Coupled Systems of Differential Equations

DANCE Winter School
Pamplona
January 27, 2012

Marty Golubitsky
Mathematical Biosciences Institute and
Department of Mathematics
Ohio State University

Outine

- Why $\frac{1}{6}$?
- Feedforward network as a motif
- Heteroclinic cycles in networks
- A model for rivalry

Three-Cell Feed-Forward Network

- Network supports solution by Hopf bifurcation where $x_{1}(t)$ equilibrium $\quad x_{2}(t), x_{3}(t)$ time periodic
- $x_{2}(t) \approx \lambda^{1 / 2} \quad x_{3}(t) \approx \lambda^{1 / 6}$

G., Nicol, and Stewart (2004); Elmhirst and G. (2005); G. and Postlethwaite (2012)
F.F. Ex. $f(u, v)=\left(\lambda+i-|u|^{2}\right) u-v$ where $u, v \in \mathbf{C}$

$$
\dot{x}_{1}=f\left(x_{1}, x_{1}\right)=\left(\lambda+i-\left|x_{1}\right|^{2}\right) x_{1}-x_{1}
$$

$x_{1}=0$ is a stable equilibrium for $\lambda<1$

$$
\begin{gathered}
\dot{x}_{2}=f\left(x_{2}, x_{1}\right)=\left(\lambda+i-\left|x_{2}\right|^{2}\right) x_{2}-x_{1} \\
\dot{x}_{2}=f\left(x_{2}, 0\right)=\left(\lambda+i-\left|x_{2}\right|^{2}\right) x_{2}
\end{gathered}
$$

$x_{2}(t)=\sqrt{\lambda} e^{i t}$ is stable periodic solution for $0<\lambda<1$

$$
\begin{gathered}
\dot{x}_{3}=f\left(x_{3}, x_{2}\right)=\left(\lambda+i-\left|x_{3}\right|^{2}\right) x_{3}-x_{2} \\
\dot{x}_{3}=f\left(x_{3}, \sqrt{\lambda} e^{i t}\right)=\left(\lambda+i-\left|x_{3}\right|^{2}\right) x_{3}-\sqrt{\lambda} e^{i t}
\end{gathered}
$$

F.F. Ex. $f(u, v)=\left(\lambda+i-|u|^{2}\right) u-v$
$x_{1}=0$ is a stable equilibrium for $\lambda<1$
$x_{2}(t)=\sqrt{\lambda} e^{i t}$ is stable periodic solution for $0<\lambda<1$

$$
\dot{x}_{3}=\left(\lambda+i-\left|x_{3}\right|^{2}\right) x_{3}-\sqrt{\lambda} e^{i t}
$$

Set $x_{3}(t)=y(t) e^{i t}$

$$
\begin{aligned}
\dot{y} e^{i t}+y i e^{i t} & =\left(\lambda+i-|y|^{2}\right) y e^{i t}-\sqrt{\lambda} e^{i t} \\
\dot{y} e^{i t}+\boxed{y i e^{i t}} & =(\lambda+\mid \\
\dot{y} e^{i t} & =\left(\lambda-|y|^{2}\right) \sqrt{y e^{i t}}-\sqrt{\lambda} e^{i t} \\
\dot{y} e^{i t}-\sqrt{\lambda} e^{i t} & =\left(\lambda-|y|^{2}\right) y \mid e^{i t}-\sqrt{\lambda} e^{i t} \\
\dot{y} & =\left(\lambda-|y|^{2}\right) y-\sqrt{\lambda}
\end{aligned}
$$

F.F. Ex. $f(u, v)=\left(\lambda+i-|u|^{2}\right) u-v$
$x_{1}=0$ is a stable equilibrium for $\lambda<1$
$x_{2}(t)=\sqrt{\lambda} e^{i t}$ is stable periodic solution for $0<\lambda<1$
$x_{3}(t)=y(t) e^{i t}$

$$
\dot{y}=\left(\lambda-|y|^{2}\right) y-\sqrt{\lambda}
$$

Set $y(t)=\lambda^{1 / 6} u(t)$

$$
\begin{gathered}
\lambda^{1 / 6} \dot{u}=\left(\lambda^{7 / 6}-\lambda^{3 / 6}|u|^{2}\right) u-\lambda^{3 / 6} \\
\dot{u}=\left(\lambda-\lambda^{1 / 3}|u|^{2}\right) u-\lambda^{1 / 3} \\
\dot{u}=-\lambda^{1 / 3}\left(|u|^{2} u+1\right)+\lambda u
\end{gathered}
$$

