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Introduction

In this course, our purpose is to recall and precise basic definitions and principal re-
sults about Gevrey estimates and Gevrey asymptotic expansions. The course is inspired
of many talks, papers and books of B. Candelpergher [Can89], W. Balser [Bal94], B. Mal-
grange [Mal95], J. Martinet and J.-P. Ramis [MR88], J.-P. Ramis [Ram93], J.-P. Ramis and
R. Schäfke [RS96] (chap. 6, pp.362-366), Y. Sibuya [Sib90-1] and J.C. Tougeron [Tou89].
The readers interested in results about Gevrey asymptotic expansions will find more details
with the references listed above.
In the first section, we define the Gevrey series, we present Gevrey asymptotic expansions,
the Borel and truncated Laplace transforms and we relate Gevrey asymptotic expansions
with the exponential precision of two approximate summation of Gevrey formal power se-
ries: the incomplete Laplace transform and a “least term cut-off”. In the third section, we
introduce the k-summability. In the final part, we shall apply the Gevrey asymptotic theory
to a singularly perturbed differential equation.

1 Gevrey asymptotics theory

1.1 Gevrey series

Let ε ∈ C. We consider C[[ε]] in order to study the asymptotic solutions of singularly
perturbed differential equations (see section 3), the formal series being power series into the
variable ε.

1.1.1 Definitions

Definition 1.1 Let k, A two positive numbers. A formal power series â(ε) =
∑

m≥0 am εm ∈
C[[ε]] is said to be Gevrey of order 1/k and type A, if there exist two nonnegative numbers
C and α such that

∀m, m ≥ 0, | am | ≤ C Am/k Γ(α +m/k)(1.1)

Remark 1.1 Let k and α two positive numbers, we have1:
There exist K1 > 0 and K ′

1 > 0 such that, for all m ∈ N∗ :

K ′
1 (α +m/k)α+m/k−1/2 e−α−m/k ≤ Γ(α +m/k) ≤ K1 (α +m/k)α+m/k−1/2 e−α−m/k

There exist K2 > 0 and K ′
2 > 0 such that, for all m ∈ N∗:

K ′
2 m

α−1/(2k)−1/2 (1/k)m/k (m!)1/k ≤ Γ(α +m/k) ≤ K2 m
α−1/(2k)−1/2 (1/k)m/k (m!)1/k

Proof: For x > 0, the Stirling formula

Γ(x) = exp(−x) xx (
2π

x
)1/2 (1 + e(x))

where e(x) → 0 as x→ +∞ proves the lemma.

1If x > 0, Γ(x) =
∫∞

0 e−uux−1du and Γ(n) = (n − 1)! for n ∈ N∗.
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Remark 1.2 The property above is equivalent to: there exist K > 0, β ≥ 0 such that

∀m, m > 0, | am | ≤ K mβ (
A

k
)m/k (m!)1/k(1.2)

So, the inequality (1.1) leads the inequality (1.2) with

K = C K2, β = Max{α − 1/2 − 1/k, 0}

Remark 1.3 The type is linked to the radius of convergence of the series B̂(â) where B̂ is
the formal Borel transform (see subsection 1.3).

Remark 1.4 In the particular case k = 1, the property (1.2) becomes: there exist K > 0
and β ≥ 0 such that

∀m, m > 0 | am | ≤ K mβ Am m!

Example 1.1 The series
∑

m≥0m! εm is Gevrey of order 1 and type 1.
The series

∑
m≥0 2m m! εm is Gevrey of order 1 and type 2.

The series
∑

m≥0

√
m! εm is Gevrey of order 1/2 and type 2.

The series
∑

m≥0 2 (m!)3 εm is Gevrey of order 3 and type 1/3.

Remark 1.5 The original Gevrey order 2 later becomes Gevrey order 1: in the first defi-
nition given by E. Gevrey at the begining of 20th century [Gev18], the series

∑
m≥0 am xm

where | am | ≤ C Am m! was called a Gevrey series of order 2 (because am = fm(0)
m!

and
| fm(0) | ≤ C Am (m!)2). Now, with the definition given by J.-P. Ramis and R. Schäfke
[RS96], we say that this series is Gevrey of order 1.

Definition 1.2 We denote by C[[ε]] 1
k
,A the algebra of the formal series (in C[[ε]]) Gevrey of

order 1/k and type A > 0 and we denote2 C[[ε]] 1
k

= ∪A>0 C[[ε]] 1
k
,A.

For k = +∞, we have C[[ε]] 1
k

= C{ε} ( 1
∞ = 0) the algebra of convergent series. These

convergent series define holomorphic functions on a neighbourhood of the origine.

Remark 1.6 1) Let k, A > 0. If â(ε) is a Gevrey series of order 1/k and type A, then â(ε)
is a Gevrey series of order 1/k and type B, B > A: C[[ε]] 1

k
,A ⊂ C[[ε]] 1

k
,B.

2) Let 0 < k1 < k2 and A > 0. If â(ε) is a Gevrey series of order 1/k2 and type A, then â(ε)

is a Gevrey series of order 1/k1 and type A
k1
k2 .

So we have the new definition:

Definition 1.3 The series â(ε) =
∑

m≥0 am εm is Gevrey of order exactly 1/k if it is Gevrey
of order 1/k and there exists no k′ > k such that it is Gevrey of order 1/k′.

In this course, we need formal series whose coefficients are holomorphic functions in a variable
x on a neighbourhood of 0 ∈ Cn, n ≥ 1.

2This last set was denoted by C[[ε]]k or C{ε} 1
k

in some older papers.
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Definition 1.4 Let k > 0, A > 0 and let (fm(x))m≥0 a sequence of holomorphic functions

on a domain D ⊂ Cn. The formal series f̂(x, ε) =
∑

m≥0 fm(x) εm ∈ C{x}[[ε]] is Gevrey of
order 1/k and type A, uniformly in x, if there exist C > 0 and α > 0 such that

∀m, m ≥ 0, ∀x ∈ D, | fm(x) | ≤ C Am/k Γ(α+m/k)(1.3)

Thus,
‖ fm ‖D≤ C Am/k Γ(α +m/k)

where ‖ ‖D is the supremum of ‖ fm ‖ when x ∈ D.

We denote C{x}[[ε]] 1
k
,A the algebra of these formal series and C{x}[[ε]] 1

k
= ∪A>0 C{x}[[ε]] 1

k
,A.

1.1.2 Properties of C[[ε]] 1
k
,A

Proposition 1.1
(
C[[ε]] 1

k
,A,+, .,×,′

)
is a commutative differential sub-algebra3 of C[[ε]].

Proof: The operations + and . are stable. In order to prove the stability of the product of
two Gevrey series of order 1/k and type A, we have to show that:

if â(ε) =
∑

m≥0 am εm ∈ C[[ε]] 1
k
,A and b̂(ε) =

∑
m≥0 bm εm ∈ C[[ε]] 1

k
,A then

â(ε) × b̂(ε) =
∑

m≥0

(
m∑

p=0

apbm−p) ε
m ∈ C[[ε]] 1

k
,A

and the next lemma (due to G.N. Watson [Wat12]) proves the result.

Lemma 1.2 Let k > 0 and l ≥ 2, l integer. Then

∑

p1+...+pl=m

(p1!)
1
k (p2!)

1
k ...(pl!)

1
k ≤ γ(k)l−1(m!)

1
k ∀m integer

where γ(k) is a positive real only depending on k.

Finally, we have to prove that the map

d : C[[ε]] 1
k
,A −→ C[[ε]] 1

k
,A

â(ε) 7→ â′(ε)

is C-linear and verifies (â(ε) × b̂(ε))′ = â′(ε) × b̂(ε) + â(ε) × b̂′(ε).
It is true with the Stirling formula: let â(ε) =

∑
m≥0 amε

m ∈ C[[ε]] 1
k
,A.

Then â′(ε) =
∑

m≥0(m+ 1) am+1ε
m and the Stirling formula implies that

Γ(1+ m+1
k

)

Γ(1+m/k) (m/k)
1
k
−→ 1 as m −→ +∞. Therefore, â′(ε) ∈ C[[ε]] 1

k
,A.

Remark 1.7 The proposition (1.1) is true if k = +∞.

3We denote by ′ the derivative with respect to ε.
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Proposition 1.3 The series
∑

m≥0 amε
m ∈ C[[ε]] is Gevrey of order 1/k and type A if and

only if
∑

m≥0 amε
pm is Gevrey of order 1

pk
with the same type A for p > 0, p integer.

Proof: It is straightforward with the definition (1.1).

Example 1.2 The Euler series
∑

m≥0(−1)mm! xm+1 ∈ C[[x]] is the formal solution of the
Euler equation

x2 y′ + y = x, y(0) = 0

where x = 0 is an irregular singular point4. This series is Gevrey of order 1 and type 1.
Therefore the Leroy series

∑
m≥0(−1)mm! x2(m+1) that is a formal solution of the Leroy

equation
x3

2
y′ + y = x2, y(0) = 0

is Gevrey of order 1/2 and type 1.

Proposition 1.4 Let Φ(u, v) an analytic function in the neighbourhood of 0 ∈ C2 and let
û, v̂ ∈ C[[ε]] 1

k
,A such that û(0) = 0, v̂(0) = 0. Show that Φ(û, v̂) ∈ C[[ε]] 1

k
,A.

Proof: See exercises I.
Other properties, as an implicit functions theorem in C[[ε]] 1

k
, are treated in [Mal95, Sib90-1].

1.1.3 Formal Borel transform and Formal Laplace transform

This paragraphe is widely inspired by [LR95] and [Ram93]. We introduce two transfor-
mations, the formal Borel transform ([Bor99]) that allows us to recognize Gevrey series and
its inverse: the formal Laplace transform.

Formal Borel transform

Definition 1.5 Let â(ε) =
∑

m≥0 amε
m an entire series with a radius of convergence equal

to R ≥ 0. We call formal Borel transform of order 1/k of â , the series, denotes by B̂k(â)

B̂k(â)(λ) = a0δ +
∑

m≥0

am+1

Γ(1 +m/k)
λm

where δ is the Dirac measure at 0.

Remark 1.8 In the particular case where k = 1,

B̂1(â)(λ) = a0δ +
∑

m≥0

am+1

m!
λm

Remark 1.9 Let m ≥ 0. We replace εm+1 by λm

Γ(1+m/k)
in order to obtain the formal Borel

transform of order 1/k of a series.

4See the algebraic differential equations [Mal91].
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Hypothesis: Now we suppose a0 = 0 (that is to say we study (â(ε) − a0)).

The formal Borel transform B̂k link Gevrey series of order 1/k and convergent series:

Proposition 1.5 Let â(ε) =
∑

m≥0 amε
m an entire series with a radius of convergence

R ≥ 0. Its formal Borel transform of order 1/k, B̂k(â)(λ) is a convergent series in the
λ-plane if and only if â(ε) is a Gevrey series of order 1/k.

Proof: We suppose that the series B̂k(â)(λ) has a radius of convergence r 6= 0. Then,
∀ r1, 0 < r1 < r, there exists Br1 such that

| am+1

Γ(1 +m/k)
|≤ Br1r1

−m

i.e. | am+1 |≤ Br1r1
−m Γ(1 +m/k) ≤ B̄r1A

m+1
k Γ(1 + (m+ 1)/k)

where A > r−k1 .
Conversely, if â(ε) is a Gevrey series of order 1/k and type A, there exist C > 0, α > 0 such
that:

| am |≤ CAm/kΓ(α +m/k) forall m ≥ 1

and | am+1

Γ(1+m/k)
| is upperbounded by CA(m+1)/kΓ(α+(m+1)/k)

Γ(1+m/k)
.

Moreover CA(m+1)/kΓ(α+(m+1)/k)
Γ(1+m/k)

≤ C̃ρ−m where Aρk < 1. So B̂k(â)(λ) is a convergent series
with a radius of convergence r ≥ ρ.

Remark 1.10 Let â in C[[ε]] 1
k
,A. We can define another formal Borel transform such that

B̂k(â)(λ) is a convergent series on the closed disc D̄R(0) where R = (1/A)1/k (see Appendix
A of the course).

Remark 1.11 If the series â(ε) is a convergent series, the series B̂1(â)(λ) has a radius of
convergence equal to +∞.

Properties of the Formal Borel transform. In the table 1.1, we have gathered the
main properties of B̂1. Let

â(ε) =
∑

m≥1

amε
m and B̂1(â)(λ) =

∑

m≥0

am+1

m!
λm
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â(ε) B̂1(â)(λ)

εp+1, (p integer) λp

p!

1 δ (Dirac measure)

εα, (α ∈ C, −α non integer) λα−1

Γ(α)

ε â(ε)
∫ λ
0
B̂1(â)(u)du

(â× b̂)(ε) B̂1(â) ∗ B̂1(̂b)(λ) :=
∫ λ
0
B̂1(â)(u) B̂1(̂b)(λ− u)du

ba(ε)
ε

where â(ε) =
∑

m≥1 amε
m a1δ + d

dλ
[B̂1(â)(λ)]

ε2 d
dε

(â(ε)) λB̂1(â)(λ)

table 1.1: Main properties of B̂1.

Formal Laplace transform. The formal Laplace transform is the inverse operator of the
formal Borel transform.

Definition 1.6 We call formal Laplace transform of order 1/k of a series

b̂(λ) =
∑

m≥0 bmλ
m, the series denoted by L̂k(̂b)

L̂k(̂b)(ε) =
∑

m≥0

bmΓ(1 +m/k) εm+1

Proposition 1.6 Let b̂(λ) =
∑

m≥0 bmλ
m and â(ε) =

∑
m≥1 amε

m. Then we have

B̂k(L̂k)(̂b) = b̂

L̂k(B̂k)(â) = â

Proof: Let b̂(λ) =
∑

m≥0 bmλ
m

B̂k(L̂k)(̂b)(λ) = B̂k(
∑

m≥0

bmΓ(1 +m/k) εm+1) =
∑

m≥0

bmλ
m

Let â(ε) =
∑

m≥1 amε
m

L̂k(B̂k)(â)(ε) = L̂k(
∑

m≥0

am+1

Γ(1 +m/k)
λm) =

∑

m≥0

am+1ε
m+1

The main properties of L̂1 are gathered in the table 1.2. Let

b̂(λ) =
∑

m≥0

bmλ
m and L̂1(̂b)(ε) =

∑

m≥0

bmm! εm+1
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b̂(λ) L̂1(̂b)(ε)

1 ε

λp, (p entier) p! εp+1

∫ λ
0
b̂(u)du =

∑
m≥0

bm
(m+1)

λm+1 ε L̂1(̂b)(ε)

d
dλ
b̂(λ) =

∑
m≥1m bm λm−1 1

ε
L̂1(̂b)(ε) − b0

λ× b̂(λ) ε2 d
dε

(L̂1(̂b)(ε))

table 1.2: Main properties of L̂1.

