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Vilanova i la Geltrú, 24–28 January 2011

Lecture Notes to The Course

Introduction to Smooth Ergodic Theory

Yakov Pesin

Pennsylvania State University

1



Deterministic Chaos.

Deterministic chaos – the appearance of “chaotic”
motions in purely deterministic dynamical sys-
tems – is one of the most fundamental discov-
eries in the theory of dynamical systems in the
second part of the last century.

It has been understood since the 1960s that a
deterministic dynamical system can exhibit ap-
parently stochastic behaviour. This is due to
the fact that instability along typical trajecto-
ries of the system, which drives orbits apart,
can coexist with compactness of the phase
space, which forces them back together; the
consequent unending dispersal and return of
nearby trajectories is one of the hallmarks of
chaos.

We shall only consider conservative dynam-
ics, i.e., smooth systems on compact mani-
folds that preserve smooth measures (which
is equivalent to volume; in particular, volume-
preserving).
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Is deterministic chaos prevalent? Of course,

not every dynamical system exhibits instabil-

ity; there are many systems whose behaviour is

quite regular and not at all chaotic. Thus it is

natural to ask which sort of behaviour prevails:

is regularity the rule, and chaos the exception?

Or is it the other way around? Perhaps there

are different contexts in which either sort of

behaviour is “typical”. Many of the open prob-

lems regarding chaotic systems at the present

time are related to this question.

In order to meaningfully address this issue, a

number of things need to be made precise.

What exactly do we mean by “chaos”, and

what sort of “instability” do we consider? What

do we mean by a “typical” dynamical system,

and what does it mean for one sort of be-

haviour to be the “rule”, and the other the

“exception”?
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Intuitively, instability means that the behavior
of orbits that start in a small neighborhood of
a given one resembles that of the orbits in a
small neighborhood of a hyperbolic fixed point.
In other words the tangent space along the
orbit fn(x) admits an invariant splitting

Tfn(x)M = Es(fn(x))⊕ Eu(fn(x))

with contraction along the stable subspace Es

and expansion along the unstable subspace Eu.

One should distinguish uniform and nonuni-
form hyperbolicity. In the former case every
trajectory is hyperbolic and the contraction and
expansion rates are uniform in x on an invariant
compact subset in the phase space (in partic-
ular, on the whole phase space). In the latter
case the set of hyperbolic trajectories has pos-
itive (in particular, full) measure with respect
to a smooth measure µ and the contraction
and expansion rate depend on x. Thus nonuni-
formly hyperbolicity is a property of the system
as well as of an invariant measure.
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Nonuniformly hyperbolicity can also be expressed

in more “practical” terms using the Lyapunov

exponent of µ:

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnx v‖, x ∈M, v ∈ TxM.

This means that for sufficiently large n,

‖dfnx v‖ ∼ exp(χ(x, v)± ε)n.

If χ(x, v) > 0, the differential asymptotically

expends v with some exponential rate and if

χ(x, v) < 0, the differential asymptotically con-

tracts v with some exponential rate.

Therefore, f is nonuniformly hyperbolic if for

a.e. trajectory with respect to µ the Lyapunov

exponent χ(x, v) is not equal to zero for every

vector v; (µ is called a hyperbolic measure). In

other words,

Es(x) = {v ∈ TxM : χ(x, v) < 0},

Eu(x) = {v ∈ TxM : χ(x, v) > 0}.

5



Uniform Hyperbolicity (Anosov Systems)

A diffeomorphism f of a compact Riemannian
manifold M is Anosov if for each x ∈ M there
is a continuous df-invariant decomposition of
the tangent space TxM = Es(x) ⊕ Eu(x) and
constants c > 0, λ ∈ (0,1) s.t. for x ∈M :

1. ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;

2. ‖dxf−n‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

By the classical Hadamard–Perron theorem the
sets

W s(x) = {y ∈M : d(fn(y), fn(x))→ 0, n→∞},

Wu(x) = {y ∈M : d(fn(y), fn(x))→ 0, n→ −∞},

are immersed smooth manifolds and TxWu,s(x) =
Eu,s(x). They form two invariant stable and
unstable foliations with smooth leaves W s and
Wu. In general, the leaves of these foliations
depend only continuously on x.
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Example: A linear automorphism A of the

torus T2 with eigenvalues λ > 1 and λ−1 < 1.

For x ∈ T2 the stable and unstable subspaces

Eu(x) and Es(x) are the lines obtained by the

translation of the eigenlines of A.

Stochastic Properties: An Anosov diffeomor-

phism f preserving a smooth measure is er-

godic and for some n > 0 the map fn is Bernoulli

(in the sense of the probability theory).

