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Abstract

In this work, we consider systems of differential equations that are doubly singu-
lar, i.e. that are both singularly perturbed and exhibit an irregular singular point.
If the irregular singular point is at the origin, they have the form

εσxr+1 dy
dx

= f(x, ε,y), f(0, 0,0) = 0

with f analytic in some neighborhood of (0, 0,0). If the Jacobian df
dy (0, 0,0) is invert-

ible, we show that the unique bivariate formal solution is monomially summable,
i.e. summable with respect to the monomial t = εσxr in a (new) sense that will
be defined. As a preparation, Poincaré asymptotics and Gevrey asymptotics in a
monomial are studied.

1 Introduction

The study of systems of holomorphic differential equations with singularities has been the
subject of a large number of articles during the last decades. A typical example of this
class of equations is the following:

xr+1y′ = F (x,y),

where F is holomorphic in a neighbourhood of (0,0) in Cn+1, and r ≥ 0. If r = 0,
the singularity is of regular type, which implies that formal power series solutions are
convergent. If r > 0 then the point x = 0 is an irregular singularity. In order to give a
meaning to a formal, in general non-convergent solutions, (multi)-summability theory has
been developed by different authors ([R1, BBRS, MaRa, Br, B1, E1],. . . ).
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Another type of well studied differential equations are singularly perturbed differential
equations. These equations depend on a parameter such that, for some values of it, the
order of the equation suddenly changes. One of the best studied equations of this kind is
the forced van der Pol equation

εx′′ + (x2 − 1)x′ + x = a.

This equation has been carefully investigated from different points of view, including
non-standard analysis [BCDD], Gevrey character [C], geometry [DR] and asymptotic
analysis (including summability)[FS]. In general, formal solutions of singularly perturbed
differential equations of the form εσy′ = F (x, ε,y), F analytic near (0, 0,0), σ ≥ 1 are
not summable.

In this work we shall analyze systems of holomorphic differential equations exhibiting
both kinds of singularities: they are singularly perturbed and have a singularity with
respect to x as well. For the case of a singular perturbation and a regular singularity
at the same time, Russell and Sibuya [RS1, RS2] study the block-diagonalization, and
block-triangularization of linear systems using asymptotic expansions only with respect
to ε. In their work, they encounter problems related to the nature of the difference of the
eigenvalues at the origin, so they have to exclude some directions from the sectors they
consider. We know of no work studying summability in this case.

Our purpose is the investigation of systems that are singularly perturbed and irregular
singular as well; surprisingly, the results are nicer than in the previous case. If the irregular
singularity is at x = x0 ∈ C, then such a system adopts the form

(S) εσ(x− x0)
r+1y′ = f(x, ε,y), σ, r ≥ 1,

where f : Dx0 ×D0 ×Dy0 → Cn is holomorphic and Dx0 , D0, Dy0 are neighbourhoods of
x0, 0, y0 respectively in C, C, Cn. If the irregular singularity is at x = ∞, then its form
is

(S̃) εσy′ = xr−1f(1/x, ε,y), σ, r ≥ 1,

with f : D0 ×D0 ×Dy0 → Cn holomorphic.
A change of variables allows us to suppose that x0 = 0, y0 = 0, and we will suppose

f(0, 0,0) = 0. We shall restrict ourselves to systems whose linear part at the origin is

invertible, i.e.
∂f

∂y
(0, 0,0) is an invertible linear map. Under these conditions, such a

system has a unique formal power series solution. The main objective of our work is to
establish properties of this solution.

The interest for such systems is not new, and has occupied different authors. In
[Si1], Y. Sibuya considers linear systems of the form (S̃) that also depend regularly upon
a second parameter µ. Asymptotic expansions in x and in ε are constructed, and the
author combines them in a certain way, but they are not really bivariate asymptotic
expansions.

In the book [M2], after introducing the notion of strong asymptotic expansion, H. Ma-
jima considers systems of differential equations

(1) xpx1
du

dx1

+ A0u = a(x,u),
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where x = (x1, . . . , xn), p = (p1, . . . , pn), p1 > 0, A0 an invertible constant matrix,
a(0,0) = 0 and ∂a

∂u
(0,0) = 0. He shows the existence of solutions, with strong asymptotic

expansion, in polysectors V = V1 × · · · × Vn, contained in a strictly proper domain. More
precisely, if λi 6= 0 are the eigenvalues of A0, V is strictly proper with respect to λi if

V̄ ∩ {x | cos(arg λi/x
p) < 0}

has only one connected component. V is a strictly proper domain if it is strictly proper
with respect to all eigenvalues of A0. This result shows that the sets

{x ∈ (C \ {0})n | α < arg xp < β},

for certain α < β, are important when treating this kind of problems.
The doubly singular differential equations we are considering fall into the category

studied by Majima. Conversely, it seems possible to carry over our results to (1) by
allowing additional regular parameter dependence. First, consider εxp1+1

1
du
dx1

= f(x, u),
then replace ε = xp2

2 · . . . · xpn
n .

We consider equations of the form (S), as explained above for x0 = 0 only, and
investigate solutions in sets of the type

{(x, ε) ∈ (C2 \ {0})2 | α < arg(xrεσ) < β},

which we call “sectors in the monomial xrεσ”. This seems the appropriate setting for
treating doubly singular differential equations, and in future works, more general ones.

In this work, we introduce a new type of asymptotic expansions in a monomial xp
1x

q
2,

that appears in a natural way in our discussions. We develop the theory of Gevrey
asymptotic expansions and summability with respect to the monomial. Then the formal
series solutions of (S) are shown to be monomially summable in the newly defined sense.

Expansions with respect to a monomial were already used by Martinet and Ramis
in [MR], when studying the analytic classification of resonant foliations. In their work,
nevertheless, it seems not clear that their definition is independent of the representation
of a power series as a series in xp

1x
q
2; it was not their objective to give a detailed discussion

of this notion. Existence of solutions in sectors in a monomial and different types of
summability (but not monomial summability) were also shown in the article [BM]. There
only the linear case was considered. At the end of section 3, we compare our definitions
with the above. Let us also mention that J. Écalle, in [E2], considers this type of equations,
that own what he calls equational and coequational resurgence.

As a consequence of our results, we obtain a block-decomposition theorem for general
linear systems xr+1εσy′ = A(x, ε)y. In future works we shall extend this result in order
to study “monomial multisummability” of formal solutions. The notion of classical mul-
tisummability will be replaced by “summability with respect to (m1, . . . ,mr)”, mi being
monomials in x, ε. There we will prove that a divergent series cannot be summable with
respect to two different monomials. This will show in particular that the choice of xrεσ

in the present work is appropriate.
More generally, systems of equations P (x, ε)y′ = F (x, ε,y) may be considered, P (x, ε)

being a polynomial. For these, a notion of summability with respect to a polynomial
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should be defined, and this can be done combining the techniques we develop in the
present work with desingularization of plane curves. This will also be the subject of
future articles.

The plan of the article is as follows.
In section 2 we shall present some examples that lead to systems of differential equa-

tions of the type we are considering here. In section 3 we shall develop the notion of
asymptotic expansion we shall use through the rest of our work. In section 4 we shall
show how to perform a rank reduction to our system. After this simplification, we shall
have an equivalent problem, but with r = σ = 1. This will also simplify notation through
the rest of this work without loosing generality. Section 5 shall be devoted to the study
of the Gevrey character of the unique formal solution of the equation, and to the search
of an actual holomorphic solution having the formal series as a bivariate asymptotic ex-
pansion, according to the definitions given in section 3. As main technique, we shall
perform a change of variables in order to obtain an almost regularly perturbed system
of ordinary differential equations, where the perturbation parameter has its values in an
annulus depending upon the main variable. Well known methods of asymptotic analysis
can be carried over and we shall see that the formal power series solution is summable in
the newly defined sense. In section 6, as an illustration, we shall discuss an example and
obtain monomial summability for it in a more elementary way.

Acknowledgments.- The first two authors would like to thank Université Louis
Pasteur in Strasbourg and the third author would like to thank the Université Paul
Cézanne and the Universidad de Valladolid for supporting their visits during the final
part of the preparation of this work. The second author wants also to thank the Junta
de Castilla y León, for their support under Research Project VA123/04.

2 Examples of equations

In this section, we shall present some examples of systems or dynamical systems that can
be brought, by a convenient change of variables, to the form we shall study throughout
this work.

Example 2.1. Consider the singularly perturbed dynamical system:

(2)

{
εẋ = −xp + y
ẏ = −xq φ(x)

where ˙ denotes the derivative with respect to t, p, q ∈ N∗ and φ(x) is analytic near
x0 = 0 with φ(0) 6= 0. Suppose q + 1 ≥ 2p.