1.2 Gevrey asymptotic expansions

It is well known that if a complex-valued function φ(z) is holomorphic and bounded on
a domain 0 <| z |< r, where r is a positive number, then φ is represented by a convergent
powers series in z.
We shall hereafter consider a similar but slightly more general situation with divergent powers
series and functions holomorphic on some sectors.

1.2.1 History

The classical theory of Asymptotic Expansions, due to H. Poincaré [Poi81] is partially
solving the problem of the representation of a divergent powers series.
H. Poincaré wanted to apply his theory to the analytic differential equations: his motivation
was to give a sense to a divergent power series solution of a differential equation, i.e. to
“represent” this formal solution in a true solution.
Let f̂ be a series. We can associate an analytic function f to this series (f̂ being the
asymptotic expansion of f), but this function is not unique. To reduce this non-unicity, G.
N. Watson [Wat12] and F. Nevanlinna [Nev19] introduced the concept of Gevrey Asymp-
totic Expansion. More recently, in the late 1970s, J.-P. Ramis reintroduced and developed
systematically Gevrey asymptotic expansion in relation with analytic ordinary differential
equations in the complex domain.

1.2.2 Definitions

The sectors We denote by Sr,α,β, an open sector whose vertex is at the origin, Sr,α,β =
{ε/ α < arg ε < β, 0 <| ε |< r}. We denote by Sα,β if r = +∞.

Definition 1.7 Let Sr,α,β = {ε / 0 <| ε |< r, α < arg ε < β} where r, α, β > 0 an open
sector on XXXX surface de Riemann du LogarithmeXXXX. A subsector Sr′,α′,β′ of Sr,α,β is
defined by Sr′,α′,β′ = {ε / 0 <| ε |< r′, α′ < arg ε < β ′} where 0 < r′ < r, α < α′ < β ′ < β

9



and we denote Sr′,α′,β′ ≺ Sr,α,β. Moreover, we denote by | Sr,α,β |= β − α the opening of
Sr,α,β.

Definition 1.8 If N sectorial domains Sl = Sr,αl,βl
(l = 1, ..., N) satisfy the condition⋃N

l=1 Sl = {ε, 0 <| ε |< r}, we call {S1, ..., SN} a covering at ε = 0.

Definition 1.9 More precisely, {S1, ..., SN} is a good covering at ε = 0 if
(i) αl < αl+1 for l = 1...N where αN+1 = α1 + 2π
(ii) βl − αl < π for l = 1...N
(iii) Sl∩Sl+1 6= ∅ for l = 1...N and Sl∩Sk = ∅ otherwise if l /∈ {k±1, k}, where SN+1 = S1.

Asymptotic expansion in the Poincaré sense

Definition 1.10 Let S be an open sector of the complex plane whose vertex is at the origin.
Let f̂(ε) =

∑
m≥0 bm εm ∈ C[[ε]] be a formal power series. Let f be a function analytic on

the sector S. We will say that f is asymptotic to f̂(ε) =
∑

m≥0 bm εm on the sector S in the
Poincaré sense if for every closed subsector S ′ of S ∪{0} and every positive integer N ∈ N∗,
there exists a positive constant CS′,N such that:

∀ ε ∈ S ′, | f(ε) −
N−1∑

m=0

bmε
m |≤ CS′,N | ε |N

Remark 1.12 An analytic function on a open disk5 Dr(0), r > 0 has an asymptotic expan-
sion in the Poincaré sense on this disk and the expansion is the Taylor series about 0:
Let f an analytic function on Dr(0); there exists an entire series

∑
m≥0 bm εm convergent in

Dr(0) such that, ∀ε ∈ Dr(0), f(ε) =
∑

m≥0 bm εm.
As
∑

m≥0 bm εm is the Taylor series of f about ε = 0, we have:

∀ε ∈ Dr(0), f(ε) =
N−1∑

m=0

εm

m!
f (m)(0) +

εN

(N − 1)!

∫ 1

0

(1 − t)N−1f (N)(εt)dt

and | f(ε) −
N−1∑

m=0

εm

m!
f (m)(0) |≤ | ε |N

(N − 1)!
Sup|η|≤|ε| | f (N)(η) |

We denote by A(S) the space of all functions analytic on S having an asymptotic expan-
sion in the Poincaré sense as ε→ 0, ε in the open sector S.

Properties of A(S)

Proposition 1.7 Let S be an open sector whose vertex is at the origin. Then (A(S), +, ., ε2 d
dε

)
is a C-differential algebra.

5Let r a positive real and x0 ∈ C. We denote by Dr(x0) the open disk of radius r and center x0.
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Remark 1.13 Some functions, analytic on a sector S have no asymptotic expansion in
the Poincaré sense as ε → 0: let S = {ε ∈ C / Re (ε) > 0} the open half-plane and let

f(ε) = εLog(ε)
1+ε2

; this function is analytic and bounded on Re (ε) > 0, but it has no asymptotic
expansion as ε→ 0 in the Poincaré sense.

Proposition 1.8 Let S be an open sector whose vertex is at the origin. The following
conditions are equivalent:
(i) f ∈ A(S)
(ii) f is analytic on S and there exists a sequence (bm)m∈N such that

∀ S ′ ≺ S, limε→0, ε∈S′f (m)(ε) = m! bm

Proof: Let f ∈ A(S) and let S ′ ≺ S. We have

f(ε) −
N−1∑

m=0

bmε
m = εN−1ϕ(ε) with ϕ(ε) → 0 as ε→ 0, ε ∈ S ′

It is clear that ∀ S ′ ≺ S, limε→0, ε∈S′f(ε) = b0.
For the derivatives:

f ′(ε) −
N−1∑

m=1

m bmε
m−1 = εN−2(εϕ′(ε) + (N − 1)ϕ(ε))

We have εϕ′(ε) → 0 as ε → 0, ε ∈ S ′:
Let S ′′ ≺ S ′ and λ > 0 such that ∀ ε ∈ S ′′, Dλ|ε|(ε) ⊂ S ′.

ϕ(ε) =
1

2iπ

∫

γ

ϕ(s)

s− ε
ds where γ = ∂Dλ|ε|(ε)

εϕ′(ε) =
ε

2iπ

∫

γ

ϕ(s)

(s− ε)2
ds

| εϕ′(ε) |≤ | ε |
2π

∫

γ

| ϕ(s) |
λ2 | ε |2ds ≤

1

λ
SupDλ|ε|(ε) | ϕ(s) |

and this supremum tends to 0 as ε→ 0, ε ∈ S ′′ because Dλ|ε|(ε) ⊂ S ′.
For the sufficient condition, we consider the Taylor series of f between ε0 and ε in S ′ ≺ S,
then ε0 → 0. So

| f(ε) −
N−1∑

m=0

bmε
m |≤ | ε |N

N !
Sup t∈S′∩Dε(0) | f (N)(t) |

and the supremum is bounded in the neighbourhood of 0 because f(N)(t)
N !

→ bN , as t→ 0, t ∈
S ′.

Remark 1.14 So, if f ∈ A(S) then there exists a series f̂(ε) =
∑

m≥0 bmε
m which is the

asymptotic expansion of f at ε = 0. We can consider the map J

J : A(S) → C[[ε]]

f 7→ f̂(ε)

J is a homomorphism of commutative differential algebras over C [CL55, Was65].
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Theorem 1.9 Borel-Ritt Theorem.
Let S be an open sector whose vertex is at the origin. Then J : A(S) → C[[ε]] is surjective.

Proof: (see [CL55, Mal95, Was65]).

Remark 1.15 However, J is not injective even if the opening of S is greater than 2π.
Effectively, on Sr,−2π,2π, r > 0, the functions 0 and e−(1/ε)1/4

have 0 + 0ε + 0ε2 + ... as
asymptotic expansion at ε = 0.

Definition 1.11 We call the set of functions infinitely flat at the origin, the set of the
functions analytic on S that have 0+0ε+0ε2 + ... as asymptotic expansion at 0. We denote
by A<0(S) this set; it is the kernel of the homomorphism J .

Gevrey Asymptotic expansions We consider a subset of A(S) which precises the con-
stant CS′,N in the upperbound:

| f(ε) −
N−1∑

m=0

amε
m |≤ CS′,N | ε |N

As for Gevrey series, we introduce the asymptotic expansions with Gevrey estimates where:

CS′,N ≤ CS′ AN/k Γ(α+N/k)

where A, α, k > 0. So we will consider a new map J , with J(f) ∈ C[[ε]] 1
k
.

Definition 1.12 Let S be an open sector whose vertex is at the origin. Let f an analytic
function on S, let f̂(ε) =

∑
m≥0 bmε

m ∈ C[[ε]] a formal series and let A, k two positive reals.

We will say that f admits f̂(ε) as asymptotic expansion of Gevrey order 1/k and type A as
ε→ 0 on S if there is a positive constant α > 0 and for every closed subsector S ′ ≺ S, there
is a constant CS′ > 0 such that

∀ ε ∈ S ′, ∀N ∈ N
∗, | f(ε) −

N−1∑

m=0

bmε
m |≤ CS′ AN/k Γ(α+N/k) | ε |N(1.4)

We say also that f(ε) is Gevrey-1/k asymptotic of type A to f̂(ε) on S.

Definition 1.13 We denote by A 1
k
,A(S) the set of all functions admitting asymptotic ex-

pansions of Gevrey order 1/k and type A as ε → 0, ε ∈ S and A 1
k
(S) = ∪A>0A 1

k
,A(S).

Definition 1.14 Let S be an open sector whose vertex is at the origin and let Dr(0) a
disk. Let f(x, ε) an analytic function of x and ε, for x in Dr(0) and for ε in S. Let

f̂(x, ε) =
∑

m≥0 bm(x)εm ∈ C{x}[[ε]] a formal power series and let A and k two positive

reals. We say that f admits f̂(x, ε) as asymptotic expansion of Gevrey order 1/k and type
A as ε → 0 on S, uniformly for x in Dr(0) if there exists α > 0 such that for all closed
subsector S ′ of S, there exists a constant CS′ > 0 such that ∀ ε ∈ S ′, ∀N ∈ N∗

| f(x, ε) −
N−1∑

m=0

bm(x)εm |≤ CS′ AN/k Γ(α +N/k) | ε |N , ∀ x ∈ Dr(0)

12



1.2.3 Properties of A 1
k
,A(S); Examples

Properties of A 1
k
,A(S)

Remark 1.16 Let k1 > 0 and let S be an open sector whose vertex is at the origin.
i) If f ∈ A 1

k1

(S) then f ∈ A(S).

ii) Let k2 such that 0 < k1 < k2 and let A > 0. If f ∈ A 1
k2
,A(S) then f ∈ A 1

k1
,A(S) with the

same asymptotic expansion.
iii) Let A and B such that 0 < A < B. If f ∈ A 1

k1
,A(S) then f ∈ A 1

k1
,B(S) with the same

asymptotic expansion.

Proposition 1.10 Let k > 0 and let S be an open sector whose vertex is at the origin. Then
f ∈ A 1

k
(S) if and only if f ∈ A(S) and ∀ S ′ ≺ S, ∃ C ′

S > 0, A, α > 0 such that

∀ N ∈ N, ∀ ε ∈ S ′,
| f (N)(ε) |

N !
≤ CS′ AN/k Γ(α +N/k)

Proof: If f ∈ A 1
k
(S) then f ∈ A(S), so in particular

∀ S ′ ≺ S, ∀ N ∈ N, limε→0,ε∈S′

f (N)(ε)

N !
= bN

Let S ′′ ≺ S ′ ≺ S and let λ > 0 such that ∀ε ∈ S ′′, Dλ|ε|(ε) ⊂ S ′.

Let φ(ε) := f(ε) −∑N−1
m=0 bmε

m, then φ(N)(ε) = f (N)(ε).
The Cauchy’s formula gives:

φ(N)(ε)

N !
=

1

2iπ

∫

γ

φ(t)

(t− ε)N+1
dt

where γ is the boundary of Dλ|ε|(ε). As f ∈ A 1
k
(S), there exist C ′

S > 0, A, α > 0 such that

∀ t ∈ γ, | φ(t) |≤ CS′ AN/k Γ(α +N/k) | t |N

So | f
(N)(ε)

N !
|=| φ

(N)(ε)

N !
|≤ CS′ BN/k Γ(α+N/k) where B > A.

Conversely, if f ∈ A(S), f admits
∑

m≥0 amε
m as asymptotic expansion on S, we have:

∀S ′ ≺ S, ∃ C ′
S > 0, A, α > 0 such that

∀ N ∈ N, limε→0,ε∈S′ | f
(N)(ε)

N !
|=| bN |≤ CS′AN/kΓ(α +N/k)

Let ε0 and ε in S ′; we consider a Taylor expansion of f between ε0 and ε on S ′ ≺ S then
ε0 → 0. So

f(ε) −
N−1∑

m=0

bmε
m =

∫ ε

0

(ε− t)N−1

(N − 1)!
f (N)(t)dt

13



Let t = u ε = u | ε | eiφ

f(ε) −
N−1∑

m=0

bmε
m =

∫ 1

0

| ε |N eiNφ
(1 − u)N−1

(N − 1)!
f (N)(u | ε | eiφ)du

| f(ε) −
N−1∑

m=0

bmε
m |≤ | ε |N

N !
Sup ξ∈S′∩Dε(0) | f (N)(ξ) |≤| ε |N CS′AN/kΓ(α +N/k)

Proposition 1.11 Let k, A > 0 and let S be an open sector whose vertex is at the origin. If
f ∈ A 1

k
,A(S) then its asymptotic expansion

∑
m≥0 bmε

m is Gevrey of order 1/k and same
type A.

Proof: We majorize | bN | when N ≥ 1. We have

| f(ε) −
N−1∑

m=0

bmε
m |≤ CS′AN/k Γ(α +N/k) | ε |N

and | f(ε) −
N∑

m=0

bmε
m |≤ CS′A

N+1
k Γ(α+

N + 1

k
) | ε |N+1

we deduce
| bN |≤ CS′AN/k Γ(α+N/k) + CS′AN/k Γ(α +N/k) | ε |

then we make ε tend to 0 in the inequality above and we obtain
| bN |≤ CS′AN/k Γ(α +N/k).