The proof is based on the Hopf argument and

uses a crucial property of stable and unstable

foliations known as absolute continuity.
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Absolute Continuity

Fix x and consider the family of local sta-

ble manifolds {V s(w)} for w ∈ B(x, r). Let

T1 and T2 be two transversals to this family.

We define the holonomy map π : T1 → T2 by

π(y) = T2 ∩ V s(y). This map is a homeomor-

phism onto its image.

Given a submanifold W in M , we denote by νW
the leaf-volume on W induced by the Rieman-

nian metric to W .

Absolute Continuity Theorem.

The holonomy map π is absolutely continuous

(with respect to the measures νT1 and νT2)

and the Jacobian Js(π) of the holonomy map

is bounded from above and bounded away from

zero.

8



Genericity: Anosov diffeomorphisms of class

C1 form an open set in the C1 topology.

Anosov diffeomorphisms exist on tori and fac-

tors of compact nilpotent Lie groups (Smale).

Existence of an Anosov diffeomorphism on a

compact manifold imposes strong requirements

on the topology (there are two continuous non-

singular foliations, the action on the funda-

mental group is hyperbolic, etc.).
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Basic Properties of Lyapunov Exponents

For any x ∈M and v, w ∈ TxM :

1) χ(x, αv) = χ(x, v) for any α 6= 0;

2) χ(x, v + w) ≤ max{χ(x, v), χ(x,w)};

3) χ(x,0) = −∞.

It follows that for every x the function χ(· · · , v)

attaines finitely many distinct values:

χ1(x) < · · · < χp(x)(x), p(x) ≤ dimM.

Each value χi(x) has its multiplicity ki(x) and

the functions χi(x), ki(x) and p(x) are (Borel)

measurable f-invariant functions. Furthermore,

there is a filtration

V1(x) ⊂ · · · ⊂ Vp(x)(x) = TxM,

where each Vi(x) = {v ∈ TxM : χ(x, v) ≤ χi(x)}
is invariant under df and dimVl(x) =

∑l
i=1 ki(x).
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Lyapunov–Perron Regularity

The point x ∈ M is Lyapunov–Perron regular

if and only if there exists a decomposition

TxM =
s(x)⊕
i=1

Ei(x)

into subspaces Ei(x) and numbers

χ1(x) < · · · < χs(x)(x)

such that:

1) Ei(x) is invariant under dxf , i.e., dxfEi(x) =

Ei(f(x)) and depends (Borel) measurably on x;

moreover, dimEi(x) = ki(x);

2) Vl(x) =
⊕l
i=1Ei(x), l = 1, . . . , k(x);
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3) for v ∈ Ei(x) \ {0},

lim
m→±∞

1

m
log ‖dxfmv‖ = χi(x)

with uniform convergence on {v ∈ Ei(x) : ‖v‖ =

1};

4) if v = (v1, . . . , vki(x)) is a basis of Ei(x), then

lim
m→±∞

1

m
log Γv

ki(x)(m) = χi(x)ki(x);

where Γv
ki(x)(m) is the volume of the paral-

lelepiped generated by the vectors

(dxf
mv1, . . . , dxf

mvki(x));

5) for any v, w ∈ TxM \ {0},

lim
m→±∞

1

m
log 6 (dxf

mv, dxf
mw) = 0,

where 6 (v, w) is the angle between the vectors

v and w.
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Multiplicative Ergodic Theorem.

If f is a diffeomorphism of a compact smooth

Riemannian manifold M , then the set of Lyapunov-

Perron regular points has full measure with re-

spect to any f-invariant Borel probability mea-

sure on M .
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Non-uniform Hyperbolicity

A diffeomorphism f of a compact Riemannian
manifold M is non-uniformly hyperbolic if there
are a measurable df-invariant decomposition of
the tangent space TxM = Es(x) ⊕ Eu(x) and
measurable functions c(x) > 0, k(x) > 0 and
λ(x) ∈ (0,1) s.t. for any sufficiently small ε > 0
and almost any x ∈M :

1. ‖dfnv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Es(x), n ≥ 0;

2. ‖df−n‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Eu(x), n ≥ 0;

3. 6 (Es(x), Eu(x)) ≥ k(x);

4. c(fm(x)) ≤ eε|m|c(x), k(fm(x)) ≥ e−ε|m|k(x),
λ(fm(x)) = λ(x), m ∈ Z.

The last property means that the rates of con-
traction and expansion (given by λ(x)) are con-
stant along the trajectory and the estimates in
1. and 2. can deteriorate but with subexpo-
nential rate.
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An Example of a Map

With Nonzero Exponents

Starting with the hyperbolic toral automorphism

A given by the matrix

A =

(
2 1
1 1

)
,

consider the disk Dr centered at 0 of radius r.