F.F. Ex. $f(u, v)=\left(\lambda+i-|u|^{2}\right) u-v$

$x_{1}=0$ is a stable equilibrium for $\lambda<1$
$x_{2}(t)=\sqrt{\lambda} e^{i t}$ is stable periodic solution for $0<\lambda<1$
$x_{3}(t)=y(t) e^{i t}$
$y(t)=\lambda^{1 / 6} u(t)$

$$
\dot{u}=-\lambda^{1 / 3}\left(|u|^{2} u+1\right)+\lambda u
$$

Solve $\dot{u}=0$ for equilibria

$$
-\left(|u|^{2} u+1\right)+\lambda^{2 / 3} u=0
$$

Use IFT to obtain branch of (stable) equilibria

$$
u_{0}(\lambda)=-1+O\left(\lambda^{2 / 3}\right)
$$

Thus $x_{3}(t)$ is periodic with same period as $x_{2}(t)$

$$
x_{3}(t)=y(t) e^{i t}=\lambda^{1 / 6} u(t) e^{i t} \rightarrow \lambda^{1 / 6} u_{0}(\lambda) e^{i t}=-\lambda^{1 / 6} e^{i t}+O\left(\lambda^{5 / 6}\right)
$$

Forced Feed Forward Network

- forcing at frequency ω_{f} and amplitude ε
- network tuned near Hopf bifurcation with frequency ω_{h}
- $\lambda<0$ so that equilibrium is stable
- Three parameters: $\lambda, \epsilon, \omega_{f}-\omega_{h}$

Numerics with Aronson

- $\dot{z}=\left(-0.1+i-|z|^{2}\right) z+0.01\left(e^{i \omega_{F} t}+2 e^{2 i \omega_{F} t}-0.5 e^{3 i \omega_{F} t}\right)$

Periodic Forcing of Hopf

- $\dot{z}=\left(\lambda+\omega_{H} i-(1+i \gamma)|z|^{2}\right) z+\varepsilon e^{2 \pi i \omega_{f} t}$
- $\omega=\omega_{f}-\omega_{H}, \lambda=-0.0218, \varepsilon=0.02$

$$
\gamma=0
$$

$\gamma=3$
$\gamma=6$
G., Postlethwaite, Shiau, and Zhang (2009)

Bifurcation Diagrams: $\gamma<\sqrt{3}$

For fixed ε and λ and bifurcation parameter ω, the bifurcation diagrams are

Zhang and G. (2011)

Bifurcation Diagrams: $\gamma>\sqrt{3}$

For fixed ε and λ and bifurcation parameter ω, the bifurcation diagrams are

McCullen-Mullin Experiment

McCullen, Mullin, and G. (2007)

Guckenheimer-Holmes Heteroclinic Cycle

Γ acts on \mathbf{R}^{3} generated by

$$
\begin{array}{ll}
(x, y, z) & \mapsto(\pm x, \pm y, \pm z) \\
(x, y, z) & \mapsto(y, z, x)
\end{array}
$$

$|\Gamma|=24$ and $\Gamma=$ symmetry group of cube

- $F(0,0,0)=0$ since $\operatorname{Fix}(-x,-y,-z)=\{0\}$
- Coordinate axes flow-invariant since $\operatorname{Fix}(-x,-y, z)=\mathbf{R}\{(0,0,1)\}$
- Generic pitchfork bifurcation leads to equilibrium on z-axis
- Symmetry: equilibria on x - and y-axes
- Coordinate planes are flow-invariant since $\operatorname{Fix}(-x, y, z)=\{(0, y, z)\}$

Guckenheimer and Holmes (1988)

Construction of Cycle

Suppose

- There are no other equilibria in coordinate planes
- Two remaining eigenvalues of equilibria on axes have opposite sign
- Infinity is a source