From proposition (1.11), we conclude that A 1
k
(S) is a sub-algebra of A(S) as a commu-

tative differential algebra over C. Moreover, with the proposition above, we can consider a
restriction of J , called canonical homomorphism ([Tou89]) that we still denote by J

J : A 1
k
,A(S) −→ C[[ǫ]] 1

k
,A(1.5)

f 7−→ f̂(ε) =
∑

m≥0

bmε
m

This new map is still a homomorphism of commutative differential algebras on C.

Examples

Example 1.3 The Euler’s series
∑

m≥0(−1)m m! εm+1 is Gevrey of order 1 and type 1 and
divergent. Moreover, the Euler series is the asymptotic expansion of the Gevrey order 1 of
the holomorphic function f(ε) =

∫∞
0
e−

λ
ε

dλ
1+λ

as ε → 0, for ε in Sr,−π/2,π/2, where r > 0.
Indeed

1

1 + λ
=

N−1∑

m=0

(−1)mλm + (−1)N
λN

1 + λ

∫ ∞

0

e−
λ
ε

dλ

1 + λ
=

N−1∑

m=0

(−1)m
∫ ∞

0

e−
λ
ε λmdλ+ (−1)N

∫ ∞

0

e−
λ
ε
λN

1 + λ
dλ

14



or

∫ ∞

0

e−
λ
ε λmdλ = m! εm+1 for ε ∈ Sr,−π/2,π/2

So

∫ ∞

0

e−
λ
ε

dλ

1 + λ
−

N−1∑

m=0

(−1)m m! εm+1 = (−1)N
∫ ∞

0

e−
λ
ε
λN

1 + λ
dλ

and |
∫ ∞

0

e−
λ
ε
λN

1 + λ
dλ |≤ N ! | ε |N+1

Example 1.4 Let us consider f(ε) = exp(−1/ε). This function is not analytic in the
neighbourhood of 0; However, f is analytic on the domain {ε, ε 6= 0, Re (ε) ≥ 0}. So in
particular, f is analytic on every open sector whose vertex is at the origin, bissected by R+

and of opening < π. When arg ε increases, Re (ε) decreases and | f(ε) | increases6 and
expand at the paramount if Re (ε) < 0.
Besides, this function admits the series 0+0ε+0ε2+ ... as asymptotic expansion with Gevrey
estimates of order 1 as ε→ 0, Re (ε) > 0.

1.3 Truncated Laplace transform

1.3.1 Borel transform.

Let S a sector whose opening is stricly greater than π, bissected by a direction dφ =
{r eiφ, r > 0}, φ ∈ [0, 2π[. We denote by S the open sector SR,φ−θ/2,φ+θ/2 where R > 0,
θ > π.
We consider a(ε) an holomorphic function on S.

Definition 1.15 We call Borel transform of level 1 of a, the function

B1(a)(λ) = a(λ) =
1

2iπ

∫

γ

a(ε)
eλ/ε

ε2
dε

where γ is a LACET of S qui aboutit en 0 where eλ/ε

ε2
decreases rapidly.

Proposition 1.12 If a(ε) = εα , α > 0, then B1(a)(λ) = λα−1

Γ(α)
where

1

Γ(α)
=
λ1−α

2iπ

∫

γ

εα
eλ/ε

ε2
dε (Hankel′sformula)

Proposition 1.13 If | a(ε) |≤ C | ε |α, α > 0 for ε ∈ SR,φ−θ/2,φ+θ/2, where R > 0, θ > π,

then a(λ) ≤ K C |λ|α−1

Γ(α)
e|λ|/R on the sector V = Sφ−θ′/2−π/2,φ+θ′/2+π/2 where θ > θ′ > π.

Remark 1.17 This inequality controls the behaviour of a near 0 and near to infinity on a
sector bissected by dφ.

6Effectively, | exp(− 1
ε ) |= exp(−Re (ε)

|ε| ).
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1.3.2 Laplace transform

Definition 1.16 Let a(λ) an analytic function near dφ = {r eiφ, r > 0}, φ ∈ [0, 2π[. We
call Laplace transform of level k of a, the function

Lφ,k(a)(ε) = k

∫

dφ

e−λ
k/εk

a(λ)
λk−1

εk−1
dλ

Remark 1.18 When a has an exponentially increasing of level at most k on dφ: i.e. when
there exists K, γ > 0 such that

| a(λ) |≤ K exp(γ | λ |k) ∀ λ ∈ dφ

and if a is integrable in the neighbourhood of 0, then this Laplace transform defines an analytic
function on the bounded domain {ε /γ− cos(k arg ε− k φ)| ε |−k < 0} (see subsection 2.6).

In the particular case where a(λ) = λm

Γ(1+m/k)
, the Laplace transform is defined on S =

{ε /φ− π/2k ≤ arg ε ≤ φ+ π/2k}. Effectively, e−λ
k/εk

must not expand at the paramount
in the neighbourhood of ε = 0, so we must have Re(λk/εk) ≥ 0 i.e. ε ∈ S.

Lemma 1.14 Let S = {ε / | φ− arg ε |≤ π/2k}, then ∀ε ∈ S, we have

∀ m ≥ 0, Lφ,k(
λm

Γ(1 +m/k)
) = εm+1

This identity, easy to prove, will be useful. It shows that Lφ,k is the “inverse” transform of

the formal Borel transform B̂k: let dφ be a direction, ∀ k > 0, ∀ ε ∈ S

Lφ,k(B̂k(εm+1)) = εm+1 ∀m ≥ 0

Proposition 1.15 Let k = 1 and let dφ be a direction. The transforms B1 and L1 in the
direction dφ are inverse one together:

B1 ◦ L1(f) = f and L1 ◦ B1(f) = f

The main properties of the Laplace transform for k = 1 are gathered in the table 1.3 where
we denote Lφ,1 by Lφ.

Lφ(a)(ε) =

∫

dφ

e−λ/ε a(λ) dλ

a(λ) Lφ(a)(ε)

a ∗ b(λ) Lφ(a) . Lφ(b)(ε)

∫ λ
0

a(u)du ε Lφ(a)(ε)

( d
dλ

) a(λ) −a(0) + 1
ε
Lφ(a)(ε)

λ a(λ) ε2 ( d
dε

)Lφ(a)(ε)

table 1.3: Some properties of Lφ.
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1.3.3 Truncated Laplace transform

If â(ε) is a Gevrey series of order 1/k, the series B̂k(â)(λ) is a convergent series and there

exists r > 0 such that B̂k(â) defines a holomorphic function a(λ) on the neighbourhood7 of
D̄r(0).
If we don’t know the singularities of a in the λ-plane (called Borel plane)8, we introduce the
truncated Laplace transform of level k, denoted by Lr,φ,k:

Lr,φ,k(a)(ε) = k

∫

dφ,r

e−λ
k/εk

a(λ)
λk−1

εk−1
dλ

where dφ,r is the line-segment [0, r] ⊂ dφ.
We want that Lr,φ,k(a)(ε) will be defined in the neighbourhood of ε = 0 so we must have
φ− π

2k
≤ arg ε ≤ φ+ π

2k
(see figure 1.1).

Now we consider Lr,0,1(a)(ε) =
∫ r
0
e−λ/ε a(λ) dλ. Here φ = 0 and k = 1; we denote by Lr

this incomplete transform and Ma the supremum of | a(λ) | for λ ∈ D̄r(0).

The classic properties of the Laplace transform remain for Lr with exponentially small
corrections ([Ca91]).

Proposition 1.16 Let ε > 0, r > 0.

Lr(1) = ε− εe−r/ε

Proof: We have

Lr(1) =

∫ r

0

e−λ/ε dλ = [−εe−λ/ε]r0

Proposition 1.17 Let a(λ) an holomorphic function on a neighbourhood of D̄r(0) and let
ε > 0.

Lr(
∫ λ

0

a(u)du)(ε) = ε Lr(a)(ε) − ε e−r/ε
∫ r

0

a(u)du, ∀ λ ∈ D̄r(0)

Proof: (see Exercises II).

Proposition 1.18 Let a(λ) an holomorphic function on a neighbourhood of D̄r(0).

Lr
(
(
d

dλ
) a(λ)

)
(ε) = −a(0) + a(r) e−r/ε +

1

ε
Lr(a)(ε)

Proof: (see Exercises II).

Proposition 1.19 Let a(λ) and b(λ) two holomorphic functions on a neighbourhood of
D̄r(0).

Lr(a ∗ b)(ε) = Lr(a)(ε) . Lr(b)(ε) − E(ε)

with | E(ε) |≤ r2 MaMb e
−r/ε ∀ε, ε > 0

where Ma is the supremum of | a(λ) | on D̄r(0).

7We denote by Dr(0) the open disk of center 0 and radius r and D̄r(0) the closed disk.
8This is the case, for example, if the series coefficients of â(ε) are only majorized.
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αα
1

OO

Sector of analyticity of Lr,φ,k(a)(ε) The line-segment dφ,r and the singularities of a(λ)
ε-plane λ-plane

figure 1.1

Proof: Lr(a ∗ b(λ))(ε) =
∫ r
0
e−λ/ε(

∫ λ
0

a(u)b(λ− u)du)dλ
Let η = λ− u

Lr(a ∗ b(λ))(ε) =

∫ r

0

e−u/εa(u)(

∫ r−u

0

e−η/ε b(η)dη)du

=

∫ r

0

e−u/εa(u)
(∫ r

0

e−η/ε b(η)dη −
∫ r

r−u
e−η/ε b(η)dη

)
du

Lr(a ∗ b)(ε) = Lr(a)(ε) . Lr(b)(ε) −E(ε)

with E(ε) =
∫ r
0
e−u/ε a(u)(

∫ r
r−u e

−η/ε b(η)dη)du

| E(ε) | ≤
∫ r

0

e−u/ε | a(u) | (

∫ r

r−u
e(−r+u)/ε | b(η) | dη)du car − η ≤ −r + u

≤ e−r/ε
∫ r

0

∫ r

0

| a(u) || b(η) | du dη

≤ e−r/ε r2Ma Mb

These different properties are gathered in the table 2.4.

Lr(a)(ε) =
∫ r
0
e−λ/ε a(λ) dλ
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a(λ) Lr(a)(ε), ε > 0

1 ε− ε e−r/ε

a ∗ b(λ) Lr(a) . Lr(b)(ε) − E(ε)
| E(ε) |≤ r2 MaMb e

−r/ε ∀ε, ε > 0

∫ λ
0

a(u)du, λ ∈ D̄r(0) ε Lr(a)(ε) − ε e−r/ε
∫ r
0
a(u)du

( d
dλ

) a(λ) −a(0) + a(r) e−r/ε + 1
ε
Lr(a)(ε)

table 2.4: some properties of Lr.

1.4 Properties of J

1.4.1 Flat functions

Definition 1.17 Let A, k > 0, let S an open sector whose vertex is the origin and let f an
analytic function on S. The function f is said to be flat in the Gevrey sense of order 1/k and
type A, as S ∋ ε → 0, if f admits the nil formal power series as asymptotic expansion with
Gevrey estimates of order 1/k and type A, i.e. if there exists α > 0 such that for all closed
subsector S ′ of S, there exists a positive constant CS′ > 0 such that ∀ ε ∈ S ′, ∀N ∈ N∗

| f(ε) |≤ CS′ AN/k Γ(α +N/k) | ε |N

Proposition 1.20 Let A, k > 0 and let S be an open sector whose vertex is at the origin.
A function f is flat in the Gevrey sense of order 1/k and type A if and only if it has an
exponential decay of level k and type A, uniformly on every closed subsector S ′ of S i.e. there
exists ρ ≤ 0 such that

∀ S ′ ≺ S, ∃ CS′ > 0, | f(ε) |≤ CS′ | ε |ρ e
− 1

A|ε|k , ∀ε ∈ S ′

Proof ([Wat12, Ram78, Sib90-1]):
Sufficient condition: Let S ′ ≺ S and suppose there exists CS′ > 0 such that

∀ε ∈ S ′, | f(ε) |≤ CS′ | ε |ρ e
− 1

A|ε|k

We show that f is flat in the Gevrey sense of order 1/k and type A, i.e. f̂(ε) = 0 + 0ε+ · · ·
and there exist β > 0, C̃ > 0 such that

∀ N ∈ N
∗, | f(ε) − 0 |≤ C̃ AN/k Γ(β +N/k)| ε |N

By hypothesis, | f(ε) |≤ CS′ | ε |ρ e
− 1

A|ε|k so |f(ε)|
|ε|N ≤ CS′ | ε |ρ−N e

− 1

A|ε|k .

We apply the next lemma to the function φ(ε) = f(ε)
|ε|N and we conclude.
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Lemma 1.21 Let S ′ be an open sector whose vertex is at the origin and let ρ a real. If there
exists τ > 0 such that, ∀ N ≥ 1, ∀ ε ∈ S ′,

| φ(ε) | ≤ C | ε |ρ−N e
− 1

τ |ε|k

then | φ(ε) | ≤ C̄ τN/k Γ(1/2 − ρ/k +N/k)

Proof of the lemma: We observe that the function t 7→ e
− 1

τ tk

tN−ρ reaches a maximum at

t0 = ( k
(N−ρ)τ )

1
k .So

| φ(ε) |≤ C̃ τN/k e−(N−ρ)/k(
N − ρ

k
)(N−ρ)/k ≤ C̄ τN/k Γ(1/2 − ρ/k +N/k)

with the Stirling’s formula.
Necessary condition: Let f ∈ A 1

k
,A(S) such that J(f) = 0. By hypothesis, there exists

α > 0 such that ∀ S ′ ≺ S, ∃CS′ > 0

| f(ε) − 0 |≤ CS′ AN/k Γ(α +N/k)| ε |N , ∀ε ∈ S ′, ∀ N ≥ 1

We apply the next lemma to the function f :

Lemma 1.22 Let A and α two positive constants. If ∀ε ∈ S ′, ∀ N ≥ 1

| f(ε) |≤ CS′ AN/k Γ(α +N/k)| ε |N

then | f(ε) |≤ C̄S′ | ε |−kα+k/2 e
− 1

A|ε|k ≤ C̃S′ e
− 1

B|ε|k where B > A.

Proof: (see Exercises II).

