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e Why %?
e Feedforward network as a motif
e Heteroclinic cycles in networks

e A model for rivalry



Three-Cell Feed-Forward Network

O (D)—(2)—0) 21 = f(z1,21) at+p 0 0
Ty = f(z2,21) J= 6 a 0
z3 = [(x3,22) 0 5 o]

e Network supports solution by Hopf bifurcation where
x1(t) equilibrium xa(t), xz3(t) time periodic

o Ig(t) ~ \1/2 :Ug(t) ~ \1/6
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G., Nicol, and Stewart (2004); Elmhirst and G. (2005); G. and Postlethwaite (2012)




FF EX. f(u,v) = (A +i— |u|?)u — v where u,v € C

#1 = f(z1,21) = (A4 i — |z1]*)z1 — 21

x1 = 0 1S a stable equilibrium for A < 1

g = f(z9,21) = (A +1i — |22/} 22 — 21
g = f(22,0) = (A + i — |z2]*) 2y

r2(t) = v Ae' is stable periodic solution for 0 < A < 1

T3 = f(:Cg,Q?Q) = ()\ + 7 — ‘373‘2)563 — X9

is = f(xz, VAe®t) = (A + i — |23} 23 — Ve
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x1 = 01s a stable equilibrium for A < 1
r2(t) = v Ae' is stable periodic solution for 0 < A < 1

i3 = (A 41— |23} 23 — V¥

7= lyl)y — v



FF EX. f(u,v) = (A +i— |[u]*)u—wv

x1 = 01s a stable equilibrium for A < 1
r2(t) = v Ae' is stable periodic solution for 0 < A < 1

z3(t) = y(t)e"

g= (= ly})y - VA
Set y(t) = A\/Su(t)

)\1/6u _ ()\7/6 . )\3/6‘21,‘2)“ . )\3/6
== A3}y — A3

i = —-A3(ulPu+1) + \u



FF EX. f(u,v) = (A +i— |[u]*)u—wv

x1 = 01s a stable equilibrium for A < 1

r2(t) = v Ae' is stable periodic solution for 0 < A < 1
r3(t) = y(t)e?

y(t) = AOu(t)

= —-A3(lufPu + 1) + Au

Solve u = 0 for equilibria
—(|u?u+ 1) + X2/3u =0
Use IFT to obtain branch of (stable) equilibria
wo(A) = —1 + O(N\¥/3)
Thus x3(t) is periodic with same period as x»(t)

z3(t) = y(t)e” = AOu(t)e™ — A/Oug(A)e’ = —\'/%e + O(X/)






Forced Feed Forward Network
o (D0 —

e forcing at frequency w¢ and amplitude ¢
e network tuned near Hopf bifurcation with frequency wy,
e )\ < 0 so that equilibrium is stable

e Three parameters: A, €, ws — wy



Numerics with Aronson

o = (—0.1+1i—|z]*)z+0.01(e"F" + 2e*F" — 0.5e3"r")

€=0.01;A=-0.1
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Periodic Forcing of Hopf

o = (AN+wyi— (1+iv)|z]?)z + ee?™wst

o w=ws—wy, A= —0.0218, £ = 0.02
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G., Postlethwaite, Shiau, and Zhang (2009)



Bifurcation Diagrams: v < v/3

For fixed £ and )\ and bifurcation parameter w, the bifurcation diagrams are
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Zhang and G. (2011)



Bifurcation Diagrams: v > v/3

For fixed £ and )\ and bifurcation parameter w, the bifurcation diagrams are




McCullen-Mullin Experiment
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McCullen, Mullin, and G. (2007)



Guckenheimer-Holmes Heteroclinic Cycle

I" acts on R? generated by

(x,y,2) — (Fx,+y,+2)
(z,9,2) = (y,2,2)

II'| =24 and I' = symmetry group of cube
e F(0,0,0) =0 since Fix(—x, —y, —z) = {0}
e Coordinate axes flow-invariant since Fix(—z, —y,2) = R{(0,0,1)}
e Generic pitchfork bifurcation leads to equilibrium on z-axis
e Symmetry: equilibria on x- and y-axes
e Coordinate planes are flow-invariant since Fix(—x,y, z) = {(0,y, 2)}

