Coupled Systems of Differential Equations

DANCE Winter School Pamplona January 23, 2012

Marty Golubitsky Mathematical Biosciences Institute and Department of Mathematics Ohio State University

Quadruped Gaits

• Bound of the Siberian Souslik

• Amble of the Elephant

• Trot of the Horse

Standard Gait Phases

Gait	Spatio-temporal symmetries			
Trot	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, $\frac{1}{2}$)	
Pace	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, 0)	
Walk	(Figure Eight, $\frac{1}{4}$)			

- Network of neurons (CPG) that produces gait rhythms
- Hodgkin Huxley (1952)

Neuron modeled by system of differential equations

• Design simplest network to produce walk, trot, and pace

Collins and Stewart (1993)

Four Cells Do Not Suffice

- $\Gamma = \text{symmetry group of locomotor CPG network}$
- Network produces walk. There is a four-cycle symmetry

 $(1\ 3\ 2\ 4)$

• Four-cycle permutes pace to trot

- CPG cannot be modeled by four-cell network where each cell gives rhythmic pulsing to one leg
- G., Stewart, Buono, and Collins (1999)

Central Pattern Generators (CPG)

- Use gait symmetries to construct coupled network
 - 1) walk \implies four-cycle ω in symmetry group
 - 2) pace or trot \implies transposition κ in symmetry group
- Simplest network has $\mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$ symmetry

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

Primary Gaits or Hopf Bifurcation from Stand: $H = \mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$

K	Phase Diagram	Gait
$\mathbf{Z}_4(\omega) imes \mathbf{Z}_2(\kappa)$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array}$	pronk
${f Z}_4(\omega)$	$\begin{array}{ccc} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}$	pace
${f Z}_4(\kappa\omega)$	$\begin{array}{ccc} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{array}$	trot
$\mathbf{Z}_2(\kappa) imes \mathbf{Z}_2(\omega^2)$	$\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{array}$	bound
${f Z}_2(\kappa\omega^2)$	$\begin{array}{ccc} \frac{1}{4} & \frac{3}{4} \\ 0 & \frac{1}{2} \end{array}$	walk
$\mathbf{Z}_2(\kappa)$	$\begin{array}{ccc} 0 & 0 \\ \frac{1}{4} & \frac{1}{4} \end{array}$	jump

The Jump

- Average Right Rear to Right Front = 31.2 frames
- Average Right Front to Right Rear = 11.4 frames
- $\frac{31.2}{11.4} = 2.74$
- G., Stewart, Buono, and Collins (2000)