We denote by A≤−k
A (S) the set of all functions in A(S) with an exponential decay of level

k and type A. Thus we remark

A≤−k
A (S) = A 1

k
,A(S) ∩A<0(S) = Ker J

Remark 1.19 1) Let k1 and k2 two reals such that 0 < k1 < k2, let A a positive real and S
an open sector. Then

A≤−k2
A (S) ⊂ A≤−k1

A (S)

2) let k > 0 a fixed level, if 0 < A < B and if S is an open sector then

A≤−k
A (S) ⊂ A≤−k

B (S)

Example 1.5 The flatness in the Gevrey sense assigns Gevrey conditions on the asymptotic
expansion: the function f(ε) = e−1/

√
ε, that has an exponential decay of level 1/2 and type

1, is flat in the Gevrey sense of order 2 and type 1 for ε ∈ C\R−. But it is not flat in the
Gevrey sense of order 1, although it is flat in 0 in the half-plane Re ε > 0.

We have the same definitions and the same results for an analytic function f(x, ε) of x, for
x in the disk Dr(0):
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Definition 1.18 Let k > 0, let Dr(0) be an open disk and let S be an open sector whose
vertex is at the origin. Let f(x, ε) an analytic function of x and ε, for x in Dr(0) and for
ε in S. The function f(x, ε) is said to be flat in the Gevrey sense of order 1/k and type A,
uniformly for x in Dr(0), as ε → 0, ε ∈ S, if f admits the formal series nil as asymptotic
expansion with Gevrey estimates of order 1/k and type A, uniformly for x in Dr(0).

Proposition 1.23 Let k > 0, let Dr(0) be a disk and let S be an open sector whose vertex
is at the origin. A function f(x, ε) The function f(x, ε) is flat in the Gevrey sense of order
1/k and type A, uniformly for x in Dr(0) if and only if it has an exponential decay of level
k and type A, uniformly on every closed subsector S ′ of S and uniformly for x in Dr(0), i.e.
there exists ρ ≤ 0 such that

∀ S ′ ≺ S, ∃ CS′ > 0, | f(x, ε) |≤ CS′ | ε |ρ e
− 1

A|ε|k , ∀ε ∈ S ′, ∀ x ∈ Dr(0)

Conclusion: The difference between two functions in A 1
k
,A(S), having the same asymptotic

expansion, is exponentially small of level k and type A. So we have a sequence of differential
algebras:

A≤−k
A (S) −→ A 1

k
,A(S) −→ C[[ε]] 1

k
,A

Now we ask two questions:
1) What are the conditions for J to be injective ? ( Watson theorem [Wat12] will give the
answer).
2) What are the conditions for J to be surjective ? (Borel-Ritt Gevrey theorem [Wat12] will
give the answer).

1.4.2 Injectivity of J: Watson theorem.

Let f ∈ A 1
k
(S). Watson theorem [Wat12] gives condition on the opening of the sector S

so that the asymptotic expansion of f determines uniquely the function f .

Theorem 1.24 Watson theorem.
Let k > 0, let S be a sector whose opening is > π/k and let f ∈ A(S). If f has an exponential
decay of level k in S, then f ≡ 0.

Proof: The proof of the Watson theorem is similar to the Phragmén-Lindelöf lemma’s one,
and this last proof is a variant of the Maximum Principal.
Let S a sector bissected by the positive real axes, whose opening is > π/k. Then there exists
S ′ a closed subsector of S, S ′ = Sr,−η−π/2k,η+π/2k whose opening | S ′ |= 2(η + π/2k) where
η > 0 and k′ such that k′ < k, k′(π/2k + η) > π/2. We majorize the function

g(ε) = f(ε) exp(λε−k
′ − λr−k

′

)

for ε ∈ S ′, ∀ λ > 0.
On the boundary of S ′, if arg ε = θ = ±(π/2k + η) then

| f(ε) exp(λε−k
′ − λr−k

′

) |≤| f(ε) || eλε−k′ | e−λr−k′ ≤| f(ε) |≤ C
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because | eλε−k′ |= eλcos(k
′θ)|ε|−k′ ≤ 1 (cos(k′θ) < 0) and | f(ε) |≤ Ce

− M

|ε|k ≤ C for all ε ∈ S,
S open, therefore for all ε ∈ S ′.
If | ε |= r, arg ε ∈] − η − π/2k, η + π/2k[,

| f(ε) exp(λε−k
′ − λr−k

′

) |≤| f(ε) |≤ C

Into the sector S ′ :

| f(ε) exp(λε−k
′ − λr−k

′

) |≤ Ce−M |ε|−k

eλcos(k
′θ)|ε|−k′

e−λr
−k′ ≤ Ce−M |ε|−k(1−λcos(k′θ)

M
|ε|k−k′)

and 1 − λcos(k′θ)

M
| ε |k−k′→ 1 as ε→ 0 (k > k′)

so 1 − λcos(k′θ)
M

| ε |k−k′> 0 for ε → 0 and the majorant Ce−M |ε|−k(1−λcos(k′θ)
M

|ε|k−k′) tends to 0
as ε→ 0. So

| f(ε) exp(λε−k
′ − λr−k

′

) |→ 0 as ε → 0, ε ∈ S ′

Since the function g(ε) is majorized by C on the boundary of S ′ and g(ε) → 0 as | ε |→ 0,
we apply the Maximum Principle: g is majorized by C in the interior of S ′

| f(ε) exp(λε−k
′ − λr−k

′

) |≤ C, ∀ ε ∈ S ′, ∀ λ > 0

Let r′ such that 0 < r′ < r. On the line-segment [0, r′],

| f(ε) |≤ C e−λ |ε|−k′

eλr
−k′ ≤ C e−λ(r′−k′−r−k′ )

(here, α = 0) and r′−k
′ − r−k

′
> 0. So, e−λ(r′−k′−r−k′) → 0 as λ → +∞. Therefore f ≡ 0 on

the line-segment [0, r′] and f ≡ 0 dans S because f is analytic on S.

Proposition 1.25 Let S be a sector. If the opening of S is > π/k, then the homomorphism
J defined by

J : A 1
k
,A(S) −→ C[[ǫ]] 1

k
,A

f 7−→ f̂(ε)

is injective.

Proof: When f ∈ A 1
k
,A(S) and J(f) = 0, f has an exponential decay of order k. The Watson

theorem leads us to conclude.

Example 1.6 ([Bal94]) Let S be an open sector whose vertex is at the origin and whose
opening is ≤ π/k, k > 0 and let f(ε) = e−c/ε

k
, c > 0. The function f ∈ A 1

k
(S) and

J(f)(ε) = 0 + 0ε + 0ε2 + .... The map J is not injective because the nil function has too
0 + 0ε+ 0ε2 + ... as asymptotic expansion.
Moreover, if g ∈ Ker(J), if h is analytic on S and if there exists α such that εα h(ε) is
bounded at the origin, then the function g ·h ∈ A 1

k
(S) and g ·h ∈ Ker(J) (J is non injective

!).
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1.4.3 Surjectivity of J: Borel-Ritt Gevrey theorem

We consider the map

J : A 1
k
(S) −→ C[[ǫ]] 1

k

f 7−→ f̂ =
∑

m≥0

bmε
m

If the opening of the sector S is 2θ < π/k, we show that J is surjective. We can prove

precisely that if a series f̂ is Gevrey of order 1/k and type A, the function f ∈ A 1
k
(S) such

that J(f) = f̂ is at most of type A
(cos kθ)k (see appendix B). In order to do that, we define a

new formal Borel transform and so a new truncated Laplace transform.
let f̂ =

∑
m≥1 bmε

m ∈ C[[ǫ]] 1
k
,A. So

∃ α > 0, ∃ K > 0, ∀m ≥ 1 | bm |≤ K Am/k Γ(α +m/k)

Definition 1.19 Let f̂ =
∑

m≥1 bmε
m; we define the formal Borel transform still denoted

by B̂k:
B̂k(f̂)(t) =

∑

m≥1

bm
Γ(α+ 1 + 1/k +m/k)

tm

Lemma 1.26 The series B̂k(f̂)(t) is absolutely convergent for | t |≤ (1/A)1/k.

Proof: (see Exercises II).

Remark 1.20 In the Borel-plane the radius of convergence of the series is ≥ (1/A)1/k.

Lemma 1.27 With the properties above, we have

∑

n≥1

bn
Γ(α + 1 + 1/k + n/k)

tn =

N−1∑

n=1

bn
Γ(α + 1 + 1/k + n/k)

tn + tN φN(t)

and | tN φN(t) |≤ C × | t |NAN/k for | t |≤ (1/A)1/k

Proof: (see Exercises II). We define the new formal Laplace transform:

Definition 1.20 Let f(t) an analytic function on the neighbourhood of D̄(1/A)1/k(0). We call
truncated Laplace transform of f , the function

LA(f)(ε) = k ε−kα−k−1

∫ (1/A)1/k

0

e−t
k/εk

f(t) tkα+k dt

This function is analytic on S = S−θ,θ, θ < π/(2k).

Remark 1.21 The new transforms are inverse one another. Let α > 0 and θ < π/(2k).
Then ∀ ε ∈ S−θ,θ, ∀n ≥ 0

εn = k ε−kα−k−1

∫ +∞

0

e−t
k/εk tn

Γ(α + 1 + 1/k + n/k)
tkα+k dt
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Theorem 1.28 : Borel-Ritt Gevrey theorem.
Let k > 0 and A > 0. Let f̂ =

∑
n≥1 bnε

n a Gevrey series of order 1/k and type A and let

B̂k(f̂)(t) =
∑

n≥1
bn

Γ(α+1+1/k+n/k)
tn its Borel-series convergent for | t |≤ (1/A)1/k. It defines a

function f(t) analytic on the neighbourhood of D̄(1/A)1/k(0) and continue on this closed disk.

Thus f(ε) = LA(f)(ε) = k ε−kα−k−1
∫ (1/A)1/k

0
e−t

k/εk
f(t) tkα+k dt is an analytic function

on the open sector S−π/2k,π/2k and f has f̂ as asymptotic expansion Gevrey of order 1/k:
∀ θ < π/(2k), there exists K̄ > 0 such that, ∀ε ∈ S−θ,θ, ∀N ≥ 2

| f(ε) −
N−1∑

n=1

bnε
n |≤ K̄ Γ(α + 1 + 1/k +N/k) (

A1/k

cos kθ
)N | ε |N

i.e. f ∈ A 1
k
(S−θ,θ) and its type is A

(cos kθ)k . Moreover the type A
(cos kθ)k is optimum.

Proof: The proof is given in the case k = 1 where B̂1(f̂)(t) =
∑

n≥1
bn

Γ(α+2+n)
tn and

LA(f)(ε) = ε−α−2
∫ 1/A

0
e−t/ε f(t) tα+1 dt.

The next identity is straightforward:

Lemma 1.29 : Let α > 0 and let ε ∈ S−θ,θ where θ < π/2. Then

∀ε ∈ S−θ,θ, ∀n ≥ 0 εn = ε−α−2

∫ ∞

0

e−t/ε
tn+α+1

Γ(α + 2 + n)
dt

For N ≥ 2,

| f(ε) −
N−1∑

n=1

bnε
n | = | ε−α−2

∫ 1/A

0

e−t/ε (

∞∑

n=1

bn
Γ(α + 2 + n)

tn) tα+1 dt−
N−1∑

n=1

bnε
n |

=|
∫ 1/A

0

ε−α−2 e−t/ε tα+1 (

N−1∑

n=1

bn
Γ(α + 2 + n)

tn + tNφN(t)) dt

−
n=N−1∑

n=1

bn ×
∫ ∞

0

ε−α−2 e−t/ε
tn+α+1

Γ(α+ 2 + n)
dt |

=| f1(ε) − f2(ε) |

where f1(ε) =

∫ 1/A

0

tN+α+1 ε−α−2 e−t/ε φN(t) dt

and f2(ε) =

∫ ∞

1/A

ε−α−2 e−t/ε tα+1 (

N−1∑

n=1

bn
Γ(n+ α + 2)

tn) dt

Upperbounds of f1(ε): Let S−θ̃,θ̃ be a subsector of S−θ,θ with 0 < θ̃ < θ < π/2 and let

ε ∈ S−θ̃,θ̃. As ε =| ε | eiθ0 with −θ̃ ≤ θ0 ≤ θ̃ < θ, | e−t/ε |= e
− t cos θ0

|ε| ≤ e
− t cos θ̃

|ε| and there
exists C > 0 such that

| f1(ε) |≤ C| ε |−α−2

∫ 1/A

0

e−
t cos θ̃
|ε| tN+α+1 ANdt
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(cf. lemma (1.27)). Let u = t cos θ̃
|ε| , therefore we have

| f1(ε) | ≤ C| ε |−α−2

∫ ∞

0

e−u| ε |N+α+2 uN+α+1AN
1

cos θ̃
N+α+2

du

≤ C| ε |N 1

cos θ̃
N+α+2

AN
∫ ∞

0

e−u uN+α+1du

So

| f1(ε) |≤ C̄ (
A

cos θ̃
)N Γ(α + 2 +N)| ε |N(1.6)

Upperbounds of f2(ε) :

| f2(ε) |=|
∫ ∞

1/A

ε−α−2 e−t/ε tα+1 (

N−1∑

n=1

bn
Γ(α + 2 + n)

tn) dt |

≤
∫ ∞

1/A

| ε |−α−2 | e−t/ε | tα+1 K (tA)N dt

with the lemma

Lemma 1.30 If t ≥ 1/A > 0 then there exists K > 0 such that

∀N ≥ 2, |
N−1∑

n=1

bn
Γ(α + 2 + n)

tn |≤ K × (tA)N

The lemma is proved in Exercises II.

So | f2(ε) |≤ KAN | ε |−α−2

∫ ∞

1/A

e
− t cos θ̃

|ε| tN+α+1 dt

Let u = t cos θ̃
|ε| , we have

| f2(ε) |≤ K(
A

cos θ̃
)N Γ(α + 2 +N)| ε |N(1.7)

Using the inequalities (1.6) and (1.7), ∀ε ∈ S−θ̃,θ̃ , θ̃ < θ, ∀ N ≥ 2, we have

| f(ε) −
N−1∑

n=1

bnε
n |=| f1(ε) − f2(ε) |≤ K̄(

A

cos θ̃
)N Γ(α+ 2 +N)| ε |N(1.8)

Remark 1.22 The constant K̄ depends on θ̃: it has 1/cos θ̃
α+2

as factor.

