies (αi = βi = γi ). We see that this simple situation defines the qualitative
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Fig. 3 Plot showing the stability limit for a range of different shape bodies. The Itokawa solution uses the
shape of the “Head” and “Body” of that asteroid (Demura et al. 2006), and the 1999 KW4 solution uses the
shapes of the primary and secondary for that binary asteroid (Ostro et al. 2006)

situation shown in Figs. 3, 4, 5, representing a diverse set of possible shapes, where we
note that their properties are all qualitatively unchanged. However, we must be careful when
introducing bodies with any rotational symmetry into the plots, as discussed below.

5.2 Axis-symmetric bodies

There are a few special cases that can result in a fundamental change in the model, and which
indicate some limitations of these results. When one of the bodies is changed into being
rotationally symmetric about the z-axis the body’s rotational kinetic energy and angular
momentum decouples from the rest of the system. While this decoupling occurs in a smooth
way for the mutual potential (where the additional terms vanish when one body becomes a
sphere) it does not smoothly occur in the total energy and angular momentum available for
transfer within the system. What happens instead is that the rotational energy and angular
momentum of the body in question remains conserved, but must be accounted for indepen-
dent of the rest of the system energy. In fact, what must occur is a change in the analysis from
the start, where these terms are not included in the system energy and angular momentum.
For the stated results above, this means that the rotationally symmetric body’s Izi moment
of inertia must be removed from the system moment of inertia Iz1 + Iz2 + mr2.

The biggest issue related to this is that the system’s stability properties do not smoothly
transition from the case of two non-spheroid bodies to the case of only one non-spheroid
body. This can be seen in the paper (Scheeres 2007), where similar stability diagrams are
given for relative equilibrium stability in a sphere-ellipsoid system. This abrupt transition
occurs once one of the bodies is rotationally symmetric, with a marked difference between
the case where one of the bodies is approaching a spheroid in the limit and once it reaches that
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Fig. 4 Plot showing the Hill stability limit for a range of different shape bodies. See the caption of Fig. 3 for
more details

Fig. 5 Plot showing the conjugate stable solutions for a range of different shape bodies. The conjugate solu-
tion has the same angular momentum as the solution for a touching system, at a distance of 1, and is the stable
counterpart to the unstable touching equilibrium

limit. Physically, there should be no noticeable distinction between these systems, however
the presence of even a slight ellipticity implies that rotational coupling can occur and can
modify the stability of the system.
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In the current paper we do not formally decouple the body’s rotational energy and angular
momentum from the total system’s when one body is made to be rotationally symmetric.
This is done with a physical assumption in mind, namely that even for a perfect sphere one
expects there to be small deviations in shape due to tidal effects. In the following section
we make this assumption for the two-sphere system and, under this assumption, find some
interesting results.

5.3 Sphere-sphere

It is instructive to examine the equilibrium and stability of a sphere-sphere system. This is
of interest given that the scaled results for non-spherical shapes compare qualitatively to
the sphere-sphere system. Technically, this system just decouples into a constant spin for
each body and a Keplerian circular orbit for the system. However, if we invoke tidal theory,
the presence of small deviations from sphericity can cause transfer of angular momentum
and energy between the two bodies, allowing us to apply the results from this study. We
find, surprisingly, that for a given angular momentum there are two system equilibria for a
sphere-sphere system and that one is unstable and the other stable.

The simplest way to proceed is to reconsider the above, more general results for an
ellipsoid-ellipsoid system and specialize it to the sphere-sphere case. To do this, we let
β̄i = γ̄i = 1. Making this substitution we find that σ = ν/(1 − ν) and see that the above
limits for transition between stable and unstable equilibria, and between negative and positive
free energy cases, simplify to:

q̄2+ = 6

5

[
1

ν(1 + σ 1/3)2 + 1

(1 − ν)(1 + 1/σ 1/3)2

]
(113)

q̄2
E = 2

5

[
1

ν(1 + σ 1/3)2 + 1

(1 − ν)(1 + 1/σ 1/3)2

]
(114)

or that q2
E = q2+/3. Note that these are the normalized results. It is instructive to remove the

normalization by multiplication by m and l2. This yields the simple to interpret results:

mq2+ = 3
(
Iz1 + Iz2

)
(115)

mq2
E = (Iz1 + Iz2

)
(116)

Thus we see an extremely simple relationship between the moment of inertia of the two
bodies treated as mass points and the rotational moment of inertia of the two rigid bodies.
When the moment of inertia of the two bodies is greater than the rotational moments of
inertia, the total energy of the system is negative, however it may still be unstable. It is only
when the system moment of inertia is greater than three times the rotational moments of
inertia does the system become stable.