Guckenheimer and Holmes (1988)



Construction of Cycle

Suppose
e There are no other equilibria in coordinate planes
e Two remaining eigenvalues of equilibria on axes have opposite sign
e Infinity Is a source

Phase portrait is




Integration of Cycle: A\=1.0,A=1.0,B=1.5,C =0.6

Consider third order truncation of I'-equivariant system

F(x,y,z) — (fl(CC,y,Z),fQ(ZC,y,Z),fg(CC,y,Z))

filz,y,2) = Az+ (Az”+ By’ + C2°)x
fz(a?,y,z) = Ay+ (CxQ +Ay2 +Bz2)y
fa(z,y,2) = Az+ (B:L’2 + Cy° + Az2)z

15

‘Ef\/\/U\ﬂ ﬂ ﬂ ﬁ

15

*EU\/WM ﬂ ﬂ T

1000

1000

15

”fW\W ﬂ ﬂ

1000



Breaking Symmetry of Guckenheimer-Holmes Heteroclinic Cycle

Breaking symmetry perturbs cycle to periodic solution. For example:

i = x—(Az®4+ By*+Cz)x + ey
= y—(Cz’+ Ay’ + B2y + ex
5 = z2—(Bx?+Cy*+ A28z + ez

where A = 1.0, B_15 0—06 e—000001
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Coupled Cell Version of Guckenheimer-Holmes Cycle
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Wilson’s Generalized Rivalry Model
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e Column represent attributes; rows represent level of attribute
e (L) Dashed lines: reciprocal inhibition between cells in column

e (R) Solid lines: reciprocal excitation between cells in learned pattern

Wilson (2008, 2009); Diekman, G., McMillen, and Wang (2012)



Simplest Rivalry Equations Between Competing Units a and b

e Units represent perception of images presented to eyes

e Unit a consists of an activity variable a” representing a firing rate,
and a fatigue variable o' that reduces activity on long time scale

ot = —aE+Q(I—6bE—gaH)
JH — B _ H

eb? = —bE—I—g(I—BaE—ng)
i)H — B _pH

e [ Is reciprocal inhibition between units

e ] Is external signal strength to units

e o’ reduces the activity in unit a with strength g

e G Is gain: nonnegative, nondecreasing, and G(z) = 0 for z <0

e ¢ < 1 is ratio of time scales on which *£ and * evolve



Two Learned Patterns a and b

Attributes
e Network: n attribute columns with m cells representing attribute

levels; two equations in each cell
e Learned pattern = one cell from each attribute column
e Reciprocal excitatory connections between these cells
e Cells in learned pattern are all-to-all connected (not indicated)

e Inhibitory connections in columns not indicated



Inactive Cells

Pattern A

Pattern B

(L) Two learned patterns with 2 cells in common (inactive cells deleted).
(R) Quotient network. Integers indicate multi-arrow couplings

e Inactive cells may be ignored, thus reducing network to 2n — & cells,
where £ Is number of active cells in common in two-patterns

e Understand dynamics using quotient network: 2-cell network if no
cells in common or 3-cell network if cells in common

e Quotient network corresponds to subspace A. For many parameters
A Is locally aftracting. So, reduction to quotient captures dynamics



Solution Types

Three types of states:

e Fusion = equilibria in which patterns have equal values

e Winner-Take-All = equilibria with different activity levels

e Rivalry = two or more patterns oscillate in periods of dominance

e States: synchronous equilibria; asynchronous equilibria; oscillations

e Rivalry could stem from Hopf bifurcation or heteroclinic cycle



Many Learned Patterns
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(L) Three patterns with no cells pairwise in common; (R) Each pair of
patterns has common active cells
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e Wilson: Rivalry predominates in 5 attribute 3 intensity level system
when there are four or five learned patterns

e n attribute m intensity level system can learn m™ patterns (243 In
working example)

e Extreme case (all learned patterns) may be tractable: wreath product
Sm 1Sy, with (m!)"n! elements (933120 in working example)

e Wreath product symmetric coupled systems can lead to heteroclinic
cycles. Guckenheimer-Holmes cycle has wreath product group
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