Let v = −xp+y
ε

. In the new variables (x, v), we obtain

(3)

{
ẋ = v

εv̇ = −pxp−1(v + φ(x)
p

xq−p+1)

We are only looking for solutions x(t), v(t) such that v(t) tends to 0 at least as fast as

x(t) when t → ∞. So let v = −φ(x)
p

xq−p+1 z. In the variables (x, z), the above system

4



has the form:

(4)

{
ẋ = −φ(x)

p
xq−p+1 z

εxq−p+1φ(x) ż = −pxqφ(x)(z − 1) + εx2q−2p+1φ(x)z2( (q−p+1)
p

φ(x) + x
p
φ′(x)) .

We are less interested in the t-dependence than in the orbits in the (x, z)-plane, so we
eliminate t and regard z as a function of x. (If z = z(ε, x) with z(0, 0) 6= 0 has been
found and the t-dependence is wanted, it can be retrieved from the first equation in (4)
integrating dt

dx
= − xp−q−1

z(ε,x)φ(x)
and inverting the function thus obtained.) This leads to the

equation

ε x2q−2p+2φ2(x)z
dz

dx
= p2xqφ(x)(z − 1)− εx2q−2p+1φ(x)z2((q − p + 1)φ(x) + xφ′(x))

As φ(0) 6= 0, 1/φ(x) is analytic in the neighbourhood of x0 = 0. Dividing by xqφ2(x), we
obtain:

ε xq−2p+2z
dz

dx
=

p2

φ(x)
(z − 1)− εxq−2p+1z2((q − p + 1) + x

φ′(x)

φ(x)
)

Now, let z = 1 + εU and r := q − 2p + 1 ≥ 0. If r ≥ 1, the equation becomes

ε xr+1dU

dx
=

p2

(1 + εU)φ(x)
U − xr(1 + εU)((p + r) + x

φ′(x)

φ(x)
)

and the linear part at the origin, i.e. ∂f
∂U

(0, 0, 0) = p2

φ(0)
is not zero. Therefore the equation

satisfies the assumptions of our work. If r = 0, on the other hand, the equation is of a
type that we do not consider in this work.

Example 2.2. Now consider the singularly perturbed dynamical system:

(5)

{
εẋ = y − (x3/3− x)
ẏ = A− 1− (x− 1)k+1

where ˙ denotes d
dt

, k a nonnegative integer and A ∈ R.

If k = 0, we recognize the classical forced van der Pol equation. Let X = x− 1, V = Ẋ.
In the variables (X, V ), system (5) becomes:

(6)

{
Ẋ = V

εV̇ = −X(2 + X)(V + Xk

2+X
) + A− 1

Let V = − Xk

2+X
Z. In the variables (X, Z), after eliminating the t-dependence again, the

system has the form:

ε
X2k

(2 + X)2
Z

dZ

dX
= Xk+1(Z − 1) + A− 1− εX2k−1 2k + (k − 1)X

(2 + X)3
Z2

Letting Z = 1 + εU , the equation becomes

εX2k(1 + εU)
dU

dX
= Xk+1(2 + X)2U + α(2 + X)2 − X2k−1

2 + X

(
2k + (k − 1)X

)
(1 + εU)2
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where α = A−1
ε

. In the case of α = 0, we obtain:

εXk−1 dU

dX
=

(2 + X)2

1 + εU
U − Xk−2

2 + X

(
2k + (k − 1)X

)
(1 + εU)

If k ≥ 3, we have an equation of the type considered in the present work at X = 0. For
k = 1, 2, it is of a different type, not studied here at X = 0. In the classical case k = 0
and also in the cases k = 1, 2, 3, it is again of the type studied here, even if α 6= 0, but
now at X = ∞.

Example 2.3. In the case n = 2, a last example is given by the system:

(7)


ẋ = εxk

ẏ1 = xy1 − y2 + x
ẏ2 = y1 + xy2

where x, y1, y2 ∈ C and k ∈ N \ {0, 1}. Let y =

(
y1

y2

)
and eliminate t again. Then, the

system becomes

ε xk dy

dx
= A(x) y + b(x)

where A(x) =

(
x −1
1 x

)
is invertible at the origin and b(x) =

(
x
0

)
.

3 Asymptotic expansions

3.1 Asymptotic expansions in one variable

We recall here some basic notions of asymptotic expansions and Gevrey asymptotic ex-
pansions; as this will be important for us, the values of the functions are allowed to be in
any complex Banach space. For further details, see for instance [B2].

Let E be a complex Banach space, and f̂(x) =
∑

anx
n ∈ E[[x]]. A (open) sector in

C is a set V (a, b; r) = {x ∈ C | a < arg x < b, 0 < |x| < r}. We will omit frequently a,
b, r, and speak of a sector V . Let us denote O(V ; E) the set of holomorphic functions in
V with values in E. If f ∈ O(V ; E), f is said to have f̂ as an asymptotic expansion at
the origin if for each proper subsector V ′ = V ′(a′, b′; r′) (a < a′ < b′ < b, 0 < r < r′) and
each N ∈ N, there exists C(V ′, N) > 0 such that∣∣∣∣∣

∣∣∣∣∣f(x)−
N−1∑
n=0

anx
n

∣∣∣∣∣
∣∣∣∣∣ ≤ C(V ′, N) · |x|N in V ′.

The asymptotic expansion is s-Gevrey if, moreover, C(V ′, N) can be chosen as
C(V ′, N) = C(V ′) · A(V ′)N · N !s, with constants C(V ′), A(V ′) depending only on V ′.
We will write f ∼ f̂ and f ∼s f̂ in the s-Gevrey case, respectively. Observe that
f ∼s f̂ implies that the formal series f̂ is s-Gevrey, i.e. there exist C, A > 0 such that
|an| ≤ CAnn!s for all n ∈ N. The set of all such formal series will be denoted by E[[x]]s.
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Asymptotic expansions are unique, and respect algebraic operations and differentia-
tion. The so called Borel-Ritt-Gevrey theorem and Watson’s lemma are of great impor-
tance. The following result collects them.

Theorem 3.1. Let V = V (a, b; r), f̂ ∈ E[[x]]s, and s > 0. Then:

1. If b− a ≤ sπ, there exists f ∈ O(V ; E) such that f ∼s f̂ .

2. If f ∈ O(V ; E) is such that f ∼s 0, then, for each proper subsector V ′ of V , there
are positive constants such that

||f(x)|| ≤ C(V ′) · exp
(
−A(V ′)/|x|1/s

)
.

3. If b− a > sπ and f1, f2 ∈ O(V ; E) have f̂ as their s-Gevrey asymptotic expansion,
then f1 = f2.

Because of the above theorem, a function f ∈ O(V ; E) is uniquely determined by its
s-Gevrey asymptotic expansion f̂ , provided that the opening of V is larger than sπ. If
such a function exists for a formal series f̂ , then it is said to be k-summable in V with
k = 1/s and f is called the k-sum of f̂ on V . More precisely

Definition 3.2. Let s > 0, k = 1/s and f̂ ∈ E[[x]]s.

1. The formal series f̂ is called k-summable on V = V (a, b; r), if b− a > sπ and there
exists a function f ∈ O(V ; E) such that f ∼s f̂ .

2. The formal series f̂ is called k-summable in the direction θ ∈ R, if there exist δ, r > 0
such that f̂ is k-summable on the sector V (θ − sπ

2
− δ, θ + sπ

2
+ δ; r).

3. The formal series f̂ is simply called k-summable, if it is k-summable in every direc-
tion θ ∈ R with finitely many exceptions mod 2π.

The above notion of k-summability in a direction θ does not indicate how to obtain
a sum from a given series; it can be shown to be equivalent to the following statement:
Given f̂(x) =

∑
anx

n, its Borel transform g(t) =
∑

ant
n/Γ(1 + n/k) is analytic in a

neighborhood of the origin, can be continued analytically in some infinite sector containing
the ray arg t = θ, it has exponential growth there and hence the Laplace integral f(x) =
k x−k

∫
arg t=θ̃

e−tk/xk
g(t) tk−1dt defining the sum of f̂ converges for x in a certain sector

V = V (θ− π
2k
− δ, θ + π

2k
+ δ; r) and suitably chosen θ̃ close to θ. It satisfies f ∼s f̂ on V .

We recall also the very useful characterization of functions having an s-Gevrey asymp-
totic expansion due to J.P. Ramis and Y. Sibuya ([Si3], [RaSi]).

Theorem 3.3. Suppose that the sectors Vj = V (aj, bj; r), 1 ≤ j ≤ m, form a covering
of the punctured disk D(0; r). Given fj : Vj → E bounded and analytic, assume that for
every proper subsector V ′ of Vj1 ∩Vj2 (if Vj1 ∩Vj2 6= ∅) there is a constant γ(V ′) > 0 such
that

(8) ||fj1(x)− fj2(x)|| = O(exp(−γ(V ′)/|x|1/s))
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for x ∈ V ′ . Then the functions fj have common s-Gevrey asymptotic expansions.
Conversely, if a function f : V → E having an s-Gevrey asymptotic expansion is

given, then a covering Vj, 1 ≤ j ≤ m and functions fj : Vj → E can be found that satisfy
estimates like (8) and f = f1, V = V1.