Remark 1.23 As θ̃ < θ, we have 1/cos θ̃ < 1/cos θ and

| f(ε) −
N−1∑

n=1

bnε
n |≤ K̄ × Γ(α+ 2 +N) × AN

(cos θ)N
| ε |N

We have built a function f analytic on S−θ,θ that has f̂ as asymptotic expansion with Gevrey
estimates of order 1 and type9A/cos θ. In Appendix A, we show that A/cos θ is optimum.

9The type must depend on the sector S−θ,θ and not depend on S−θ̃,θ̃.

25



With the next proposition, we can recognize the functions in A 1
k
(S).

Proposition 1.31 ([RS96]) Let k > 0 and let S be an open sector whose opening ≤ π/k

bissected by dφ. Let f be an analytic function on S such that f ∈ A(S). Let f̂ be the

asymptotic expansion of f (in the Poincaré sense). We suppose that f̂ ∈ C[[ε]] 1
k
,A and we

denote by R > 0 the radius of convergence of B̂k(f̂ − f(0)). We choose a positive number r
such that 0 < r < R, then the following conditions are equivalent:
(i) f ∈ A 1

k
, A

(cos kθ)k
(S)

(ii) f − L( 1
A

)1/k ,φ,k(B̂k(f̂)) ∈ A≤−k
A

(cos kθ)k

(S)

Proof: As the map J is surjective if | S |≤ π/k, let r = (1/A)1/k so the function

Lr,φ,k(B̂k(f̂)) ∈ A 1
k
, A

(cos kθ)k
(S)

and it has f̂ as asymptotic expansion with Gevrey estimates of order 1/k and type A
(cos kθ)k .

Thus if f ∈ A 1
k
, A

(cos kθ)k
(S) then

f −Lr,φ,k(B̂k(f̂)) ∈ Ker(J) and Ker(J) = A≤−k
A

(cos kθ)k

(S).

Conversely, let f̂ =
∑+∞

m=0 bmε
m and let S ′ ≺ S; we have to prove that there exist C, α > 0

such that

∀ N ≥ 1, ∀ ε ∈ S ′, | f(ε) −
N−1∑

m=0

bmε
m |≤ C (

A

(cos kθ)k
)N/kΓ(α+N/k) | ε |N

With the inequality (1.8) where k > 0 and the hypothesis (ii), we obtain the result (because
if γ > 0 then O(exp(−γ | ε |−k)) ≤ C̄ | ε |N , ∀ N ≥ 1).

Remark 1.24 Let k1 and k2 two reals such that 0 < k1 < k2. If a series f̂ is Gevrey of
order 1/k2 and type A > 0 then it is Gevrey of order 1/k1 and type A. This series f̂ can be

“realised” (in a non unique way) by an analytic function Lr,φ,k2(B̂k2(f̂)), r > 0, on a sector

S2 whose opening is < π/k2. It can also be realised by an analytic function Lr,φ,k1(B̂k1(f̂))
on a sector S1 with a greater opening (| S1 |< π/k1) but the estimates of the error is worse:
the error term is like exp(− 1

A|ε|k1
) instead of exp(− 1

A|ε|k2
).

1.5 Cut-off asymptotic; Summation to the least term

In this subsection, we introduce the notion of cut-off asymptotic [RS96]) and we explain
the precise equivalence between the existence of a Gevrey asymptotic expansion and the
exponential precision of a “lest term’ cut-off procedure.

Definition 1.21 Let k > 0, A > 0 and let S be an open sector whose vertex is at the origin.
We will say that a function f analytic on S has f̂ =

∑+∞
m=0 bmε

m as a cut-off asymptotic of
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order 1/k and type A if and only if there is a constant ρ ≤ 0 and for each closed subsector
S ′ of S, there is a positive constant CS′ such that

∀ ε ∈ S ′, | f(ε) −
[ k

A|ε|k
]

∑

m=0

bmε
m |≤ CS′ | ε |ρ e

− 1

A|ε|k

The set of all f ∈ O(S) having such an asymptotic will be denoted by C 1
k
,A(S) and N(ε) =

[ k
A|ε|k ] will be the index of the cut-off asymptotic.

Remark 1.25 We take ρ ≤ 0 in order to keep the same constant A in the next properties.

Remark 1.26 The truncated series
∑N(ε)

m=0 bmε
m is exponentially closed to the function f(ε).

We had already the property:
If f ∈ A 1

k
,A(S) then J(f) ∈ C[[ε]] 1

k
,A. We have also the proposition

Proposition 1.32 Let k, A > 0. If f ∈ C 1
k
,A(S) then J(f) ∈ C[[ε]] 1

k
,A.

Proof: See exercises II.

Theorem 1.33 ([RS96]) A function f analytic on an open sector S has a Gevrey-1/k
asymptotic expansion of type A if and only if it has a cut-off asymptotic with Gevrey es-
timates of order 1/k and type A on that sector.

Proof: (see [RS96], theorem 6.9, page 365 and exercises II). The authors show that if f ∈
C 1

k
,A(S), i.e. if there exists ρ ≤ 0 such that ∀ S ′ ≺ S, ∃ CS′ > 0 with

∀ ε ∈ S ′, | f(ε) −
k

A|ε|k∑

m=0

bmε
m |≤ CS′ | ε |ρ e

− 1

A|ε|k

then ∀ N ≥ 1, ∀ ε ∈ S ′

| f(ε) −
N−1∑

m=0

bmε
m |≤ C̄S′ AN/k Γ((N + β)/k + 1/2) | ε |N

where β = k/2 − ρ. So

| f(ε) −
N−1∑

m=0

bmε
m |≤ C̄S′ AN/k Γ(1 − ρ/k +N/k) | ε |N(1.9)

Conversely, if ∀ S ′ ≺ S, ∃ CS′, α > 0 such that ∀ N ≥ 1, ∀ ε ∈ S ′

| f(ε) −
N−1∑

m=0

bmε
m |≤ CS′ AN/k Γ(α+N/k) | ε |N

then ,

| f(ε) −
N∗−1∑

m=0

bmε
m |≤ C̃S′ | ε |−kα+k/2 e

− 1

A|ε|k(1.10)

where N∗ = [ k
A|ε|k ] − 1
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Remark 1.27 Thus, let µ := 1 − ρ/k in (1.9). Then the power of | ε | in (1.10) is equal
to −kµ + k/2 = ρ − k/2: we have only lost k/2 in regard of the exponant ρ of | ε |ρ in the
definition of the cut-off asymptotic.

This theorem gives us a computational process to approach a function with a known asymp-
totic expansion with Gevrey estimates of order 1/k and type A.

Definition 1.22 Let A, k > 0. Let
∑

m≥0 bmε
m be a Gevrey series of order 1/k and type A.

We denote by N(ε), [ k
A|ε|k ]. We call quasi-summation to the least term of this series, the

sum
∑N(ε)

m=0 bmε
m.

In fact, this quasi-sum is the summation to the least term of the majorant series whose
general term is C Am/k Γ(α + m/k): the index N(ε) of the last term considered in the
truncated series corresponds to the index of the least term of the sequence {CAm/kΓ(α +
m/k) | ε |m}m.
So we justify the H. Poincaré’s techniques of “summation to the least term”, where we cut
the series at N∗such that | bN∗ | | ε |N∗

is minimum ([Poi90, Poi92]).

2 Introduction to k-summability

2.1 Borel-Laplace summation

We remind that if â(ε) is a Gevrey series of order 1/k then the series B̂k(â)(λ) is a

convergent series and there exists a disk Dr(0) in the λ-plane such that B̂k(â) defines an
holomorphic function a(λ) on the neighbourhood of D̄.
If a(λ) has an analytic continuation in some directions dφ = {r eiφ, r > 0}, φ ∈ [0, 2π[, we
still denote by a(λ) this new function and we consider its Laplace transform:

Lφ,k(a)(ε) = k

∫

dφ

e−λ
k/εk

a(λ)
λk−1

εk−1
dλ(2.1)

Now, k = 1. When a has an exponential increasing of level ≤ 1 on the half-line dφ, the
function Lφ,1(a)(ε) is at least defined on the disk centered on dφ and having 0 on its boundary
(see figure 2.1). More precisely

Definition 2.1 With the previous notations, if | a(λ) |≤ K exp(γ | λ |), ∀ λ ∈ dφ where

K, γ > 0, then the function Lφ,1(a)(ε) is defined on the disk10 {ε / Re ( e
iφ

ε
) > γ} containing

0 on its boundary and having a diameter on dφ, whose length is 1/γ. We call it the Borel-disk
in the direction dφ.

Remark 2.1 We suppose that the function a has an exponential increasing of level at most
k on dφ, i.e. there exist γ,K > 0 such that

| a(λ) |≤ K exp(γ| λ |k), ∀ λ ∈ dφ

10Effectively, if λ =| λ | eiφ then | e−
λ
ε a(λ) |= e−|λ| Re ( eiφ

ε
) | a(λ) |.
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If k > 1, the Borel-disk becomes a “tear” Tk defined by Tk = {ε / γ−cos(k arg ε− k φ)| ε |−k <
0} whose angle’s measure at the origin is equal to π/k and whose length is equal to (1/γ)1/k.
If 0 < k < 1, Lφ,k(a)(ε) is analytic on a domain whose angle’s measure at the origin is > π.
We remark that for all k 6= 0, this domain is bounded by an half-lemniscate of Bernouilli
(see figure 2.1).

Remark 2.2 Analytic continuation.
If the series â(ε) =

∑
m≥1 amε

m is convergent, it defines an analytic function a(ε) on DR(0).
Moreover, ∀ r > 0, r < R, ∃ Ar > 0 such that | am |≤ Arr

−m−1, ∀m ≥ 1. The radius

of convergence of the series B̂1(â)(λ) =
∑

m≥0 am+1
λm

m!
is infinite and its sum is an entire

function, denoted by a(λ), such that ∀ λ ∈ C, | a(λ) |≤ Ar exp( |λ|
r

). Let dφ be a direction, the
integral S(ε) =

∫
dφ
e−λ/εa(λ) dλ is convergent if ε belongs to the Borel-disk centered on dφ,

the length of its diameters is equal to R and defined by {ε / Re ( e
iφ

ε
) > 1/R}. We recognize

the Laplace transform of a(λ): S(ε) = Lφ,1(a)(ε) and S(ε) =
∑

m≥0 am+1ε
m+1 = a(ε).

Besides, S(ε) =
∫
dφ
e−λ/ε(

∑
m≥0 am+1

λm

m!
) dλ is the sum of the series â(ε) by the Borel’s

exponential method [Can89, Dum87].
Thus, the convergent series â(ε) has an analytic continuation on its Borel star constitued
by the open Borel-disks having 0 on their boundary and if | a(λ) |≤ C exp(γ| λ |) where
1/γ > R then this Borel-method sums the series â(ε) for ε in a domain where the series was
divergent.
With the Borel and Laplace transforms of level k, we can do more: let us consider the Mittag-
Leffler’s star11 of â(ε), we can compute the sum of â(ε) in its Mittag-Leffler’s star with the

operators Lφ,k and B̂k. Moreover, we have:

Proposition 2.1 [Bor28] Let â(ε) be a convergent series. If ε0, ε0 6= 0 is a fixed point
of the Mittag-Leffler’s star of â(ε) then there exists a real k∗ such that for all k > k∗, the
Borel-domain Tk contains ε0 and is included in its star. Then we can compute a(ε0) with

the Borel -Laplace method of all levels k > k∗. Let φ be the argument of ε0, Lφ,k(B̂k)(â)(ε)
converges and is equal to a(ε0).

Let k∗ < k1 < k2. If B̂k2(f̂)(λ) is majorized by exp(γ| λ |k2) in the direction dφ (resp.

B̂k1(f̂)(λ) is majorized by exp(γ| λ |k1) on dφ), its Laplace transform defines a function f2

on the “tear” Tk2 with opening π/k2, and length (1/γ)1/k2 (resp. it defines a function f1 on
the “tear” Tk1 with opening π/k1, and length (1/γ)1/k1). If γ > 1 then the domain Tk2 is
more EFFILE than the domain Tk1 (1/k2 < 1/k1 and (1/γ)1/k2 > (1/γ)1/k1): XXXX“Plus on
veut voir f loin de 0 in the direction dφ, plus on restreint la vision angulaire” [MR88]XXXX.
Nevertheless, we can observe numerically that if k is too large (k is chosen such that ε0 ∈ Tk),
the domain Tk is XXXX encore plus effilé,XXXX and the numerical convergence of the Borel-
Laplace process of level k is less good: we must be careful for the choice of k.

Definition 2.2 Let k be a positive real and let dφ be a direction. A series f̂ ∈ C[[ε]] is
Borel-Laplace-summable of level k in the direction dφ if the series is Gevrey of order 1/k

and if the sum of the convergent series B̂k(f̂)(λ) has an analytic continuation f(λ) that is

11The Mittag-Leffler’s star of â(ε) is an open maximal star-domain (with respect to the origin) including
the disk of convergence of the series. For example, the star- domain of

∑
m≥0 xm is equal to C\[1,∞[.
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holomorphic and has an exponential increasing of order at most k at the infinite on an open
sector V in the neighbourhood of dφ.

Analyticity domain of Lφ,k(a)(ε) | a(λ) |≤ K exp(γ | λ |k), ∀ λ ∈ dφ
ε-plane λ-plane
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figure 2.1

In these conditions, we say that

f(ε) = Lφ,k(f)(ε) = k

∫

dφ

e−λ
k/εk

f(λ)
λk−1

εk−1
dλ(2.2)

is the sum of f̂ in the direction dφ in the Borel-Laplace sense.

Remark 2.3 We can also define f(ε) with B̂1, with the Laplace transform of level 1 and
with the ramification operators ρk and ρ−1

k (see the example 2.1).

XXXNous allons voir que cette definition est équivalente à la definition d’une series k-
summable.XXXX

2.2 k-summability.

In the late 1970s, J.-P. Ramis introduce the notion of k-summability [Ram78, Ram80] of
a formal series, with a geometric approach of the ideas of E. Borel [Bor99] , E. Leroy [Ler00],
G.N. Watson [Wat12] and F. Nevanlinna [Nev19].

Definition 2.3 Let k be a positive real and let dφ be a direction. A formal series f̂ ∈ C[[ε]]
is said to be k-summable in the direction dφ if there exists an holomorphic function f on

a sector S, bissected by dφ, with opening > π/k and f has f̂ as asymptotic expansion with
Gevrey estimates of order 1/k on S.