Phase portrait is

Integration of Cycle: $\lambda=1.0, A=1.0, B=1.5, C=0.6$

Consider third order truncation of Γ-equivariant system

$$
\begin{gathered}
F(x, y, z)=\left(f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z)\right) \\
\begin{array}{c}
f_{1}(x, y, z)=\lambda x+\left(A x^{2}+B y^{2}+C z^{2}\right) x \\
f_{2}(x, y, z)=\lambda y+\left(C x^{2}+A y^{2}+B z^{2}\right) y \\
f_{3}(x, y, z)=\lambda z+\left(B x^{2}+C y^{2}+A z^{2}\right) z
\end{array}
\end{gathered}
$$

Breaking Symmetry of Guckenheimer-Holmes Heteroclinic Cycle

Breaking symmetry perturbs cycle to periodic solution. For example:

$$
\begin{aligned}
\dot{x} & =x-\left(A x^{2}+B y^{2}+C z^{2}\right) x+\epsilon y \\
\dot{y} & =y-\left(C x^{2}+A y^{2}+B z^{2}\right) y+\epsilon x \\
\dot{z} & =z-\left(B x^{2}+C y^{2}+A z^{2}\right) z+\epsilon z
\end{aligned}
$$

where $A=1.0, B=1.5, C=0.6, \epsilon=0.00001$

Coupled Cell Version of Guckenheimer-Holmes Cycle

Dionne, G. and Stewart (1994, 1996); Field et al. (2006-12)

Wilson's Generalized Rivalry Model

- Column represent attributes; rows represent level of attribute
- (L) Dashed lines: reciprocal inhibition between cells in column
- (R) Solid lines: reciprocal excitation between cells in learned pattern

Simplest Rivalry Equations Between Competing Units a and b

- Units represent perception of images presented to eyes
- Unit a consists of an activity variable a^{E} representing a firing rate, and a fatigue variable a^{H} that reduces activity on long time scale

$$
\begin{aligned}
\varepsilon \dot{a}^{E} & =-a^{E}+\mathcal{G}\left(I-\beta b^{E}-g a^{H}\right) \\
\dot{a}^{H} & =a^{E}-a^{H} \\
\varepsilon \dot{b}^{E} & =-b^{E}+\mathcal{G}\left(I-\beta a^{E}-g b^{H}\right) \\
\dot{b}^{H} & =b^{E}-b^{H}
\end{aligned}
$$

- β is reciprocal inhibition between units
- I is external signal strength to units
- a^{H} reduces the activity in unit a with strength g
- \mathcal{G} is gain: nonnegative, nondecreasing, and $\mathcal{G}(z)=0$ for $z \leq 0$
- $\varepsilon \ll 1$ is ratio of time scales on which $*^{E}$ and $*^{H}$ evolve

Two Learned Patterns a and b

- Network: n attribute columns with m cells representing attribute levels; two equations in each cell
- Learned pattern = one cell from each attribute column
- Reciprocal excitatory connections between these cells
- Cells in learned pattern are all-to-all connected (not indicated)
- Inhibitory connections in columns not indicated

Inactive Cells

(L) Two learned patterns with 2 cells in common (inactive cells deleted).
(R) Quotient network. Integers indicate multi-arrow couplings

- Inactive cells may be ignored, thus reducing network to $2 n-k$ cells, where k is number of active cells in common in two-patterns
- Understand dynamics using quotient network: 2 -cell network if no cells in common or 3 -cell network if cells in common
- Quotient network corresponds to subspace Δ. For many parameters Δ is locally attracting. So, reduction to quotient captures dynamics

Solution Types

Three types of states:

- Fusion = equilibria in which patterns have equal values
- Winner-Take-All = equilibria with different activity levels
- Rivalry = two or more patterns oscillate in periods of dominance
- States: synchronous equilibria; asynchronous equilibria; oscillations
- Rivalry could stem from Hopf bifurcation or heteroclinic cycle

Many Learned Patterns

(L) Three patterns with no cells pairwise in common; (R) Each pair of patterns has common active cells

- Wilson: Rivalry predominates in 5 attribute 3 intensity level system when there are four or five learned patterns
- n attribute m intensity level system can learn m^{n} patterns (243 in working example)
- Extreme case (all learned patterns) may be tractable: wreath product $S_{m} \swarrow S_{n}$ with $(m!)^{n} n!$ elements (933120 in working example)
- Wreath product symmetric coupled systems can lead to heteroclinic cycles. Guckenheimer-Holmes cycle has wreath product group