Such a family f1, . . . , fm is sometimes called a k-precise quasi-function.
An important case that can be expressed in terms of asymptotic expansions in a

Banach space is the following. Consider a holomorphic function f ∈ O(D×V ; E), D being
an open subset in Cn, V a sector in C. If K ⊆ D is a compact, the mapping x 7→ f(., x),
where f(., x) denotes the function mapping y to f(y, x), induces a holomorphic function
f̃K : V−→C(K; E) (space of continuous functions). If, for every such compact K, f̃K has
an asymptotic expansion f̂K , f is said to have an asymptotic expansion in V , uniformly
on each compact in D. The right hand sides of these asymptotic expansions are

f̂K(x) =
∞∑

n=0

an|K · xn

with certain an ∈ O(D; E), n = 0, 1, . . .. Analogously, the notion of s-Gevrey uniform
asymptotic expansion can be defined.

3.2 Asymptotic expansions in x1x2

Let us briefly recall the well-known notion of a Gevrey series in x1, x2. Let (E, ‖ · ‖) be
a complex Banach space and

ĝ(x1, x2) =
∑
n,m

anmxn
1x

m
2 ∈ E[[x1, x2]].

We say that ĝ is a (s1, s2)-Gevrey series if one of the following equivalent conditions is
satisfied:

1. The series
∑ anm

n!s1m!s2
xn

1x
m
2 converges near x1 = x2 = 0.

2. The series
∑ anm

Γ(1 + ns1 + ms2)
xn

1x
m
2 converges near x1 = x2 = 0.

Let E[[x1, x2]](s1,s2) denote the set of (s1, s2)-Gevrey series. Some properties follow
easily from the definition:

1. E[[x1, x2]](0,0) = E{x1, x2} is the set of convergent series.

2. If s1 ≤ s′1 and s2 ≤ s′2 then E[[x1, x2]](s1,s2) ⊆ E[[x1, x2]](s′1,s′2). Moreover the inclu-
sion is strict if and only if (s′1 + s′2)− (s1 + s2) > 0.
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3. E[[x1, x2]](0,s) is the set of series that can be written as

∞∑
m=0

a∗m(x1)x
m
2 ,

with a∗m ∈ Ob(DR; E) for some R > 0, and

∞∑
m=0

||a∗m||xm
2 ∈ C[[x2]]s,

where, for any a ∈ Ob(DR; E), ||a|| := sup{||a(x1)|| | x1 ∈ DR}. So, there is a nat-
ural isomorphism E[[x1, x2]](0,s)

∼=
⋃

R>0(OR[[x2]]s), where OR denotes the Banach
space Ob(DR; E), with the norm given by the supremum. This is an isomorphism of
topological vector spaces in a somewhat more general framework than the Banach
spaces we are dealing with (see [R2, Mo]).

Analogously, E[[x1, x2]](s,0) is the set of series that can be written as
∑∞

m=0 am∗(x2)x
m
1 ,

with am∗ ∈ Ob(DR; E) for some R > 0, and
∑∞

m=0 ||am∗||xm
1 ∈ C[[x1]]s,

4. E[[x1, x2]](s1,s2)∩E[[x1, x2]](s′1,s′2) ⊆ E[[x1, x2]](s′′1 ,s′′2 ) if (s′′1, s
′′
2) ∈ R2 is on the segment

between (s1, s2) and (s′1, s
′
2).

In our work, the intersection of E[[x1, x2]](0,s) and E[[x1, x2]](s,0) will play an important
role.

Definition/Proposition 3.4. Consider a formal power series ĝ(x1, x2) =
∑

n,m anmxn
1x

m
2 ∈

E[[x1, x2]] and s > 0. The following statements are equivalent:

1. The series ĝ belongs to E[[x1, x2]](0,s)∩E[[x1, x2]](s,0) (and hence to all E[[x1, x2]](σ,s−σ)

for 0 ≤ σ ≤ s).

2. There exist M, R > 0 such that |amn| ≤ MR−(n+m) ·min(n!, m!)s .

3. If we write ĝ (uniquely) in powers of x1x2 as follows:

(9) ĝ(x1, x2) =
∞∑

k=0

(bk(x1) + ck(x2))(x1x2)
k,

where bk(x1) ∈ E[[x1]], ck(x2) ∈ E[[x2]], ck(0) = 0 then bk, ck ∈ O(DR; E) for some
R > 0 and for 0 < r < R the series

(10) (T ĝ)(t) =
∞∑

k=0

gkt
k, gk(x1, x2) = bk(x1) + ck(x2)

satisfies (T ĝ)(t) ∈ Er[[t]]s, where Er denotes the Banach space of all sums g defined
by g(x1, x2) = b(x1) + c(x2) with b, c ∈ Ob(Dr; E) and c(0) = 0.
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4. If we write ĝ (uniquely) as follows

ĝ(x1, x2) =
∞∑

n=0

xn
1un(x1x2) +

∞∑
n=1

xn
2vn(x1x2) ,

with un, vn ∈ E[[t]], then all un, vn are s-Gevrey in t and for r sufficiently small the

series
∑∞

n=0

∣∣∣∣∣∣B̂sun

∣∣∣∣∣∣
r
xn

1 and
∑∞

n=1

∣∣∣∣∣∣B̂svn

∣∣∣∣∣∣
r
xn

2 converge.

Here B̂s

(∑∞
l=0 dlt

l
)

=
∑∞

l=0 dl(l!)
−sτ l and

∣∣∣∣∑∞
l=0 dlτ

l
∣∣∣∣

r
=
∑∞

l=0 |dl|rl.

If ĝ satisfies one (and hence all) of the above conditions, we say that ĝ is s-Gevrey in the
monomial x1x2. The set of all formal power series satisfying the above conditions will be
denoted by Gx1x2

s .

The proof of the equivalence of these conditions to condition 2. is straightforward
(using Cauchy’s estimates for the coefficients of a Taylor series etc.) and is left to the
reader.

The isomorphism T : E[[x1, x2]] → (E[[x1]] + x2E[[x2]]) [[t]] defined in (10) will be
used later again. Observe that according to the above proposition, T maps Gx1x2

s onto⋃
r>0 Er[[t]]s; here Er[[t]]s are considered as subsets of (E[[x1]] + x2E[[x2]]) [[t]] in the canon-

ical way.
As for the formal series, we want to define and discuss asymptotic expansions in the

product x1x2.
We call “sector in x1x2” a set Π = Π(a, b; R) ⊆ (C \ {0})2,

Π = {(x1, x2) ∈ C2 | a < arg(x1x2) < b, 0 < |x1| < R, 0 < |x2| < R} ;

here any convenient branch of arg may be used. This is the inverse image of V (a, b; R2)×
D(0, R)2 by the map

(x1, x2) 7−→ (x1x2, x1, x2).

Using the map

π :

{
C2 −→ C2

(x1, x2) 7−→ (x1x2, x2),

we see that its image is

π(Π) = {(t, x2) ∈ (C \ {0})2 | a < arg t < b, |t|
R

< |x2| < R}.

A proper subsector in x1x2 is, naturally, given by Π̃ = Π(a′, b′; R′) with a < a′ < b′ < b,
0 < R′ < R.

Consider now a sector in x1x2, say Π = Π(a, b; R), and f ∈ O(Π; E). The function

(t, x2) 7→ f
(

t
x2

, x2

)
is defined on π(Π) and hence, for fixed t with 0 < |t| < R2 and

a < arg t < b, the function x2 7→ f( t
x2

, x2) is holomorphic and single valued in the annulus
|t|
R

< |x2| < R. Thus we can write down its Laurent series

f

(
t

x2

, x2

)
=
∑
n∈Z

fn(t)xn
2 ;

clearly fn ∈ O(V (a, b; R2); E). Under these conditions:
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Proposition 3.5. Suppose that |f(x1, x2)| ≤ K(|x1x2|) on some subsector Π̃ = Π(a′, b′; R′)
of Π where K :]0, R′2] → R+, and R′ < R. Then, for t ∈ V (a′, b′; R′2):

• If n ∈ N, |fn(t)| ≤ K(|t|)/R′n.

• If n ≥ 1, |f−n(t)| ≤ K(|t|) |t|n/R′n.

Proof. If suffices to apply Cauchy estimates for the coefficients of a Laurent series.

