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Delay equations arise in mechanical systems…

… by the information system (of control), and 

by the contact of bodies.

- Linear stability & subcritical Hopf bifurcations

- Force control and balancing – human and 

robotic

- Contact problems

Shimmying wheels (of trucks and motorcycles)

Machine tool vibrations
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Position control

1 DoF models  ⇒ x

Blue trajectories:
Q = 0

Pink trajectories:
Q = – Px – Dx

.

Force control

Desired contact force:
Fd = kyd ;

Sensed force: 
Fs = ky

Control force: Q = – P(Fd – Fs) – DFs + Fs or d

.

Stabilization (balancing)

Control force:

Q = – Px – Dx

Special case of force control:  with  k < 0

.
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Chaos is amusing

Unpredictable games – strong nonlinearities:

throw dice, play cards/chess, computer games 

ball games (football, soccer, basketball… impact)

plus nonlinear rules (tennis 6/4,0/6,6/4, snooker)

balancing (skiing, skating, kayak, surfing,…)

Ice-hockey (one of the most unpredictable games)

- impacts between club/puck/wall

- impacts between players/wall 

- self-balancing of players on ice (non-holonomic)

- continuous and fast exchanging of players

Modeling balancing

Special cases of force control:

- position control with zero stiffness (k = 0)

- stabilization with negative stiffness (k < 0)

Analogue delay / human balancing

Digital effects / robotic balancing

- quantization in time: sampling – linear

- quantization in space: round-off errors

at ADA converters – non-linear
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Balancing inverted pendula

All the above models lead to the same math problem

n = 2  DoF ⇒ ϕ, x ;   x – cyclic coordinate

linearization at ϕ = 0 (same for all cases)
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Human balancing        

Analogous or digital?

Winking, eye-motion – ‘self-sampling’

plus neurons firing… still, not ‘digital’

1) Q(t) = Pϕ(t) + Dϕ(t)   (PD control)

ϕ ≡ 0  is exponentially stable  ⇔ D > 0,  P > mg

2) Q(t) = Pϕ(t – τ) + Dϕ(t – τ)  (with ‘reflex’ delay τ )
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Experimental observations

Kawazoe (1992)

untrained 

manual 

control

Betzke (1994)

target

shooting

0.3 – 0.7 [Hz]

Avatar

Poise – noun, uncountable /pOIz

• A state of balance, equilibrium or stability

• Bearing or deportment of the head or body
In the old days, when rich people lived in fine houses, 
young ladies were encouraged to develop a way of 
sitting, eating, talking, etc that would attract the right 
sort of man (i.e., at least as rich...). This way was 
limited to elegant, controlled movements. This 'way' 
was called poise…(in French, pose?)

• A condition of hovering, or being suspended

• Freedom from embarrassment or affectation

• A cgs unit of dynamic viscosity

Labyrinth – human balancing organ

Both angle and angular velocity signals are needed!

Dynamic receptor

Static receptor
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Vision and balancing

• Vision can help balancing even when labyrinth 

does not function properly (e.g., ‘dry ear’ effect)

• The visual system also provides the necessary 

angle and angular velocity signals!

• But: the vertical direction is needed (buildings, 

trees), otherwise it fails…

• Delay in vision – ‘thinking’, ‘recognition’,…

• Sensitivity, resolution of vision, threshold,…

Colliculus superior

eyes

brain

arm

MTL

τ>0.6s

τ ~ 0.1s
Medial Temporal Loop
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Random oscillations of robotic balancing

sampling time  
and

quantization 
(round-off)

Stability of digital control – round-off

h – one digit converted to control force

det(λI – B) = 0 ⇒⇒⇒⇒

λ1 = eω >1, λ2 = e–ω, λ3 = 0
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1D cartoon – the micro-chaos map

Drop 2 dimensions, rescale x with h ⇒⇒⇒⇒ a ∼ eω,

b ∼ P

A pure math approach  ( p > 0 ,  p < q )

solution with  xj = y(j) leads to µ-chaos map,

a = ep, b = q(ep – 1)/p  ⇒⇒⇒⇒ a > 1,  (0 <) a – b < 1

small scale: xj+1=a xj ,  large scale: xj+1=(a – b) xj
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Digital stabilization of stick-slip

“normal form”

digital effects:                   round-off & sampling
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Solution for one sampling interval

By                    we obtain the micro-chaos map
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Micro-chaos map

large scale

small scale   

Typical in digitally

controlled machines 
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Butterfly effect

Prop. 1 The map has 

sensitive dependence 

on initial conditions

Horseshoe (Smale): 

invariant Cantor set 

on which the map is 

topologically conjugate 

to a Bernoulli 

shift on 2 symbols.

Attractive set

Prop. 2 AA is a 

positively

invariant

attractive set
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Symbolic dynamics

Transition matrix A:

All elements of

AK-1 are non-zero

Characterization of µ-chaos (a=5/2, b=2)

Fractal dim.: 
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2D micro-chaos map

ZOH + delay, and round-off for 1st order process:

(p > 0, p < q)

Solution and Poincare lead to

(a >1, a – b <1)

Linearization at fixed points leads to eigenvalues

So in 1 step the solution settles at an attractor that 

has a graph similar to the 1D micro-chaos map
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1y
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y

3y

4y

Band 1 Band 2 Band 3 Band 4

Csernak,Stepan (Int J Bif & Chaos, 2010)

3D micro-chaos

Enikov,Stepan (J Vib Cont, 98)

Transient micro-chaos

- PID control of machines in the presence of 

Coulomb friction

- Switch of robots from position control to force 

control, transient impacts with an elastic 

environment

- Stabilization of an unstable equilibrium or an 

unstable periodic motion of a machine (e.g.: 

balancing, control of chaos, …)
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Transient chaos 

Unpredictable transient behavior of machines 

The transient motion disappears “suddenly”

Exponential decay cannot be used

Life expectancy, kick-out number, escape rate, etc. can 

be defined

Examples: Lorenz repellor (Yorke, 1979), tethered 

satellites (Troger, 1998), shimmy, robotics, digital 

control, control of chaos…

Stability problems of polishing tools
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Trivial micro-chaos map
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Kick-out number

Fibonacci series: fn = fn-1+ fn-2 f5= 3
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Non-trivial transient micro-chaos

a=1.4

b=1.2

I0=0.2
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Non-trivial mean kick-out numbers

M

a=1.4

b=1.2

I0=>

Robotic (dynamic) balancing

Even if vibration problems are all settled, there are 

still serious drawbacks:

• Balancing should be possible on any inclination, 

without knowing the exact vertical direction

• Balancing should work in space

• Balancing should incorporate gyroscopic effects

Study human balancing in more details!

elderly people, sportsmen –

delay, threshold, stochasticity

Conclusions

video1

video2

video3


