# Coupled Systems of Differential Equations 

DANCE Winter School<br>Pamplona<br>January 23, 2012

Marty Golubitsky
Mathematical Biosciences Institute and
Department of Mathematics
Ohio State University

## Quadruped Gaits

- Bound of the Siberian Souslik

- Amble of the Elephant

- Trot of the Horse


## Standard Gait Phases



## Gait Symmetries / Central Pattern Generators

| Gait | Spatio-temporal symmetries |  |  |
| :---: | :---: | :---: | :---: |
| Trot | (Left/Right, $\frac{1}{2}$ ) | and | (Front/Back, $\frac{1}{2}$ ) |
| Pace | (Left/Right, $\frac{1}{2}$ ) | and | (Front/Back, 0 ) |
| Walk | (Figure Eight, $\frac{1}{4}$ ) |  |  |

- Network of neurons (CPG) that produces gait rhythms
- Hodgkin - Huxley (1952)

Neuron modeled by system of differential equations

- Design simplest network to produce walk, trot, and pace

Collins and Stewart (1993)

## Four Cells Do Not Suffice

- $\Gamma$ = symmetry group of locomotor CPG network
- Network produces walk. There is a four-cycle symmetry

$$
(1324)
$$

- Four-cycle permutes pace to trot



PACE


TROT

- CPG cannot be modeled by four-cell network where each cell gives rhythmic pulsing to one leg
G., Stewart, Buono, and Collins (1999)


## Central Pattern Generators (CPG)

- Use gait symmetries to construct coupled network

1) walk $\Longrightarrow$ four-cycle $\omega$ in symmetry group
2) pace or trot $\Longrightarrow$ transposition $\kappa$ in symmetry group

- Simplest network has $\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$ symmetry

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

Primary Gaits or Hopf Bifurcation from Stand: $H=\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$

| K | Phase Diagram | Gait |
| :---: | :---: | :---: |
| $\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$ | $\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \end{array}$ | pronk |
| $\mathbf{Z}_{4}(\omega)$ | $\begin{array}{ll}0 & \frac{1}{2} \\ 0 & \frac{1}{2}\end{array}$ | pace |
| $\mathbf{Z}_{4}(\kappa \omega)$ | $\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}$ | trot |
| $\mathbf{Z}_{2}(\kappa) \times \mathbf{Z}_{2}\left(\omega^{2}\right)$ | $\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ 0 & 0\end{array}$ | bound |
| $\mathbf{Z}_{2}\left(\kappa \omega^{2}\right)$ | $\begin{array}{cc}\frac{1}{4} & \frac{3}{4} \\ 0 & \frac{1}{2} \\ & \end{array}$ | walk |
| $\mathbf{Z}_{2}(\kappa)$ | $\begin{array}{ll} \hline 0 & 0 \\ \frac{1}{4} & \frac{1}{4} \\ \hline \end{array}$ | jump |

## The Jump



- Average Right Rear to Right Front $=31.2$ frames
- Average Right Front to Right Rear = 11.4 frames
- $\frac{31.2}{11.4}=2.74$
G., Stewart, Buono, and Collins (2000)