If f is bounded on some subsector Π̃, then the proposition allows to define vn(t) = fn(t)
for n ≥ 0 and (in view of x2 = t/x1) un(t) = f−n(t)t−n. By abuse of notation, we set

Tf(t)(x1, x2) =
∞∑

n=0

un(t)xn
1 +

∞∑
n=1

vn(t)xn
2

for t ∈ V (a′, b′; R′2) and |x2| , |x1| < R′. Then, by construction, Tf(x1x2)(x1, x2) =
f(x1, x2) for (x1, x2) ∈ Π̃. For t ∈ V (a′, b′; R′2), Tf(t) defines an element of the Banach
space Er introduced in Definition/Proposition 3.4 for any r < R′. This element will be
denoted by Tf(t) |Er . Clearly Tf |Er : V (a′, b′; R′2) → Er is holomorphic.

The above considerations suggest the definition for an asymptotic expansion in x1x2

appropriate for our purpose; in the second part we express it more directly in terms of x1

and x2.

Definition/Proposition 3.6. Let f be a holomorphic function on Π = Π(a, b; R) with
values in a complex Banach space E and f̂ ∈ E[[x1, x2]]. We will say that f has f̂ as
asymptotic expansion at the origin in x1x2 if there exists 0 < R̃ ≤ R such that T f̂(t) =∑∞

n=0 gnt
n ∈ ER̃[[t]] (cf. Definition/Proposition 3.4 for the definition of T f̂) and one of

the following equivalent conditions is satisfied:

1. For every r ∈]0, R̃[ one has Tf(t) |Er∼ T f̂(t) |Er as V (a, b; r2) 3 t → 0 in the sense
of section 3.1.

2. For every Π̃ = Π(a′, b′; r) subsector of Π with 0 < r < R̃ and every N , there exists
C(N, Π̃) such that for (x1, x2) ∈ Π̃∣∣∣∣∣

∣∣∣∣∣f(x1, x2)−
N−1∑
n=0

gn(x1, x2)(x1x2)
n

∣∣∣∣∣
∣∣∣∣∣ ≤ C(N, Π̃) · |x1x2|N .

Analogously, we define the notion of s-Gevrey asymptotic expansion if T f̂ ∈ Gx1x2
s and

Tf ∼s T f̂ or, equivalently, C(N, Π̃) can be chosen as K(Π̃)A(Π̃)NN !s, respectively.

Proof. It suffices to prove that the second condition implies the first; the converse is trivial.

Consider again T f̂(t)(x1, x2) =
∞∑

n=0

(bn(x1) + cn(x2))t
n, and write bn(x1) =

∑∞
k=0 bnkx

k
1,

cn(x2) =
∑∞

k=1 cnkx
k
2 for |x1| , |x2| < R̃ and gn ∈ ER̃, gn(x1, x2) = bn(x1) + cn(x2).
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Put AN(t) =
∑N−1

n=0 gnt
n so that AN(t)(x1, x2) =

∑N−1
n=0 (bn(x1) + cn(x2))t

n. Using the
coefficients of bn, cn, we rewrite AN for t ∈ V (a, b; R̃2), |x1| , |x2| < R̃:

AN(t)(x1, x2) =
∞∑

k=0

PNk(t)x
k
1 +

∞∑
k=1

QNk(t)x
k
2, where

PNk(t) =
N−1∑
n=0

bnkt
n, QNk(t) =

N−1∑
n=0

cnkt
n .

By the hypothesis, for every subsector Π̃ = Π(a′, b′; r) of Π with 0 < r < R̃ and every
N ∈ N there is a C(N, Π̃) > 0 such that for (x1, x2) ∈ Π̃

||f(x1, x2)− AN(x1x2)(x1, x2)|| ≤ C(N, Π̃) |x1x2|N .

Applying proposition 3.5 to this inequality and using the Laurent series of AN(t)( t
x2

, x2)
we obtain that

||fk(t)−QNk(t)|| ≤ CN |t|N r−k and
∣∣∣∣f−k(t)− tkPNk(t)

∣∣∣∣ ≤ CN |t|N+k r−k

for k ≥ 0 resp. k > 0 and t ∈ V (a′, b′; r2). This easily yields

||Tf(t)(x1, x2)− AN(t)(x1, x2)|| ≤ 2CN

(
1− r̃

r

)−1 |t|N

for t ∈ V (a′, b′; r̃2), |x1| , |x2| ≤ r̃ and any r̃ < r.
For the statement concerning s-Gevrey estimates, simply replace CN by C(Π̃) A(Π̃)N N !s.

In the sequel, we discuss some properties of asymptotic expansions in x1x2.

Proposition 3.7. If f ∈ O(Π; E) has a s-Gevrey asymptotic expansion in x1x2 where
f̂ = 0, then, for all Π̃ = Π(a′, b′; R′) (a < a′ < b′ < b, 0 < R′ < R̃) there exist C, B > 0
such that on Π̃

||f(x1, x2)|| ≤ C · exp

(
− B

|x1x2|1/s

)
.

Proof. As in the classical case, we choose N close to the optimal value (A|x1x2|)−1/s in
the definition of an s-Gevrey asymptotic expansion in x1x2. Stirling’s formula yields the
statement.

Using the first condition in the definition of an s-Gevrey asymptotic expansion in
x1x2 and using proposition 3.5 with K(z) = exp(−γ/z1/s), the theorem of Ramis-Sibuya
(theorem 3.3) immediately implies

Theorem 3.8. Suppose that the sectors Πj = Π(aj, bj; r), 1 ≤ j ≤ m in x1x2, form a
covering of D(0, r)×D(0, r) \ {(0, 0)}. Given fj : Πj → E bounded and analytic, assume
that for every subsector Π′ of Πj1 ∩ Πj2 (provided that Πj1 ∩ Πj2 6= ∅) there is a constant
γ(Π′) > 0 such that

(11) ||fj1(x1, x2)− fj2(x1, x2)|| = O(exp(−γ(Π′)/|x1x2|1/s))
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for (x1, x2) ∈ Π′. Then the functions fj have asymptotic expansions in x1x2 with a
common right hand side and the expansions are s-Gevrey.

Conversely, if a function f : Π → E having an s-Gevrey asymptotic expansion in x1x2

is given, then a covering Πj, 1 ≤ j ≤ m and functions fj : Πj → E can be found that
satisfy estimates like (11) and f = f1.

An immediate consequence of the above theorem is the compatibility of Gevrey asymp-
totic expansions in a x1, x2 and the elementary operations: if Π is a sector in x1, x2 and
f, g : Π → C have s-Gevrey asymptotic expansions in x1x2, then so do f +g, f ·g, ∂f/∂x1

and ∂f/∂x2. This is not obvious from definition 3.6.
Before introducing and discussing summability in x1x2, we state a version of Watson’s

lemma for asymptotic expansions in x1x2.

Theorem 3.9. Let Π = Π(a, b; R) be a sector in x1x2, with b− a > sπ, and suppose that
f ∈ O(Π; E) has a f̂ = 0 as its s-Gevrey asymptotic expansion. Then f ≡ 0.

Proof. By proposition 3.7, we have that, in a subsector Π̃, with opening larger than sπ,

||f(x1, x2)|| ≤ C · exp

(
− B

|x1x2|1/s

)
.

Applying proposition 3.5 we obtain, by the classical Watson’s lemma, that fn(t) ≡ 0 for
all integers n, so f ≡ 0, as desired.

We now introduce and discuss summability in x1x2.

Definition 3.10. Let s > 0, k = 1/s and a formal series f̂(x1, x2) =
∑∞

l,m=0 al,mxl
1x

m
2 be

given.

1. We say that f̂ is k-summable in x1x2 on Π = Π(a, b; R) if b − a > sπ and there
exists a holomorphic bounded function f : Π → E such that f has f̂ as its s-Gevrey
asymptotic expansion in x1x2 on Π in the sense of Definition/Proposition 3.6. Then
f is called the s-sum of f̂ on Π. If it exists, it is unique, by Theorem 3.9.

2. The formal series f̂ is called k-summable in x1x2 in the direction θ ∈ R, if there exist
δ, r > 0 such that f̂ is k-summable in x1x2 on the sector Π(θ− sπ

2
− δ, θ + sπ

2
+ δ; r)

in x1x2.

3. The formal series f̂ is simply called k-summable, if it is k-summable in every direc-
tion θ ∈ R with finitely many exceptions mod 2π.

Observe that r in the definition of the k-summability in direction θ might depend upon
θ and (in the case of k-summability) might tend to 0 as θ approches one of the finitely
many exceptions (called singular directions). This is the case in our exemple in section 6.

The first condition in Definition/Proposition 3.6 shows that f̂ is k-summable in x1x2

on Π(a, b; R) if and only if the formal series T f̂ =
∑∞

n=0 dnt
n with coefficients in Er is

k-summable on V (a, b; r2). Thus k-summability in x1x2 can be expressed as summability
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of certain formal series in one variable with coefficients in some Banach space. This allows
to apply known theorems to k-summability in x1x2.