In these conditions, f̂ is a Gevrey series of order 1/k and the sum f is unique (see Watson’s

theorem) [Wat12]. We will say that f is the sum of f̂ in the direction dφ in the sense of the
k-summability.
This notion of k-summability is easily verified with the Ramis-Sibuya’s theorem [RSi89] as
we will see it in the subsection 2.3 On the opposite, this notion is not a computational method
but is equivalent to the definition 2.2.

Proposition 2.2 Let k > 0 and let dφ be a direction. Let f̂(ε) ∈ C[[ε]] 1
k
. Then the series

f̂ is summable by the Borel-Laplace method of level k in the direction dφ if and only if f̂ is
k-summable in the direction dφ.

Proof: Let k = 1.
Necessary condition (cf. [Can95]): We suppose that f̂ is summableby the Borel-Laplace
method of level 1 in the direction dφ. Then the function f defined by 2.2 has an analytic
continuation on a sector S with opening > π:
Let V = {λ / φ1 < arg λ < φ2}. We consider the directions dψ, φ1 < ψ < φ2. Then f(ε)
has an analytic continuation on the union of the Borel-disks Dψ, φ1 < ψ < φ2. Then there
exists a sector S included in the union of the disks Dψ, φ1 < ψ < φ2 with radius ρ > 0 such
that | S |> π (see figure 2.2).

The function f(ε) is unique (by Watson’s theorem ([Wat12]) and has f̂ as asymptotic expan-

sion with Gevrey estimates of order 1 on S (f has f̂ as asymptotic expansion with Gevrey
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estimates of order 1 on sectors with opening < π and we recover S with a finite number of
these sectors).
Sufficient condition: we consider the sector S = SR,φ−θ/2,φ+θ/2 where θ > π. We apply the
Borel transform to the function f to prove the sufficient condition:

B(f)(λ) = f(λ) =
1

2iπ

∫

γ

f(ε)
eλ/ε

ε2
dε

We use the result of the proposition 1.13 and we remark that B̂1(f̂) defines an holomorphic
function that COINCIDE with B(f) on a disk.

Definition 2.4 Let k be a positive real. A formal series f̂ ∈ C[[ε]] is said to be k-summable
if the series is k-summable in every direction d except a finite number of directions. These
singular directions are called anti-Stokes lines12.

ε-plane λ-plane
sector S of analyticity of f | f(λ) |≤M exp(B | λ |), ∀ λ ∈ V
(the opening of S is > π)

figure 2.2

Example 2.1 ([LR90]) The Leroy’s series f̂2(x) =
∑

m≥0(−1)mm! x2m+2 is Gevrey of

order 1/2. With the change of variables x = t1/2, we obtain the Euler’s series f̂1(t) =∑
m≥0(−1)mm! tm+1. Then we consider the two operators of ramification:

ρ2 : f(x) 7−→ ρ2(f)(t) = f(t1/2)

and ρ1/2 : f(t) 7−→ ρ1/2(f)(x) = f(x2)

12These directions are called Stokes lines by some authors:“Half the discontinuity in form occurs on
reaching the Stokes ray, and half on leaving it the other side ([Din73]).
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Thus, ρ2(f̂2)(x) = f̂1(t). We compute the Borel transform of the series f̂2(x) with the
transformation:

(ρ1/2 ◦ B̂1 ◦ ρ2)(f̂2)(λ)

As B̂1(f̂1)(ξ) = B̂1(
∑

m≥0(−1)mm! tm+1) =
∑

m≥0(−1)m ξm = 1
1+ξ

, we obtain the next

result: the Borel transform of the series f̂2(x) is a convergent series on D1(0) and defines
the analytic function f2(λ) = ρ1/2(

1
1+ξ

) = 1
1+λ2 in the neighbourhood of D1(0). It has two

poles −i, +i and has an analytic continuation, with an exponential increasing of level at
most 2 on the sector {λ / − π/2 < arg λ < +π/2} bissected by R+: the series f̂2(x) is
2-summable in the direction R+ and in every direction dθ except for θ = −π/2, θ = +π/2
(iR+ and iR− are the anti-Stokes lines).

For computing the sum of the series f̂2(x), we give a direction dθ. With the operator ρ2, this

direction becomes the direction d2θ. So we can compute the sum f̂1(t) in the open half-plane

bissected by d2θ and we obtain the function: L2θ,1 ◦ B̂1(f̂1)(t) analytic in the open half-plane

bissected by d2θ: {t / 2θ − π/2 < arg t < 2θ + π/2}. We define the sum of f̂2(x) by

f2(x) := ρ1/2[L2θ,1 ◦ B̂1(f̂1)](x)

for x in the quadrant bissected by dθ whose opening is π/2. Then when 2θ varies between

−π and +π (as for the Euler’s series [Can89]), we obtain a sum of f̂2(x) for x ∈ S =
{x/− 3π/4 < arg x < 3π/4}.

Thus, J.-P. Ramis showed the k-summability of formal solutions of generic differential equa-
tions [Ram80] and asked for the problem of multisummability of formal solutions of all the
analytic differential equations. Effectively, all formal solutions of meromorphic linear differ-
ential systems are not k-summable (cf. [RSi89], page 90).

Example 2.2 The series ŷ =
∑

m≥0(−1)mm! xm+1 +
∑

m≥0(−1)mm! x2m+2 is Gevrey of
order 1 and is a formal solution of the equation

(
d

dx
)5{x5(2 − x)

d2y

dx2
− x2(−2x3 + 5x2 + 4)

dy

dx
− 2(x2 − x+ 2)y} = 0

but ŷ is not k-summable, ∀ k > 0.

In fact, there are several definitions of the multisummability: those of J. Martinet and J.-P.
Ramis [MR91] using the Ecalle approach; in a general context, those of J. Ecalle [Eca93]
iterating integral formulae with accelerating nuclears13 (accelerating-summability) and those
of B. Malgrange and J.-P. Ramis [MalR92] using the quasi-functions and a relative version
of the Watson lemma due to B. Malgrange [Mal91].

The (k1, ..., kr)-sum of the formal series f̂ ∈ C[[x]] 1
k1

is then defined in a unique way by

one of the summation process deduced of the three definitions described above except in a
finite number of singular directions.
We give an example for one of the previous definitions:

13The nuclears generalize the Laplace and Laplace inverse nuclear of the classic Borel-summation.
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Example 2.3 ([LR95]) Let 0 < k1 < k2. A series f̂ ∈ C[[ε]] is (k1, k2)-summable if:

(1) the series (B̂k1 f̂)(λ1) is convergent (i.e. f̂ ∈ C[[ε]] 1
k1

),

(2) its sum has an analytic continuation f1 on an open sector Sk1θ1,k1θ2 including the direction
dk1θ. This continuation f1 has an exponential increasing of level k2

k2−k1 .
(3) We consider the operator ρ(k1,k2);k1θ called accelerating operator of power k2/k1 in the
direction k1θ:

ρ(k1,k2);k1θ (φ)(τ) :=
2iπ

τ

∫

dk1θ

Ck2
k1

(
ξ

τk1/k2
)φ(ξ) dξ

where Ca(ξ) := 1
2iπ

∫
H e

u−u1/aξ du with H Hankel curve around R− (as a is a rationnel number,
the nuclear Ca is a Meijer function G).
Let f2 := ρ(k1,k2);k1θ (f1); this function is defined and has an an exponential increasing of level
1 on a sector Sk2θ1,k2θ2.
(4) Its Laplace transform, written as a fonction of ε, is the sum.
For example, the series

∑
m≥0(−1)mm! xm+1 +

∑
m≥0(−1)mm! x2m+2 is (1, 2)-summable.

2.3 Ramis-Sibuya’s theorem

In order to improve various results of the Poincaré asymptotics by means of the Gevrey
asymptotics, the following theorem (Ramis-Sibuya’s theorem) is fundamental. This theo-
rem claims that the characterization of flatness also characterizes the Gevrey asymptotics
itself. As we will see in two examples, it can be employed in problems concerning singularly
perturbed differential equations.

Results We have a first result:

Lemma 2.3 Let k > 0, S an open sector whose vertex is at the origin and let f : S → C,
analytic in ε, for ε ∈ S. We suppose that f admits f̂ as asymptotic expansion of Gevrey
order 1/k and type A. Let Ã > A, then there exists a good covering {S1, ..., Sm} of D∗ =
{ε ∈ C, 0 <| ε |< r} and there exist m functions f1, ..., fm such that
i) fj, j = 1...m, are analytic and bounded on Sj,
ii) S = S1, f = f1,

iii) the functions fj have f̂ as asymptotic expansion of Gevrey order 1/k and type B, A <
B < Ã,
iv) we have

∀ ε ∈ Sj ∩ Sj+1, | fj(ε) − fj+1(ε) |≤ C exp(
−1

Ã| ε |k
), ∀ j = 1, ..., m where C > 0

The functions {fj}j=1,...,m make an holomorphic 0-cochain and the differences
{fi,j := fi − fj}i,j=1,...,m make a cocycle.

Proof: We have f ∈ A 1
k
,A(S), so J(f) = f̂ is a Gevrey series of order 1/k and type A.

Therefore, B̂k(f̂) is a convergent series on D̄R(0), R > 0: this convergent series defines
an analytic function f(λ) in the neighbourhood of D̄R(0). We assume that the sector S is
bissected by the direction d. Let B a positive real such that A < B < Ã. We construct a
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good covering {S1, ..., Sm} of the punctured disk in the ε-plane D∗ = {ε ∈ C, 0 <| ε |< ρ}
with S1 = S and ∀ j, j = 2, ..., m, | Sj |= 2θ < π/k where A

(cos kθ)k = B. Let dj the half-line

bissecting the sector Sj for j = 2, ..., m (d1 = d). Let 0 < r < R; we define, for ε ∈ Sj

fj(ε) := k

∫

dj,r

e−λ
k/εk

f(λ)
λk−1

εk−1
dλ

where dj,r is the line-segment [0, r] ⊂ dj in the λ-plane. The functions fj are analytic in ε for
ε ∈ Sj . Utilizing the Gevrey Borel-Ritt’s theorem, (∀ j, j = 2, ..., m, | Sj |= 2θ < π/k and

the map J is surjective), these functions have f̂ as asymptotic expansion of Gevrey order
1/k and type A

(cos kθ)k = B. Thus, on Sj ∩ Sj+1

fj − fj+1 ∈ Ker(J) = A≤−k
A

(cos kθ)k

(Sj ∩ Sj+1)

i.e. there exist a real β, β ≤ 0 and a positive real C such that

∀ ε ∈ Sj ∩ Sj+1, | fj(ε) − fj+1(ε) |≤ C | ε |β exp(
−1

B | ε |k ) ≤ C̄ exp(
−1

Ã | ε |k
)

thus, the lemma is proved.

Remark 2.4 We can directly majorize the differences | fj+1 − fj | on Sj+1 ∩ Sj for j =
2, ..., m− 1.

We have a similar result with only a Gevrey series of order 1/k and type A:

Lemma 2.4 Let k > 0 and let f̂(ε) a Gevrey series of order 1/k and type A. Let Ã > A,
then there exists a good covering {S1, ..., Sm} of D∗ = {ε ∈ C, 0 <| ε |< r} and there exist
m functions f1, ..., fm such that
i) | Sj |= 2θ < π/k for j = 1, ..., m with A

(cos kθ)k < Ã,

ii) fj , j = 1...m, are analytic and bounded on Sj,

iii) the functions fj have f̂ as asymptotic expansion of Gevrey order 1/k and type B, A <
B < Ã,
iv) we have

∀ ε ∈ Sj ∩ Sj+1, | fj(ε) − fj+1(ε) |≤ C exp(
−1

Ã| ε |k
), ∀ j = 1, ..., m where C > 0

Proof: The proof is the same as below.

Example 2.4 The Leroy series, f̂2(x) =
∑

m≥0(−1)mm! x2m+2, is a Gevrey series of order
1/2 and type 1. Let dθ be a direction. When 2θ is varying between −π and +π, we obtain a

sum f2(x) of the series f̂2(x) for x ∈ S = {x / − 3π/4 < arg x < 3π/4}. We obtain a new
sum f̃2(x) of this series, for x ∈ S̃ = {x / π

4
< arg x < 7π

4
}, when 2θ is varying between

π and 3π. These two sums are asymptotic to f̂2(x) with Gevrey estimates of order 1/2 and
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type 1 on their one sector of definition; however, on the intersection of these two sectors,
there is not unicity:

S∩S̃ = S1∪S2 avec S1 = {x / π/4 < arg x < 3π/4} and S2 = {x / −3π/4 < arg x < 7π/4}

On S1 (and on S2),

f2(x) − f̃2(x) = 2iπ e1/x
2

and we remark that this difference is exponentially flat14 of order 2.

Definition 2.5 [Ram93] Let S be an open sector whose vertex is at the origin and let k >
0. We call quasi-function k-precise on the sector S, an holomorphic 0-cochain {fi}i=1,...,n

associated to a covering {Si}i=1,...,n of S, the functions fi+1 − fi having an exponential decay
of level k on Si+1 ∩ Si.

We identify ({fi}i, {Si}i) and ({gj}j, {Tj}j) if ∀ i, j such that Si ∩Tj 6= ∅, then fi− gj has
an exponential decay of level k on Si ∩ Tj.

Remark 2.5 So we have associated a Gevrey series of order 1/k and a unique quasi-function
k-precise ({fi}i, {Si}i), modulus the identification made below (D∗ must be covered by sectors
whose opening is < π/k). We call it its quasi-sum.

XXXXThe previous lemma has a converse: This converse, qui s’énonce de façon équivalente
avec des faisceaux quotients, est un résultat “clé” dans les problèmes d’équations différentielles,
in the mesure where effectuer une différence linéarise ou simplifie le problème.XXXX

Theorem 2.5 Ramis-Sibuya’s theorem ([Ram78, Sib81]).
Assume that {S1, ..., Sm} is a good covering of the punctured disk D∗ = {ε ∈ C, 0 <| ε |< r}
and that functions f1(ε), f2(ε), ..., fm(ε), satisfy the following conditions:
i) fj : Sj → C is holomorphic and bounded on Sj,
ii) We have

∀ ε ∈ Sj ∩ Sj+1, | fj(ε) − fj+1(ε) |= O(exp(
−1

A| ε |k
))

where A > 0, k > 0 independent of j and Sm+1 = S1, fm+1 = f1.
Then there exists a formal power series f̂(ε) ∈ C[[ε]] 1

k
,A and the functions fj have f̂(ε) as

the same asymptotic expansion with Gevrey estimates of order 1/k and type A on Sj.