It is also instructive to reconsider the number of relative equilibria that exist for a sphere-
sphere system. Applying our simplifications to Eq. 40, noting that C12 = 0 for this case, we
find:

r2
[

r4 − K 2

m2µ
r3 +

(
2

I1z + I2z

m

)
r2 + I1z + I2z

m

(
I1z + I2z

m

)]
= 0 (117)

Application of the Routh-Hurwitz criterion to this polynomial again yields that there are two
distinct, real solutions.
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Finally, it is instructive to consider the limits imposed by our zero-velocity surfaces for
this particular case. For a 2-sphere system the zero-velocity constraints reduce to:

E + mµ

r
≥ 1

2

K 2

Iz1 + Iz2 + mr2 (118)

where, of course, the moments of inertia for body 1 and 2 are simplified, however we will
leave them in their current form given our above realizations. We also assume that the energy
and angular momentum are evaluated at a relative equilibrium at a distance ro between the
bodies, thus introducing the equilibrium distance as a parameter. This inequality can be
reduced to a cubic equation:

(
Iz1 + Iz2 − mr2

o

) ( r

ro

)3

+ 2mr2
o

(
r

ro

)2

− [3 (Iz1 + Iz2

)+ mr2
o

] ( r

ro

)

+2
(
Iz1 + Iz2

) ≥ 0 (119)

The equation has a double root at r = ro, allowing the equation to be factored into final form:
[(

r

ro

)
− 1

]2 [(
Iz1 + Iz2 − mr2

o

) ( r

ro

)
+ 2

(
Iz1 + Iz2

)] ≥ 0 (120)

We note that the first factor will always be satisfied. This leaves the controlling equation to
be:

(
Iz1 + Iz2 − mr2

o

) ( r

ro

)
+ 2

(
Iz1 + Iz2

) ≥ 0 (121)

There are three different cases to consider.

I mr2
o ≤ Iz1 + Iz2

In this case we see that the inequality is always satisfied, leading to the trivial constraint
r > 0. For this case we note that there is no upper bound on r , meaning that escape is
always an option, and that the free energy of the equilibrium point is positive. Figure 6
shows an explicit example of this situation.

II Iz1 + Iz2 < mr2
o ≤ 3(Iz1 + Iz2)

In this case the controlling inequality for r is:

0 ≤ r ≤ ro
2
(
Iz1 + Iz2

)

mr2
o − (Iz1 + Iz2

) (122)

Furthermore, given the constraint on ro we find that the upper limit satisfies:

1 ≤ 2
(
Iz1 +Iz2

)
mr2

o −(Iz1 +Iz2

) < ∞ (123)

This implies that there exists a finite upper bound on r , and that a system starting/dis-
turbed from r = ro can potentially reach this upper limit. In this situation the free
energy of the equilibrium point is negative, but the system is still unstable. Figure 7
shows an explicit example of this situation.

III mr2
o > 3(Iz1 + Iz2)

In this situation we can show that the radius is subject to the same restrictions:

0 ≤ r ≤ ro
2
(
Iz1 + Iz2

)

mr2
o − (Iz1 + Iz2

) (124)
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Fig. 6 The equilibrium point is at a radius of 1 and the energy of the equilibrium point equals 0.25. Motion is
allowable on all parts of the curve beneath the equilibrium energy, and hence we see that all values of radius
can be reached

Fig. 7 The equilibrium point is at a radius of 1 and the energy of the equilibrium point equals −0.25. Motion
is allowable on all parts of the curve beneath the equilibrium energy, and hence we see that only a limited
range of radii can be reached
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Fig. 8 The equilibrium point is at a radius of 1 and the energy of the equilibrium point equals −0.375. Motion
is allowable on all parts of the curve beneath the equilibrium energy, and hence we see that the equilibrium
point is isolated

However now, given the constraint on ro we find that the upper limit satisfies:

2
(
Iz1 + Iz2

)

mr2
o − (Iz1 + Iz2

) < 1 (125)

Thus, a particle starting in the vicinity of r = ro is now separated from this allowable
interval. Going back to the original, full inequality we see that in the vicinity of r = ro we
will violate the inequality unless we keep r = ro. This fits well with our knowledge that the
relative equilibrium is the minimum energy equilibrium. Figure 8 shows an explicit example
of this situation.

6 Conclusions

The stability of a planar full 2-body problem has been studied, accounting for a non-trivial
mutual gravitational potential between the two bodies. For the case when the mutual potential
is expanded to second order, we can make a complete discussion of the stability of the system,
incorporating energetic stability, spectral stability, Hill stability and stability against impact.
The current discussion reveals some interesting results when applied to constant density
ellipsoidal bodies, expanded to second order. Specifically, we find that all binary systems
that arise from the fission of the two components will be unstable, with a stable relative
equilibrium in existence at a larger distance with a lower system energy (but same system
angular momentum). This has implications for the evolution of an asteroid spun to fission,
implying that it immediately enters a dynamic phase which can include reimpact of the bodies
or separation of the bodies. If the total system energy is positive, the system may even disrupt.
A surprising find is that these stability considerations also apply to a system of two spheres
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orbiting each other, when their rotational moments of inertia are incorporated into the energy
and angular momentum constraints. This shows that not every circular orbit of a Keplerian
system is stable, and that as a function of the rotational moments of inertia a different cir-
cular orbit may be found at the same value of angular momentum which has a lower value
of system energy. A second important result is that the stability constraints and equilibrium
separations between two strongly non-spherical bodies, when scaled appropriately, is close
to the same results as stated for a two-sphere system.
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