Laurent series expansion of f( t
x2

, x2) shows that for f̂(x1, x2) =
∑∞

l,m=0 al,mxl
1x

m
2

k-summable with sum f on Π(a, b; R), the series ûn(t) =
∑∞

l=0 al+n,lt
l and v̂n(t) =∑∞

l=0 al,l+nt
l are k-summable in V (a, b; R2) with sums we call un(t),vn(t), say, and the

series
∑∞

n=0 xn
1un(t) +

∑∞
n=1 xn

2vn(t) converge for all |x2| , |x1| < R and have Tf(t)(x1, x2)
as their sum.

As for s-Gevrey asymptotic expansions, the sum, product and partial derivatives of
funtions k-summable in x1x2 are k-summable, too.

It is a natural question whether asymptotics in x1x2 imply asymptotics in one variable
while the other one is fixed. Here we have

Proposition 3.11. Let Π = Π(a, b; R) and f ∈ O(Π; E) be a function with f̂ ∈ E[[x1, x2]]
as an asymptotic expansion in x1x2 on Π. Then there exists R̃ ∈]0, R] such that for every
x2,0 with |x2,0| < R̃, the function fx2,0(x1) = f(x1, x2,0) has an asymptotic expansion in
x1 on V (a− arg(x2,0), b− arg(x2,0); R). If the asymptotic expansion of f is s-Gevrey then

that of fx2,0 is s-Gevrey, too. If f̂ is k-summable in x1x2 in some direction θ then f̂x2,0 is
k-summable in the direction θ − arg(x2,0) for sufficiently small |x2,0|.

Proof. According to Definition/Proposition 3.6, there exists R̃ ∈]0, R] such that T f̂(t)
has coefficients having radii of convergence not smaller than R̃ and such that, for any
strict subsector Π̃ = Π(a′, b′; r) of Π(a, b; R̃), there exist constants C(N, Π̃) such that on
Π̃ we have ∣∣∣∣∣

∣∣∣∣∣f(x1, x2)−
N−1∑
n=0

(bn(x1) + cn(x2))(x1x2)
n

∣∣∣∣∣
∣∣∣∣∣ ≤ C(N, Π̃) · |x1x2|N .

Fixing any x2,0 with 0 < |x2,0| < r yields:∣∣∣∣f(x1, x2,0)− fN,x2,0(x1)
∣∣∣∣ ≤ C(N, Π̃) · |x2,0|N · |x1|N ,

for x1 with 0 < |x1| < r, a′ − arg(x2,0) < arg(x1) < b′ − arg(x2,0); here

fN,x2,0(x1) =
N−1∑
n=0

(bn(x1) + cn(x2,0))(x1x2,0)
n ∈ E[[x1]]

is a series of radius of convergence at least R̃. The above estimates are sufficient to
conclude that fx2,0 has an asymptotic expansion as x1 → 0 in V (a, b; R) and that its

right hand side is f̂(x1, x2,0) = (T f̂)(x1x2,0)(x1, x2,0). The Gevrey character of such an
asymptotic expansion is easily carried over using theorem 3.8. Using definition 3.10,
this implies the statement on k-summability; here |x2,0| has to be smaller than r used
there.

All the definitions and results in this section can be extended to asymptotic expansions
and summability in a monomial xp

1x
q
2, p, q being positive integers. This will be done below

for some statements only.
A formal series ĝ(x1, x2) =

∑
anmxn

1x
m
2 ∈ E[[x1, x2]] is s-Gevrey in xp

1x
q
2 if and only if

the following equivalent conditions are satisfied:
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1. ĝ ∈ E[[x1, x2]](s/p,0) ∩ E[[x1, x2]](0,s/q), and hence,

ĝ ∈
⋂

ps1+qs2=s

E[[x1, x2]](s1,s2).

2. There exists M , R > 0 such that

||amn|| ≤ M ·R−(m+n) ·min(n!1/p, m!1/q)s.

The operator T of Definition/Proposition 10 is modified in the following way: write
ĝ(x1, x2) =

∑∞
k=0 gk(x1, x2)(x

p
1x

q
2)

k according to the filtration of C[[x1, x2]] given by the
sequence of ideals ak, a = (xp

1x
q
2). Then (T ĝ)(t) :=

∑∞
k=0 gk · tk. As in the case p = q = 1,

ĝ is s-Gevrey in xp
1x

q
2 if and only if the gk converge in a common neighbourhood of the

origin, say DR, and for each 0 < r < R, (T ĝ)(t) ∈ Ep,q
r [[t]] is s-Gevrey, where Ep,q

r denotes
the Banach space of all functions of the same form as the gk (E1,1

r = Er) that are analytic
and bounded on |x|1 , |x|2 < r.

A “sector in xp
1x

q
2” is a set Πp,q(a, b; R) ⊆ (C \ {0})2,

Πp,q(a, b; R) = {(x1, x2) ∈ (C \ {0})2 | a < arg(xp
1x

q
2) < b, 0 < |x1|p , |x2|q < R} .

In order to define Tg, consider the following diagram:

Πp,q(a, b; R) C

Π1,1(a, b; R)

-
g

?

σ

where σ(x1, x2) = (xp
1, x

q
2). We exploit the observation that (x1, x2) ∈ Πp,q(a, b; R) if and

only if (ξx1, ηx2) is in the same set, where ξ, η denote primitive pth and qth roots of unity,
respectively. This permits to write

(12) g(x1, x2) =
∑

0≤i<p
0≤j<q

xi
1x

j
2gij(x

p
1, x

q
2),

with functions gij analytic on Π1,1(a, b; R). In other words, g is written as a combination
of functions that close the preceding diagram. In order to find these functions gij, it
suffices to solve the van der Monde type system

g(ξmx1, η
lx2) =

∑
0≤i<p
0≤j<q

ξmiηljxi
1x

j
2gij(x

p
1, x

q
2), m = 0, . . . , p− 1, l = 0, . . . , q − 1.

The definition of Tg can now easily be carried over from the (old) definition (above 3.6)
of the Tgij. Asymptotic expansions in the monomial xp

1x
q
2 are then defined analogously
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to Definition/Proposition 3.6. Functions with vanishing s-Gevrey asymptotic expansion
at the origin turn out to be f ∈ O(Π; E) such that

||f(x1, x2)|| ≤ C · exp

(
− B

|xp
1x

q
2|

1/s

)
.

Formula (12), which also works for series, even allows to reduce all considerations for
the monomial xp

1x
q
2 to the simpler monomial t1t2 discussed in detail in this section. The

idea to go over to a simpler monomial by using a formula of the form (12) will be applied
to the differential equation (S) in the next section.

Let us compare our notions with [MR, section 4]. There, the set B̂ρ is defined as

ρ∗C{x1, x2}[[t]], and it is independent of p, q. The set B̂ρ,s = ρ∗C{x1, x2}[[t]]s is precisely
our set of s-Gevrey series in xp

1x
q
2. The functions with asymptotic expansion are intro-

duced there using C∞-Whitney functions. This can also be done with s-Gevrey asymptotic
expansions (see [Mo]), so the notion introduced by Martinet and Ramis agrees with ours.
More precisely, take an element f̂ ∈ C{x1, x2}[[t]]s, and apply Borel transform and trun-
cated Laplace transform in t, obtaining a family of functions {fi} in a covering, having f̂
as s-Gevrey asymptotic expansion at the origin. The differences are exponentially small
of order 1/s in t, so, the differences between the functions gi(x1, x2) = fi(x1, x2, x

p
1x

q
2)

are exponentially small of order 1/s in xp
1x

q
2. Applying theorem 3.8, we obtain in par-

ticular that ĝ(x1, x2) = f̂(x1, x2, x
p
1x

q
2) is s-Gevrey in xp

1x
q
2 in the sense defined in Defini-

tion/Proposition 3.4.
In order to compare to [BM], observe first that proposition 3.11 can easily be gen-

eralized as follows: if f has an asymptotic expansion in x1x2 on some sector Π in x1x2,
then, for fixed x1,0, x2,0 and nonnegative integers n1, n2 with n1 + n2 > 0, the function
g : t 7→ f(tn1x1,0, t

n2x2,0) has an asymptotic expansion in a corresponding sector V ; if the
asymptotic expansion of f is s-Gevrey, then that of g is s/(n1+n2)-Gevrey. Thus, if a for-
mal series f̂(x1, x2) is 1-summable, say, in x1x2 in some direction, then the corresponding
ĝ(t) is (n1 + n2)-summable in a certain direction. This is equivalent to the (s, 1 − s)-
summability of f̂ in the sense of [BM] for s = n1/(n1 +n2); observe that [BM] allow also
irrational s. The precise relations between (s, 1 − s)-summability for all s ∈ [0, 1] and
summability in x1x2 will be established in a future work.