Remark 2.6 We don’t assume that the functions fj have an asymptotic expansion on Sj.
The Cauchy-Heine’s formula gives the existence of the asymptotic expansion15).

Sketch of proof: ([Sib90-1])
We use the Cauchy-Heine’s formula:
For k = 1, ..., m, we consider εk ∈ Sk ∩ Sk+1, | εk |= r′ < r. We denote by

∫ εk

εk−1
the integral

14(because | e1/x2 |= e
cos(2arg x)

|x|2 and, on S1 and S2, cos(2arg x) < 0.)
15See the Principe des singularités inexistantes de Riemann: an holomorphic function, bounded on D∗, is

the sum of a convergent series.
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on the circular arc joining εk−1 to εk and
∫ εk

0
the integral on the radius [0, εk].

For j ∈ {1, ..., m}, let ε ∈ Sj such that arg εj−1 < arg ε < arg εj, then

fj(ε) =
1

2iπ

m∑

k=1

∫ εk

εk−1

fk(ξ)

ξ − ε
dξ +

1

2iπ

m∑

k=1

∫ εk

0

fk+1(ξ) − fk(ξ)

ξ − ε
dξ

We remark that
1

ξ − ε
=

N−1∑

n=1

εn

ξn+1
+

εN

ξN+1
× 1

1 − ε/ξ
,

therefore, the coefficients bn of the asymptotic expansion f̂(ε) =
∑

n≥0 bnε
n of the functions

fj are given by

bn =
1

2iπ

m∑

k=1

∫ εk

εk−1

fk(ξ)

ξn+1
dξ +

1

2iπ

m∑

k=1

∫ εk

0

fk+1(ξ) − fk(ξ)

ξn+1
dξ ∀ n ≥ 0

and we can estimate, in a Gevrey sense of order 1/k and type A, the difference | fj(ε) −∑N−1
n=0 bnε

n | for ε ∈ Sj.

Remark 2.7 We can also prove this theorem with the next lemma ([Sib92], p. 210–212,
[Mal95], p. 176–177):

Lemma 2.6 Let k > 0 and let {S1, ..., Sm} a good covering of D∗ = {ε ∈ C, 0 <| ε |< r}.
We consider m functions δj : Sj ∩ Sj+1 → C (Sm+1 = S1 and fm+1 = f1) such that
1) the functions δj(ε) are holomorphic on Sj ∩ Sj+1,
2) ∀ j, j = 1, ..., m, ∀ ε ∈ Sj ∩ Sj+1,

| δj(ε) − δj+1(ε) |= O(exp(
−1

A| ε |k
)) where A > 0

Then there exist m functions ψ1, ..., ψm such that ∀ j, j = 1, ..., m, ψj holomorphic and
bounded on Sj, ψm+1 = ψ1, δj = ψj − ψj+1 on Sj ∩ Sj+1 and ψj ∈ A 1

k
,A(Sj).

Corollary 2.7 ([Sib90-1]) Let k > 0 and let {S1, ..., Sm} a good covering of D∗ = {ε ∈
C, 0 <| ε |< r}. We consider m analytic and flat functions fj : Sj → C such that,
∀ j, j = 1, ..., m:

∀ ε ∈ Sj ∩ Sj+1, | fj(ε) − fj+1(ε) |= O(exp(
−1

A| ε |k
)) where A > 0

(Sm+1 = S1 and fm+1 = f1).
Then, ∀ j, j = 1, ..., m, the functions fj are flat in the Gevrey sense of order 1/k and type
A:

∀ ε ∈ Sj , | fj(ε) |= O(exp(
−1

A| ε |k
))

Proof: Utilizing the Ramis-Sibuya’s theorem, we have fj ∈ A 1
k
(Sj) with some type ≤ A and

f̂j = 0 + 0ε+ ....
Thus fj ∈ A≤−k(Sj) with a type ≤ A too (and if | Sj |> π/k then fj ≡ 0).
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Remark 2.8 With the Ramis-Sibuya’s theorem, we can obtain the k-summability of the
series f̂(ε) if we add conditions on the opening of the sectors. Effectively, if we suppose that
the functions fj − fj+1 have an exponential decay of level k on a sector with opening ≥ π/k

then the series f̂(ε) is k-summable. In the example XXXX about the Leroy’s series, this
last one has two sums f2 and f̃2 that have an exponential decay of level 2 on S1 ∪ S2 where
| S1 |=| S2 |= π/2: f̂2 is 2-summable.
Therefore, the k-summability defined by definition XXXX is easily verified: we consider the
cocycle {fj,j+1}j=1,...,m and we REGARDE if the functions fj,j+1 have an exponential decay
decay of level k on maximal sectors (i.e. sectors with opening ≥ π/k).

Applications Here are two applications of the Ramis-Sibuya’s theorem16.

1) A new proof of proposition 1.4:

Proposition 2.8 ([Mal95]) Let Φ(ε, x1, ..., xp) an holomorphic function in a neighbourhood
D = Dε0(0)×Dr1(0)×...×Drp(0) of 0 ∈ Cp+1 and let û1(ε), ..., ûp(ε), p formal series, Gevrey

of order 1/k and type A such17 that û1(0) = ... = ûp(0) = 0. Let Ã, A two positive reals such

that Ã > A. Then f̂(ε) = Φ(ε, û1(ε), ..., ûp(ε)) ∈ C[[ε]] is a Gevrey series of order 1/k and
type Ã.

Proof: In the case p = 2, let f̂(ε) = Φ(ε, û(ε), û(ε)). Let Ã > A and let {Ui}i=1,...,m a
good covering of Dε0(0) such that, for i = 1, ..., m, | Ui |= 2θ < π/k where θ verifies
A < A

(cos kθ)k < Ã. As the formal series û(ε) (resp. v̂(ε)) is Gevrey of order 1/k and type

A and the opening of Ui < π/k, we can represent this series on each sector by a function
ui ∈ A 1

k
(Ui) with type A

(cos kθ)k (resp. vi ∈ A 1
k
(Ui) with type A

(cos kθ)k ). The lemma 2.3

implies that the 0-cochains {ui}i and {vi}i satisfy:

∀ ε ∈ Ui ∩ Ui+1, | ui(ε) − ui+1(ε) |≤ C exp(
−1

Ã| ε |k
), where C > 0

∀ ε ∈ Ui ∩ Ui+1, | vi(ε) − vi+1(ε) |≤ C̄ exp(
−1

Ã| ε |k
), where C̄ > 0

In the same way, Φ(., û, v̂) is represented by Φ(., ui, vi) on each sector Ui. This last function
belongs to A(Ui) and has Φ(ε, û(ε), v̂(ε)) as asymptotic expansion (the series is obtained by
substitution). We have to show that Φ(ε, ui, vi) − Φ(ε, ui+1, vi+1) has an exponential decay
of order k and type Ã on Ui ∩ Ui+1.
The functions δi,i+1 = ui − ui+1 and µi,i+1 = vi − vi+1 have an exponential decay of order k
and type Ã on this set. Besides, we have the result (see [Mal95]):

Lemma 2.9 Let Φ an holomorphic function in a neighbourhood of 0 ∈ C3, then

Φ(ε, y1 + z1, y2 + z2) − Φ(ε, y1, y2) = z1 ν1(ε, y1, y2, z1, z2) + z2 ν2(ε, y1, y2, z1, z2)

The functions ν1 and ν2 are holomorphic in the neighbourhood of 0.

16See [Mal95] for additional results about summability.
17We can replace this condition by the condition (0, û1(0), ..., ûp(0)) ∈ D.
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So,

Φ(ε, ui, vi) − Φ(ε, ui+1, vi+1) =

Φ(ε, ui+1 + δi,i+1, vi+1 + µi,i+1) − Φ(ε, ui+1, vi+1) =

δi,i+1 ν1(ε, ui+1, vi+1, δi,i+1, µi,i+1) + µi,i+1 ν2(ε, ui+1, vi+1, δi,i+1, µi,i+1)

where ν1 and ν2 are holomorphic.
Thus, the left hand-side has an exponential decay of order k and type Ã. We apply the
Ramis-Sibuya’s theorem and we conclude

∀ i, i = 1, ..., m, Φ(ε, ui, vi) ∈ A 1
k
(Ui) and type Ã

and f̂(ε) = Φ(ε, û(ε), v̂(ε)) ∈ C[[ε]] 1
k
,Ã.

Remark 2.9 In the case when Φ(ε, x1, ..., xp) is an holomorphic function on V ×Dr1(0) ×
...×Drp(0), having an asymptotic expansion Φ̂(ε) in C{x1, ..., xp}[[ε]] with Gevrey estimates
of order 1/k and type N on an open sector V whose vertex is at the origin, uniformly in
(x1, ..., xp), the proposition below is still true:

Proposition 2.10 Let Φ(ε, x1, ..., xp) be an holomorphic function on V × Dr1(0) × ... ×
Drp(0), having an asymptotic expansion Φ̂(ε) in C{x1, ..., xp}[[ε]] with Gevrey estimates of
order 1/k and type N on an open sector V whose vertex is at the origin, uniformly in
(x1, ..., xp). If u1(ε), ..., up(ε) are analytic functions on V having û1(ε), ..., ûp(ε) as asymp-
totic expansion on V with Gevrey estimates of order 1/k and type A with û1(0) = ... =
ûp(0) = 0 then the function f(ε) = Φ(ε, u1(ε), ..., up(ε)) is an analytic function on V having

Φ̂(ε, û1(ε), ..., ûp(ε)) as asymptotic expansion on V with Gevrey estimates of order 1/k and
type T , where T > Max{A,N}.

Remark 2.10 We can also prove the next result about Gevrey functions.

Proposition 2.11 Let Φ(z) be an analytic function on a sector V ∈ C having an asymptotic

expansion Φ̂(z) on V with Gevrey estimates of order 1/k and let u(ε) an analytic function
on a sector U having û(ε) as asymptotic expansion on U with Gevrey estimates of the same

order 1/k. Moreover, we suppose û = ε + ... and Φ̂(0) = 0. Then the function Φ ◦ u(ε)
is an analytic function on a subsector of U and Φ ◦ u(ε) has Φ̂(û) ∈ C[[ε]] 1

k
as asymptotic

expansion with Gevrey estimates of order 1/k.

This result was proved in the first time by E. Gevrey [Gev18] in the C∞ case.

2) Gevrey solution of a singularly perturbed differential equation: the invertible
case

We consider a system of singularly perturbed differential equations

εσ
dy

dx
= f(x, ε) + A(x, ε)y +

∑

|p|≥2

fp(x, ε)y
p(2.3)

where x ∈ C, y ∈ Cn, ε is a complex parameter and σ is a positive integer.
The functions f and fp : C2 → Cn are holomorphic on Dr0(0) ×Dr1(0).
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The coefficients of the matrix A(x, ε), n× n are holomorphic on Dr0(0) ×Dr1(0).
We denote by | p |= p1 + ...+ pn and yp = yp11 ...y

pn
n . The series

∑
|p|≥2 fp(x, ε)y

p is uniformly

convergent on each compact subset of Dr0(0) ×Dr1(0) and ‖ y ‖ = Maxj=nj=1 | yj |< r2.
Moreover, we suppose f(0, 0) = 0 and A(0, 0) invertible.
Then we have the next result:

Theorem 2.12 ([Sib90-2]) Under the hypothesis below, the system (2.3) admits a unique
formal solution ŷ(x, ε) =

∑
m≥1 ym(x)εm with coefficients ym(x) holomorphic on Dr0(0).

Moreover, there exist four positive numbers δ, r, α, T such that (2.3) admits a solution
y(x, ε) holomorphic on Dδ(0), ε ∈ Sr,−α,α and such that y(x, ε) has ŷ(x, ε) as asymptotic
expansion with Gevrey estimates of order 1/σ and type T as ε −→ 0, ε ∈ Sr,−α,α, uniformly
in x ∈ Dδ(0).

The series ŷ(x, ε) is then Gevrey of order 1/σ and type T , uniformly in x (i.e.
ŷ(x, ε) ∈ C{x}[[ε]] 1

σ
,T ).

Here are the main steps of the proof of theorem 2.12 (see [Sib90-2]):
- The system (2.3) admits a unique formal solution ŷ(x, ε).
- For each direction θ in the ε-plane, there exists a sector, denoted by Sθ,
Sθ = {ε / | arg ε− θ |< α(θ), 0 <| ε |< ω(θ)} and there exists a disk ∆θ = {x/ | x |< r(θ)}
such that (2.3) has a solution φ(x, ε; θ), holomorphic on ∆θ×Sθ having ŷ(x, ε) as asymptotic
expansion in the Poincaré sense [Sib58].
- We choose θ1, ..., θN such that S1, ..., SN is a good covering of {ε / 0 <| ε |< ρ0} with
0 < ρ0 ≤ Minj=Nj=1 ω(θj).

We denote φj(x, ε) := φ(x, ε; θj) and D0 = {x ∈ R/ | x |< r ≤Minj=Nj=1 r(θj)},
- We have:

| (φj+1 − φj)(x, ε) |≤ γ exp(− 1

T | ε |σ ) surD0 × (Sj ∩ Sj+1)

where γ ≥ 0, T > 0.
Effectively, if we denote F (x, ε, y) :=

∑
|p|≥2 fp(x, ε)y

p and δj(x, ε) := φj+1(x, ε) − φj(x, ε),

the function δj(x, ε) satisfies:

εσ
dδj(x, ε)

dx
= A(x, ε)δj(x, ε) +B(x, ε)δj(x, ε)

where B(x, ε) =
∫ 1

0
∂F
∂y

(x, ε, φj+1(x, ε) + tδj(x, ε))dt.

Thus, δj(x, ε) is a solution of the linear system

εσ
dv

dx
= [A(x, ε) +B(x, ε)] v

where A(0, 0) is invertible and B(0, 0) = 0. Moreover, δ̂j(x, ε) = 0. We conclude with the
bloc-diagonalization theorem of Y. Sibuya [Sib58]. There exist γ ≥ 0, T > 0 such that

δj(x, ε) ≤ γ exp(− 1

T | ε |σ ) onD0 × Uj

- We apply the Ramis-Sibuya’s theorem to the functions φj . Thus, the solutions φj(x, ε)
have ŷ(x, ε) as asymptotic expansion with Gevrey estimates of order 1/σ and type T and
we deduce ŷ(x, ε) ∈ C{x}[[ε]] 1

σ
,T .