Let (s1, s2) be the coordinates in Dr obtained

from the eigendirections of A. The map A is

the time-1 map of the flow generated by the

system of ODE:

ṡ1 = s1 logλ, ṡ2 = −s2 logλ.

We obtain the Katok map by slowing down A

near the origin.

15



Fix small r1 < r0 and consider the time-1 map

g generated by the system of ODE in Dr1:

ṡ1 = s1ψ(s1
2 + s2

2) logλ,

ṡ2 = −s2ψ(s1
2 + s2

2) logλ,

where ψ is a real-valued function on [0,1] sat-

isfying:

1) ψ is a C∞ function except for the origin;

2) ψ(0) = 0 and ψ(u) = 1 for u ≥ r0 where

0 < r0 < 1;

3) ψ′(u) > 0 for every 0 < u < r0;

4)
∫ 1
0

du
ψ(u) <∞.

We have that g(Dr2) ⊂ Dr1 for some r2 < r1

and that g is of class C∞ in Dr1 \ {0} and co-

incides with A in some neighborhood of the

boundary ∂Dr1.
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The map G(x) = g(x) if x ∈ Dr1 and G(x) =

A(x) otherwise, defines a homeomorphism of

the torus which is a C∞ diffeomorphism every-

where except for the origin. The map G(x) is

a slowdown of the automorphism A at 0.

1. G has nonzero Lyapunov exponents a.e.

2. G preserves a probability measure dν =

κ−1
0 κ dm where m is area and the density κ is

a positive C∞ function and is infinite at 0.

We change the coordinate system in the torus

by a map φ s.t. the map f = φ ◦ G ◦ φ−1 pre-

serves area. Set

φ(s1, s2) =
1
√
κ0τ

(∫ τ
0

du

ψ(u)

)1/2

(s1, s2)

(τ = s1
2 + s2

2) in Dr1 and φ is identity other-

wise. One can show that f is an area-preserving

C∞ diffeomorphism with nonzero Lyapunov ex-

ponents a.e.
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Stable Manifolds

Stable Manifold Theorem.

For almost every x ∈ M there exists a local

stable manifold V s(x) such that x ∈ V s(x),

TxV s(x) = Es(x), and if y ∈ V s(x) and n ≥ 0

then

d(fn(x), fn(y)) ≤ T (x)λneεnd(x, y),

where d is the distance in M induced by the

Riemannian metric and T (x) > 0 is a Borel

function satisfying

T (fm(x)) ≤ T (x)eε|m|.
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Stochastic Properties

f is a C2 diffeomorphism of a compact smooth

manifold M and µ an f-invariant smooth mea-

sure on M .

1. M =
⋃
i≥0 Λi, Λi ∩ Λj = ∅;

2. µ(Λ0) = 0 and µ(Λi) > 0 for i > 0;

3. f(Λi) = Λi and f |Λi is ergodic for i > 0;

4. The Kolmogorov-Sinai entropy of f is given

by the formula:

hµ(f) =
∫
M

∑
χi(x)≥0

χi(x) dµ(x).

Nonuniformly hyperbolic dynamical systems are

chaotic.
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Non-uniform Hyperbolicity: Existence

Theorem (Dolgopyat, P.)

Any compact smooth Riemannian manifold M

of dimension ≥ 2 admits a C∞ volume-preserving

diffeomorphism f which has nonzero Lyapunov

exponents a.e. and is Bernoulli.

A. Katok: the case dimM = 2;

M. Brin: the case dimM ≥ 5 and f has all but

one nonzero Lyapunov exponent.

20



A Diffeomorphism With Nonzero Exponents

on the 2-sphere.

We begin with a toral automorphism with 4

fixed points given by the matrix

A =

(
5 8
8 13

)
,

The fixed points are x1 = (0,0), x2 = (1/2,0),

x3 = (0,1/2), x4 = (1/2,1/2).

For i = 1,2,3,4 consider the disk Di
r cen-

tered at xi of radius r. Repeating the above

arguments we construct a diffeomorphism gi
which coincides with A outside Di

r1
. The map

G1(x) = gi(x) if x ∈ Di
r1

and G1(x) = A(x) oth-

erwise, defines a homeomorphism of the torus

which is a C∞ diffeomorphism except for the

point xi. In each disk Di
r2

consider the coor-

dinate change φi as above. We obtain a map

G2 of the torus which preserves area and has

nonzero exponents a.e.
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Using this map we construct a diffeomorphism

of the sphere S2 with the desired properties.

Consider the map

ζ(s1, s2) =

 s1
2 − s2

2√
s1

2 + s2
2
,

2s1s2√
s1

2 + s2
2

 .
This map is a double branched covering and

is regular and C∞ everywhere except for the

points xi, i = 1,2,3,4 where it branches. It

preserves area. The map f = ζ ◦ G2 ◦ ζ−1 has

all the desired properties.

22