4 Rank Reduction

As we said in the introduction, we are going to study systems of n differential equations

(S) xr+1εσy′ = f(x, ε,y),

with f(0, 0,0) = 0, whose linear part is invertible at the origin; it is given by a linear map
A = Dyf(0, 0,0) : Cn−→Cn . Here, y denotes y(x, ε), and the derivative y′ = y′(x, ε)

means
∂y

∂x
(x, ε).

In this section we explain how to reduce this system to a simpler one, where r = σ = 1.
Our method is an adaptation of the well known rank reduction (cf. [T], and [L] or [B2]
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for a modern version). It leads to r = σ = 1 and maintains the invertibility hypothesis,
but increases the dimension of the system.

Formally, write f uniquely as

f(x, ε,y) =
∑

0≤i≤r−1
0≤j≤σ−1

fij(x
r, εσ,y) · xiεj,

and similarly the unknown y:

(∗) y(x, ε) =
∑

0≤i≤r−1
0≤j≤σ−1

zij(x
r, εσ) · xiεj.

Call η = xr, µ = εσ. We shall transform (S) in a new system of dimension N = nrσ, with
unknowns zij(η, µ). The linear part of the original equation being invertible, so will be
the linear part of the new one. Inserting the preceding formulas into (S), we find∑

0≤i≤r−1
0≤j≤σ−1

rη2µz′ij(η, µ)xiεj +
∑
i,j

iηµzij(η, µ)xiεj =

=
∑

0≤i≤r−1
0≤j≤σ−1

fij

η, µ,
∑

0≤k≤r−1
0≤l≤σ−1

zkl(η, µ)xkεl

xiεj,

where z′ij(η, µ) now means
∂zij

∂η
(η, µ).

The coefficient of xiεj in the last sum can be written as a polynomial in x, ε, identifying
xr with η and εσ with µ where they appear. We obtain∑

0≤i′≤r−1
0≤j′≤σ−1

F ij
i′j′(η, µ, z)xi′εj′ ,

where z denotes the vector of all zij . Observe that F ij
i′j′(0, 0, z) only depends upon zkl

with k ≤ i′, l ≤ j′. Identifying coefficients of xiεj, we have the new equations

rη2µz′ij(η, µ) + iηµzij(η, µ) =

=
∑

0≤k≤i
0≤l≤j

F kl
i−k,j−l(η, µ, z) +

∑
i<k≤r−1

0≤l≤j

F kl
r+i−k,j−l(η, µ, z)η +

+
∑

0≤k≤i
j<l≤σ−1

F kl
i−k,σ+j−l(η, µ, z)µ +

∑
i<k≤r−1
j<l≤σ−1

F kl
r+i−k,σ+j−l(η, µ, z)ηµ.

We want to show that its linearization at the origin, denoted by L : CN −→ CN , is
invertible. Here, CN is considered as a direct sum

⊕
ij Vij, with coordinates zij in Vij
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(dimC Vij = n). Call Lij := L |Vij
. In order to visualize the behaviour of Lij, consider first

the case (i, j) = (0, 0). The system becomes

rη2µz′00(t, µ) = G00(η, µ, z),

where G00(0, 0, z) = F 00
00 (0, 0, z) = f00(0, 0, z00) and thus

L00(z00) = Dz00f00(0, 0,0)(z00) = A(z00).

Now, order lexicographically the set of pairs (i, j) and consider some (i, j) 6= (0, 0). As
above, it is easily seen that

Lij(zij) = A(zij) + L̃ij(z),

where L̃ij(z) depends only upon zkl with (k, l) < (i, j). Therefore, the linear operator
L is a lower block-triangular operator whose rσ diagonal blocks are all equal to A. In
particular, A being invertible, so is L.

In this new system of equations we have r = σ = 1. If (zij(η, µ)) is a vector solution
of this system, solutions of the original one are obtained. Properties such as analyticity,
formalness, Gevrey character or summability of the solutions can be translated from one
system to another, as stated at the end of the preceding section.

So, in the sequel, we consider systems of N singularly perturbed differential equations

(RS) x2εy′ = f(x, ε,y),

where, in order to simplify notation, we use again x, ε as variables instead of η, µ.

5 Gevrey character of the formal solution and summa-

bility

Consider the system (RS) with f(0, 0,0) = 0, and invertible linear part. Under these
conditions, we shall see first that (RS) has a unique formal power series solution in the
two variables x, ε. Such a formal power series solution ŷ(x, ε) ∈ C[[x, ε]]N , if it exists, can
be written as

ŷ(x, ε) =
∞∑

n=0

yn∗(ε)x
n,

with yn∗(ε) ∈ C[[ε]]N . Inserting ŷ(x, ε) in (RS) we obtain first that

0 = f(0, ε,y0∗(ε)).

The invertibility of A = ∂f
∂y

(0, 0,0) and the holomorphic implicit function theorem show

that it has a unique solution y0∗(ε), which is holomorphic, with y0∗(0) = 0 and defined
in a neighbourhood of 0. By the change of variables y = ỹ + y0∗(ε), we can assume in the
sequel without loss of generality that f(0, ε,0) = 0 for all ε.
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In order to obtain the remaining coefficients, we write

f(x, ε,y) =
∑
i∈Nn

j∈N

fi,j(ε)x
jyi where now f0,0 = 0.

Inserting this series in the differential equation, comparison of the coefficient of xn+1 yields

εnyn∗(ε) = f0,n+1(ε) + f1,0(ε)yn+1,∗(ε) + known terms.

As f1,0(0) = A is invertible, there exist a disk DR in the ε-plane such that f1,0(ε) is
invertible, so yn+1,∗ can be defined as a holomorphic function yn+1,∗ ∈ O(DR)N (assuming
that R is small enough so that y0,∗ ∈ O(DR)N).

Proposition 5.1. We have
ŷ(x, ε) ∈ C[[x, ε]]N(s,1−s),

for all s ∈ [0, 1] and thus, ŷ is a 1-Gevrey series in xε.

Proof. Similar computations as for the classical irregular singularities show that ŷ is a
1-Gevrey series with respect to x, i.e. ŷ(x, ε) ∈ C[[x, ε]]N(1,0) (see [B2] for details). In order
to study the Gevrey order with respect to ε, write analogously

ŷ(x, ε) =
∑
m≥0

y∗m(x)εm,

with y∗m(x) ∈ C[[x]]N . As above, it is easily seen that all the series y∗m(x) are convergent
and have a common radius of convergence.

The use of Nagumo norms as in [S1] or [CDRSS] shows that, in fact, ŷ(x, ε) ∈
C[[x, ε]]N(0,1). See also [BM] for some details of these computations. Thus by Defini-

tion/Proposition 3.4, we obtain that

ŷ(x, ε) ∈ C[[x, ε]]N(s,1−s),

for all s ∈ [0, 1] and that ŷ is a 1-Gevrey series in xε.

This result will also be obtained from stronger results that will be proved later on.

Consider again the system (RS), with f(0, 0,0) = 0,
∂f

∂x
(0, 0,0) = A0 invertible. If

the formal solution is
∞∑

m=0

y∗m(x)εm, then we can make the change of variables

y = y∗0(x) + εy∗1(x) + εỹ,

and obtain a prepared form of our equation:

x2ε
dỹ

dx
= A(x, ε)ỹ + εG(x, ε, ỹ),
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with A(x, ε), G(x, ε, ỹ) holomorphic in a neighbourhood of the origin, and A(0, 0) = A0.
In this section our objective is to study the summability of the unique formal solution,

with respect to t = xε. So, as we did in the last section, take t = xε as a new variable, and
let z(t, ε) := ỹ

(
t
ε
, ε
)
, a(t, ε) = A

(
t
ε
, ε
)
, g(t, ε, z) = G

(
t
ε
, ε, z

)
with a(t, ε) holomorphic in

{(t, ε) ∈ (C \ {0})2 | 0 < |t| < R2, |t|
R

< |ε| < R},

and g(t, ε, z) in

{(t, ε, z) ∈ (C \ {0})2 × CN | 0 < |t| < R2, |t|
R

< |ε| < R, |z| < ρ}.

The new equation is then

(E) t2
dz

dt
= a(t, ε)z + εg(t, ε, z).

This looks like a regularly perturbed differential equation, but it is not, because the
domain of the variable ε depends on t. The main objective of this section is to study the
solutions of (E) in this domain.

We can suppose that |a(t, ε) − A0| < µ, and |g(t, ε, z)| < M and that µ is as small
as needed, if R, ρ are small enough. Let λ1, . . . , λN be the eigenvalues of A0 (λi 6= 0),
θj = arg λj (j = 1, . . . , N), ordered in such a way that θ1 ≤ . . . ≤ θN ≤ θ1 + 2π =: θN+1.
Fix any j ∈ {1, . . . , N} such that θj < θj+1, fix δ > 0 sufficiently small and consider
VR = V (θj − π

2
+ 2δ, θj+1 + π

2
− 2δ; R2). The choice of a small enough δ guarantees that

VR is a large sector.
Consider, for l = 1, . . . , N , the operators

Λl : y 7−→ t2y′ − λly.

Classical results on meromorphic ordinary differential equations show that Λl has a con-
tinuous right inverse Tl : Ob(VR) → Ob(VR) (Recall that Ob(VR) denotes the Banach space
of functions holomorphic and bounded on VR) constructed by variation of constants:

Tlh(t) =

∫ t

0

e−λl( 1
t
− 1

τ )τ−2h(τ) dτ ,

where integration is taken over suitable paths in VR (depending upon l and t) combining
arcs on which Re( 1

τ
eiθl) tends to −∞ as τ → 0, more precisely arg( 1

τ
− 1

τ0
) ∈ {−θl −

π
2
− δ,−θl + π

2
+ δ} mod 2π for some τ0, or (for t in the “shadow zones”) on which |τ | is

constant. The paths are best described in the u-plane, u = 1/τ (cf figure 1; here we used
θj = π/7, θj+1 = π, δ = 0.2 and l = j).

There is a positive constant K such that for all t in VR and all l, the above paths
from 0 to t can be chosen such that the maximum of Re

(
λl

τ
− λl

t

)
on it is less than K.

This implies the continuity of Tl. Unfortunately, the paths cannot be chosen such that
additionally |τ | is increasing on them. For the sequel let m(t) denote the maximum of |τ |
on the paths of integration chosen for t and l = 1, . . . , N ; we will need later that there
exists a positive constant C such that for all t ∈ VR, one has

(13) |t| ≤ m(t) ≤ min(R2, C |t|).
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1/t

1/τ0

arg(1/τ) = −θj + π

2
− 2δarg(1/τ) = −θj+1 −

π

2
+ 2δ

arg( 1

τ
−

1

τ0
) = −θj −

π

2
− δ

Figure 1: The image of the sector VR (in light and dark grey) in the u-plane, u = 1/τ ,
with “shadow zones” (dark gray) and a corresponding path of integration

Let T : Ob(VR)N → Ob(VR)N be the operator (T1, . . . , TN), and consider

F(z) := T (N0z + (a(t, ε)− A0)z + εg(t, ε, z)),

where N0 = A0 − diag(λ1, . . . , λN) which can also be assumed to have a norm smaller
than µ. Observe that, by the construction of the Tl, we cannot define F for all ε with
|t|
R

< |ε| < R; we need that all (τ, ε), τ on the paths chosen for t and Tl, are in the domain.
Thus we define F on the set of all functions z(t, ε) that are holomorphic for t ∈ VR and ε

with m(t)
R

< |ε| < R and that are bounded by ρ and its images are functions analytic and
bounded on the same domain. If R, µ and ρ are small enough, F is clearly a contraction.
Hence (E) admits a solution on the domain described above which contains the image
π(Π) of the sector Π(θj − π

2
+ 2δ, θj+1 + π

2
− 2δ; R̃) in xε for R̃ = R/C, where C is the

constant in (13). We omit the ˜ in the sequel.
Let now ṼR = V (θj + π

2
+ 2δ, θj+1 + 3π

2
− 2δ; R2). Both sectors VR and ṼR cover the

punctured disk and VR ∩ ṼR = V +
R ∪ V −

R , where in V +
R ,

arg t ∈
(
θj + π

2
+ 2δ, θj+1 + π

2
− 2δ

)
,

and in V −
R ,

arg t ∈
(
θj − π

2
+ 2δ, θj+1 − π

2
− 2δ

)
.

As before, there is a solution z̃ on π(Π̃) = {(t, ε) | t ∈ ṼR, |t|
R

< |ε| < R}, holomorphic
and bounded if R is small enough. Our goal is to use the theorem of Ramis-Sibuya in
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order to study summability, so we must study the differences

d+(t, ε) = z̃(t, ε)− z(t, ε) on V +
R

d−(t, ε) = z(t, ε)− z̃(t, ε) on V −
R .

It is sufficient to treat d := d+ on V +
R ; analogous considerations will apply to d−. We

have, then, on V +
R ,

t2z̃′ = a(t, ε)z̃ + εg(t, ε, z̃)

t2z′ = a(t, ε)z + εg(t, ε, z).

Subtracting these two equations we obtain

t2d′ = a(t, ε)d + ε(g(t, ε, z̃)− g(t, ε, z)).

If we write
g(t, ε, z̃)− g(t, ε, z) = h(t, ε, z, z̃)(z̃− z)

with some analytic matrix valued function h, then we have a linear equation

(L) t2d′ = (a(t, ε) + εh(t, ε, z(t, ε), z̃(t, ε))) · d = ã(t, ε)d,

and |ã(t, ε) − A0| ≤ µ if the radius R is small enough. We want to show that d is

exponentially small on V +
R as t tends to zero, uniformly for ε satisfying |t|

R̃
< |ε| < R̃ for

some positive R̃ < R.
Observe that a scalar equation t2u′ = λu + h(t) with some function h holomorphic

and bounded on V +
R has a unique bounded solution (given by variation of constants) if

Re(λe−iθ) < 0 for some θ ∈ IV + :=
]
θj + π

2
+ δ, θj+1 + π

2
− δ
[
, whereas all solutions of

t2u′ = λu are exponentially small on V +
R if Re(λe−iθ) > 0 for all θ ∈ IV + . This suggests

that we divide the set of eigenvalues of A0 in two classes. Reordering the λl if necessary,
we can assume

1. If l = 1, . . . , L, then Re(λle
−iθ) > 0 for every θ ∈ IV + .

2. If l = L + 1, . . . , N , then there exists a θ ∈ IV + such that Re(λle
−iθ) < 0.

In the cases that all eigenvalues fall into one of the above two classes, the subsequent
considerations can be simplified. Without loss of generality, we can assume that A0 is

block diagonal A0 =

(
A01 0

0 A02

)
. The system (L) is divided accordingly into blocks:

t2d′1 = ã1(t, ε)d1 + ã2(t, ε)d2

t2d′2 = ã3(t, ε)d1 + ã4(t, ε)d2,

where ã1(t, ε) → A01, ã4(t, ε) → A02, ã2(t, ε) → 0, ã3(t, ε) → 0, as t, ε tend to the origin.
We are first looking for a matrix p(t, ε) such that the change of variables d1 = d̃1, d2 =
d̃2 + p(t, ε)d̃1 block-triangularizes the system. The new system is

(14)
t2d̃′1 = ǎ1(t, ε)d̃1 + ǎ2(t, ε)d̃2

t2d̃′2 = ǎ3(t, ε)d̃1 + ǎ4(t, ε)d̃2,

22



where ǎ1 = ã1 + ã2 p, ǎ2 = ã2, ǎ3 = ã3 − t2p′ − p ã1 − p ã2 p + ã4 p and ǎ4 = ã4 − p ã2. As
we want that ǎ3 = 0, we have to solve the matrix Riccati equation

(15) t2p′ = ã3(t, ε) + ã4(t, ε) p− p ã1(t, ε)− p ã2(t, ε) p

on V +
R . Its linear part at t = 0 is the linear mapping P 7→ A02 P − P A01 and has the

eigenvalues λl −λk, l = L + 1, . . . , N ; k = 1, . . . , L. By assumption, for every such couple
(l, k), there exists a direction θ ∈ IV + such that Re((λl − λk)e

−iθ) < 0. Hence the same
method as above can be applied to (15) and this yields the existence of a holomorphic
bounded matrix-valued function p = p(t, ε) block-triangularizing the system (14). Thus
it remains to prove that (14) with ǎ3 = 0 has only exponentially small solutions on V +

R .
As above, Λl is invertible for l > L and thus, maybe after a further reduction of R, the

second equation has the unique solution d̃2 = 0 and it remains to prove that d̃1 satisfying

(16) t2d̃′1(t, ε) = ǎ1(t, ε)d̃1(t, ε)

is exponentially small on V +
R .

For that purpose, fix θ ∈ IV + and put

∆(s) :=
∣∣∣d̃1

(
eiθ

s
, ε
)∣∣∣2 , s > R−2,

1

sR
< |ε| < R, θ ∈ IV + .

As lim(t,ε)→0 ǎ1(t, ε) = A01 and as there is some α satisfying

0 < α < min{Re(λle
−iθ) | l = 1, . . . , L, θ ∈ ĪV +},

we find

∆′(s) = −2Re
〈
d̃1

(
eiθs−1, ε

)
, eiθs−2d̃′1

(
eiθs−1, ε

)〉
≤ (−2α + µ2)∆(s),

where µ2 < 2α if R is sufficiently small. With some positive β, this yields

∆(s + sβ) ≤ e−(2α−µ2)βs∆(s) ≤ e−(2α−µ2)βs
∣∣∣∣∣∣d̃1

∣∣∣∣∣∣2
R

,

where we use ||d||R = sup{|d(t, ε)| | t ∈ V +
R , |t|

R
< |ε| < R}. Substituting s = σ/(1 + β)

and using γ = (2α − µ2)β/(2 + 2β), we obtain ∆(σ) ≤ e−2γσ
∣∣∣∣∣∣d̃1

∣∣∣∣∣∣2
R

for σ > (1 + β)R−2,

1+β
σR

< |ε| < R. Taking the maximum over all θ ∈ IV + , this yields with R̃ = R/(1 + β)

sup
|t|
R̃

<|ε|<R̃

∣∣∣d̃1(t, ε)
∣∣∣ ≤ e−γ/|t|

∣∣∣∣∣∣d̃1

∣∣∣∣∣∣
R

for 0 < |t| < R̃2 .

The following theorem uses the preceding conclusions, and contains the main result of
our work.

Theorem 5.2. The unique formal solution of equation (RS) is 1-summable in xε.

23



Proof. With preceding notations, we have proved that the functions d+ and d− that were
the differences between z̃ and z in V +, V −, are exponentially small with respect to t,
uniformly for ε with |t|

R̃
≤ |ε| ≤ R̃. Going back to the original equation (RS) using

y(x, ε) = y∗0(x) + εy∗1(x) + εz(xε, ε) and ỹ(x, ε) = y∗0(x) + εy∗1(x) + εz̃(xε, ε), we have,
for every j and every δ > 0, found r > 0 and solutions y : Π1 → CN , ỹ : Π2 → CN of
(RS), where Π1, Π2 are the sectors Π1 = Π(θj − π

2
+ δ, θj+1 + π

2
− δ; r), Π2 = Π(θj + π

2
+

δ, θj+1 + 3π
2
− δ; r) in xε. Their differences are εd+(xε, ε) on Π(θj + π

2
+ δ, θj+1 + π

2
− δ; r)

and εd−(xε, ε) on Π(θj− π
2
+δ, θj+1− π

2
−δ; r) and are exponentially small in the sense that

there exist constants C, B such that they are smaller that C e−B/|xε|. Thus theorem 3.8
can be applied and yields that y and ỹ have 1-Gevrey asymptotic expansions in xε in the
sense of Definition/Proposition 3.6. As the opening angles of the sectors are larger than
π, we obtain by Definition 3.10, that they are 1-summable in xε in their sectors. This
gives 1-summability of the formal solution in all directions in ]θj, θj+1[. As j ∈ {1, . . . , N}
was arbitrary, the theorem is proved.

For use in future works we note

Corollary 5.3. Consider a linear system of doubly singular differential equations xr+1εσy′ =
A(x, ε)y, with r, σ ≥ 1, such that A(0, 0) is block diagonal A(0, 0) = diag(A1, A2), where
A1, A2 have no eigenvalues in common. Then, the above system is formally equivalent to
a (formal) block diagonal system xr+1εσy′ = B(x, ε)y, B(x, ε) = diag(B1(x, ε), B2(x, ε))
with Bi(0, 0) = Ai (i = 1, 2). Moreover, B and the equivalence are xrεσ-summable.

Proof. Analogous to the classical proof (cf. [W]), applying theorem 5.2 to conclude.

6 An example of a monomial sum

In this section we shall develop a simple example in an elementary way. Consider the
differential equation

εx2y′ = (1 + x)y − εx.

We know that it has a formal solution ŷ = ŷ(x, ε), but the monomial summability is not
easily seen directly from the coefficients. Let us make the change of variables t = εx, that
yields

t2
dy

dt
=

(
1 +

t

ε

)
y − t,

which, for fixed ε 6= 0 can be treated classically. The sum of the formal solution in the
direction θ, rewritten in the variables x, ε is given by

yθ(ε, x) =

∫ ∞eiθ

0

e−s/(εx)(1− s)1/ε−1ds.

We want to write this as the 1-sum in xε of ŷ despite the fraction 1/ε in the above formula.
Thus, we introduce

zθ(ε, x, t) =

∫ ∞eiθ

0

exp

(
1

t
(−s + x log(1− s))

)
1

1− s
ds,
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defined for |arg t− θ| < π/2, which has the property yθ(ε, x) = zθ(ε, x, εx) and does not
contain x or ε in a denominator. This can be written as an ordinary Laplace integral
making the change of variable s− x log(1− s) = σ, and s = ϕ(σ, x), that can be defined
as the analytic continuation of the local inverse of the expression for σ. We find that

zθ(ε, x, t) =

∫ ∞eiθ

0

e−σ/t
∂ϕ
∂σ

(σ, x)

1− ϕ(σ, x)
dσ,

for any direction θ 6= 0. As a Laplace integral, zθ is a 1-sum of its asymptotic expansion
ẑ ∈ C{x}[[t]]. Observe that the x-neighborhood of 0, where the Laplace integral has this
asymptotic expansion, reduces to 0 as θ approches the singular direction θ = 0, because
s 7→ s− x log(1− s) is not invertible near s = 1 + x.

To complete the example, we now discuss the difference

d(ε, x) := yδ(ε, x)− y2π−δ(ε, x),

for δ small, and defined for arg(xε) ∈
]
−π

2
+ δ, π

2
− δ
[
. The difference d must be a multiple

of a solution of the homogenized original equation, i.e. e−1/(εx)x1/ε. Applying Hankel’s
formula for the reciprocal Gamma function, we obtain

d(ε, x) = 2πi e−1/(εx)(εx)1/ε 1

Γ
(
1− 1

ε

) .
Observe that for some values of ε, namely ε = 1

n
, with integer n ≥ 1, we have d(ε, x) = 0,

so there is no Stokes phenomenon.
This difference can be written as d(ε, x) = D(ε, x, εx), where

D(ε, x, t) := −2πiε e−1/ttx/t 1

Γ(−x/t)
.

This is not exactly the form of the difference used throughout this work, but in this form
computations are easier. Now, suppose that |arg(x/t)| > η > 0. Using Stirling’s formula
for the complex Gamma function, we obtain a bound∣∣∣∣ tx/t

Γ(−x/t)

∣∣∣∣ ≤ exp(K |x| log |x| / |t|), |x| ≤ r, |arg t| ≤ π/2

with some positive contants r, K. From this it is easily seen that, if |arg t| ≤ π/2− δ, and
|ε|, |x| are small enough, there is a bound

|D(ε, x, t)| ≤ C · exp(−α/ |t|),

with a certain α > 0, as stated in the proof of our main result. If |arg(x/t)| is small, the
inversion formula

1

Γ(−x/t)
=

Γ(1 + x/t) · sin(−πx/t)

π

has to be applied first and the rest of the computations remain without changes.
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7 Conclusion

We started with an equation (S), doubly singular, that is a singular perturbation of an
irregular singularity. After a rank reduction, we can suppose r = σ = 1 (equation (RS)).
Under the conditions of our work (invertibility of the linear part), we show that the unique
formal solution ŷ(x, ε) of (RS) is (s, 1− s)-Gevrey for every s ∈ [0, 1], and moreover, that
it is 1-summable in xε.

Returning to the original equation (S), let ŷ(x, ε) be the unique formal solution. It
can be written as

ŷ(x, ε) =
∑

0≤i≤r−1
0≤j≤σ−1

ŷij(x
r, εσ) · xiεj,

and the above considerations show that ŷij(u, η) are 1-summable in uη, hence ŷij(x
r, εσ)

are 1-summable in xrεσ, and so is ŷ(x, ε) as a finite linear combination of them. The
notion of k-summability (one variable case) is replaced here by the notion of summability
with respect to a monomial (k-summability means summability with respect to xk). This
seems to be the appropriate setting in order to treat summability or multisummability
problems in several variables, problems that will be treated in a future work.
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Mathematics 1493 (1991), 29-39.

[CDRSS] Canalis-Durand, M., Ramis, J.P., Schäfke, R. and Sibuya, Y.: Gevrey solu-
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[E1] Écalle, J.: Les fonctions résurgents I, II, III. Publ. Math. Orsay (1981-85).
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Norm. Sup. 4e série, 16 (1983), 571-621.

[MaRa] Malgrange, B. and Ramis, J.-P.: Fonctions multisommables. Ann. Inst. Fourier
42, 1 (1992), 1-16.

[Mo] Mozo Fernández, J.: Topological tensor products and asymptotic developments.
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[R1] Ramis, J.-P.: Les séries k-sommables et leurs applications. Analysis, Mi-
crolocal Calculus and Relativistic Quantum Theory, proc. Les Houches 1979,
Springer LNP 126 (1980), 178-199.
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