40



Remark 2.11 In the case when A(0, 0) is non invertible we use the same method to show
the existence of “quasi-solutions” of the equation (see exercises IV about section 3).

3 Application to Van der Pol equation

We can find a very good dictionnary between solutions and formal solutions of singular
differential equations ([RSi89]). This one is based on Asymptotic Expansion Theory in the
Poincaré sense ([Poi81]) improved with Gevrey estimates by G.N. Watson ([Wat12]) and
F. Nevanlinna ([Nev19]). This last theory, rediscovered by J.-P. Ramis in the seventies and
systematically developped since, is named Gevrey Asymptotic Theory.

This chapter is more specially concerned with singularly perturbed differential equations.
These, are differential equations where a small parameter (named ε) multiplies the highest
derivative. The link between formal solutions and solutions is partially established for sin-
gularly perturbed differential equations but we think that most of the problems implying
singular perturbations may be solved with Gevrey Theory.
Let us consider a singularly perturbed differential equation with turning point I mean the
linear part of the right-hand side of the equation is not invertible18. Gevrey Theory consists
in studying the existence of formal series solution (the formal series is power series into the
parameter ε and the series coefficients are holomorphic functions in the variable of deriva-
tion).
First we establish the Gevrey character of some order19 of this series.
Then the formal Borel and truncated Laplace transforms ([Bor99]) of the formal series pro-
vide “ quasi-solutions” i.e. functions that satisfy the differential equation except for an
exponentially small error.
On final, we prove the existence of solutions of the singularly perturbed differential equation.

In this chapter, we apply the above described method to the famous Van der Pol equation
([VdP26]).

3.1 The equations

Consider the forced Van der Pol equation

ε ẍ+ (x2 − 1) ẋ+ x = a(3.4)

where a is a real auxiliary parameter and ε is a fixed infinitely small real number.
On the Liénard plane [Lie28] (x, y) where y = ε ẋ + x3/3 − x, (3.4) is equivalent to the
system: {

εẋ = y − (x3/3 − x)
ẏ = a− x

(3.5)

This system is called a slow-fast system: the variable y is slow because ẏ takes finite values
at all finite points of the plane. The variable x is rapid because ẋ takes infinite large values
at some finite points of the plane.

18The case invertible has been treated by asymptotic methods ([Sib58, Was65, Sib90-1]).
19We often remark the existence of a natural Gevrey frontier in singularly perturbed problems.
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We define the slow-curve L as the set of points at which the time derivative of the rapid
variable vanishes. For the system (3.5)

L = {(x, y), /y = f(x) = x3/3 − x}

Here the slow curve is the graph of the cubic function f .
When we study the vector field, as ε is a small parameter, the slow curve presents an

attractive part and a repelling one: far from the slow-curve, ẋ = −x3/3+x+y
ε

is infinitely
large, so the vector field corresponding to the system (3.5) is almost horizontal; above L it
is directed to the right and below L to the left (see figure 3.1). It is obvious that the two
parts of the graph where f increases are attracting (that is, locally in the neighbourhood of
these parts the rapid movement is directed towards them) and the part of the graph where
f is decreasing is repelling.
We are specially interested in trajectories that move from the attractive part of the slow
curve to the repelling part20. We call canard solution21 a solution of (3.5) which has such a
behaviour. More precisely, we have to consider the couple: the solution (x(t), y(t)) of (3.5)
and the value of the parameter a such that this behaviour occurs.

In [BCDD81] the existence of Van der Pol equation’s canard solutions is proved and if we
consider two canard solutions ((x1(t), y1(t)), a1) and ((x2(t), y2(t)), a2), then the difference
a1 − a2 is exponentially small with respect to ε. These results lead J.-P. Ramis, in the
eighties, to conjecture the Gevrey character of order 1 [Ram78, Ram80] of the asymptotic
expansion in powers of ε of the parameter a.

figure 3.1: Van der Pol equation canard solution.

In order to apply Gevrey theory, we suppose that now, all variables are complex and we
consider the Van der Pol equation as a complex differential equation.
We make the change of variables (X = x − 1, z = Ẋ) in (3.5) and we obtain the following
system: {

Ẋ = z
ε ż = −X((2 +X)z + 1) + a− 1

(3.6)

or

ε z
dz

dX
= −X((2 +X)z + 1) + a− 1(3.7)

where z = φ0(X) = − 1
2+X

is the equation of the new slow curve when a = 1.

We want to study the existence of well behaved so called overstable solutions of (3.7);
these are functions of X and ε that solve (3.7) and tend, as ε→ 0, to the slow curve φ0(X)
(they remain bounded, as ε→ 0 uniformly in X in a full neighbourhood of X = 0).

Definition 3.1 An overstable solution of (3.7) is a couple (z∗(X, ε), a∗(ε)) of functions such
that:

20For example in the neighbourhooh of the point (x0 = −1, y0 = 2/3) that separates the slow curve in an
attractive part and a repelling one.

21More generally, we consider a complex differential equation and we are interested in overstable solutions

([Wall90],[CRSS00].)
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• z∗(X, ε) is holomorphic in X in Dr(0), r > 0,

• z∗(X, ε) and a∗(ε) are holomorphic in ε on a sector V and satisfy

ε z∗
dz∗

dX
= −X(2 +X)(z∗ +

1

2 +X
) + a∗ − 1

for X ∈ Dr′(0), r′ < r, and ε ∈ V ,

• a∗(ε) → 1 as V ∋ ε→ 0,

• z∗(X, ε) → φ0(X) as V ∋ ε → 0, uniformly with respect to X ∈ Dr′(0), r′ < r.

3.2 Gevrey formal solution

We are interested in a couple22 (ẑ(X, ε) =
∑

j≥0 bj(X)εj, â(ε) =
∑

j≥0 cjε
j) satisfying the

formal equation associated to (3.7):

ε ẑ
dẑ

dX
= −X((2 +X)ẑ + 1) + â− 1(3.8)

In order to obtain overstable solutions we must impose that the functions bj(X) are analytic
in Dr′1

(0), b0(X) = φ0(X) and c0 = 1.
There exist recurrence formulae due to M.A. Shubin and A.K. Zvonkin [ShZv84], which

determine the coefficients cj and the functions bj(X), and give a practical way to compute
them. In ([CDG89]), the 50 first terms of the expansions were computed with the formal
computation software Macsyma. According to these results, the expansion seemed divergent
and Gevrey of order 1. More precisely, the sequence (cjε

j)j , ε ∈ R+, decreases then increases.
If we notice N0(ε) the index of the minimum of this sequence (the smallest term), the finite

sum
∑N0(ε)

j=0 cjε
j is a numerical value of the parameter a that provides a numerical solution23

z(X, ε) regular in the neighbourhood of X = 0 (see figure 3.2).

figure 3.2 : A Van der Pol equation’s canard solution, for ε = 0.05 and
ā =

∑N0(ε)
j=0 cjε

j = −0.006509067491...

22The parameter a is a kind of control parameter.
23(For a given initial condition and with a numerical integration method.)
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3.2.1 Results

We show the Gevrey character of the formal series solutions. Moreover these series are
divergent.

Theorem 3.1 Consider the transformed Van der Pol equation

ε z
dz

dX
= −X(X + 2)(z +

1

X + 2
) + a− 1

1. It has a unique formal solution ẑ(X, ε) =
∑

j≥0 bj(X)εj, â(ε) =
∑

j≥0 cjε
j and the

functions bj(X) are analytic in Dr(0), r < 2, b0(X) = −1
X+2

, cj ∈ C and c0 = 1.
2. ẑ is Gevrey of order 1 on every subdisk Dr̃(0), r̃ < 2 and â is Gevrey of order 1 too, i.e.
for every r̃ < 2, there are numbers M, N > 0 such that ∀ j ≥ 1 :

Sup|X|≤r̃ | bj(X) |≤M N j Γ(1 + j/σ) , | cj |≤M N j Γ(1 + j/σ)

3. Moreover, let b̄j(X) ∈ C[[X]] the expansion associated to −bj(−X) so b̄0(X) = 1/2
∑

n≥0(X/2)n.
One has the following minoration24:

b̄j(X) >>
j!

2j
b̄0(X)3j+1 , | cj |≥ (

1

2
)4j−1 j!

3.2.2 Proof

1. M.A. Shubin and A.K. Zvonkin gave recurrence formulae which determine the numbers
cj and the functions bj(X). We can rewrite these formulae as:

c0 = 1, b0(X) = −1/(2 +X)

cj+1 =

j∑

k=0

b′k(0) bj−k(0), ∀ j, j ≥ 0(3.9)

bj+1 = S(

j∑

k=0

b′k bj−k)(b0), ∀ j, j ≥ 0

where S is the so-called Shift operator defined by

Sf(x) :=
f(x) − f(0)

x
if x 6= 0

Sf(0) := f ′(0)

for f holomorphic in a neighbourhood of 0. The shift operator is closely related to division
by x, but it avoids making 0 a pole.
Consider the bj as C-valued functions defined on C, (3.9) proves that b0 is holomorphic in
Dr(0) when r < 2, and the same is true for the bj , according to (3.9).

24We say that a formal power series A(X) =
∑

j≥0 αjX
j overestimate the formal power series B(X) =∑

j≥0 βjX
j and we denote >> if and only if | αj |≥| βj |, ∀ j ≥ 0.
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2. We use modified Nagumo norms to prove the Gevrey character of formal solutions.
Nagumo norms Let numbers 0 < ρ < r be given. Consider the following function d on the
open circle Dr = Dr(0).

d(x) =

{
r − |x| if |x| ≥ ρ
r − ρ if |x| < ρ

This is a modification of the function denoting the distance from x to the boundary of Dr

and also depends upon ρ. We have the following property

Proposition 3.2 If x, y ∈ Dr then |d(x) − d(y)| ≤ |x− y| .

Now we introduce (modified) Nagumo norms (cf. [CRSS00]) on H(Dr). For nonnegative
integers p and for f holomorphic in Dr we put

||f ||p := sup
|x|<r

|f(x)| d(x)p .

Note that the norms depend upon ρ but we do not indicate this. Of course ||f ||p is infinite
for certain f ∈ H(Dr). If f is also continuous on the closure of Dr, then

||f ||p ≤ (r − ρ)p sup
|x|<r

|f(x)| .

In any case

|f(x)| ≤ ||f ||p d(x)−p for all |x| < r ,(3.10)

|f(x)| ≤ ||f ||pδ−p if |x| ≤ r − δ, 0 < δ < r − ρ .

The larger p is, the larger is the set of functions f having finite norm ||f ||p. Of course we
have

||f + g||p ≤ ||f ||p + ||g||p
||αf ||p = |α| ||f ||p

for f, g ∈ H(Dr) (except if α = 0, ||f ||p = ∞).
The norms are also compatible with multiplication

||fg||p+q ≤ ||f ||p||g||q(3.11)

for f , g ∈ H(Dr) and nonngative integers p, q (except for f = 0, ||g||q = ∞ or g = 0, ||f ||p =
∞). The most important property is

Lemma 3.3 For f ∈ H(Dr) one has ||f ′||p+1 ≤ e (p+ 1) ||f ||p .

Here the norm of the derivative of a holomorphic function is estimated; it is important that
it is estimated not only on a subset of Dr.
Proof: See Appendix B.

Lemma 3.4 ||Sf ||p ≤ 2
ρ
||f ||p for f ∈ H(Dr), p ∈ N .

where S designs the shift operator.
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It is important for us that the operator S is ‘better’ than differentiation in the sense that
it does not need an increased index of the norm. This is the motivation for using modified
Nagumo norms (the original norms are those where ρ = 0).
Proof: See Appendix B.

Let us consider the equation (3.7). As φ0(0) = −1
2
6= 0 we introduce the following change

of variables u = (2 +X)z + 1 and we consider:

ε
du

dX
= −X(2 +X)2u− (2 +X)2(a− 1) + ε

u− 1

2 +X
(3.12)

−X(2 +X)2 u2

1 − u
− (2 +X)2(a− 1)

u

1 − u

The equation of the slow curve is now u = 0 for a0 = 1.
The right hand side of (3.12) can be rewritten

A0(X) u+B0(X) (a− 1) + A(X, ε) u+ φ(X, ε)(3.13)

+
∑

p+q≥2

fpq(X, ε) u
p(a− 1)q

where A0(X) = −X(2 +X)2, B0(X) = −(2 +X)2.

Lemma 3.5 The mapping H(Dr) × C → H(Dr) defined by (u, a) 7→ A0 · u+B0 · (a− 1) is
bijective for sufficiently small r, 0 < r < 2. Here H(Dr) denotes the set of functions that
are holomorphic on Dr(0).

Proof: Hence we can rewrite (3.12) as

A0(X) u+B0(X) (a− 1) = ε
du

dX
−R(X, u, a, ε) .

To solve the formal problem, we are lead to consider equations of the form
A0(X) u+B0(X) (a− 1) = g(X) for arbitrary functions g. Then

u(X) =

[
g(X) − B0(x) (a− 1)

]

l

−X(2 +X)2

We remark that A0(0) = 0, so, in order to obtain a function u holomorphic in a neighbour-
hood of 0, we must have

g(0) = B0(0) (a− 1)

As B0(0) = −4 6= 0, this last equation has a unique solution a and then

u(X) =
−1

(2 +X)2
S[g − B0 (a− 1)](X)

where S is the so-called shift operator. Moreover, u is analytic for X ∈ Dr(0), r < 2.
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For the proof of 2., we rewrite (3.12) as an equation for formal series

A0(X) u+B0(X) (a− 1) = ε
du

dX
− A(X, ε) u− φ(X, ε)(3.14)

−
∑

p+q≥2

fpq(X, ε) u
p(a− 1)q

In order to show the Gevrey property of u and a, we must study the inverse of the mapping
introduced above. We denote by

P1 : H(Dr) −→ H(Dr)(3.15)

P2 : H(Dr) −→ C

the uniquely determined linear mappings satisfying

A0(X)(P1f)(X) +B0(X)(P2f)(X) = f(X) for X ∈ Dr(0), f ∈ H(Dr) .(3.16)

Then we have

Lemma 3.6 There is a constant K > 0 such that

||P1f ||p ≤ K ||f ||p and |P2f | ≤ K d(0)−p ||f ||p
for nonnegative integers p and f ∈ H(Dr).

Proof: See Appendix B.

We consider the series v := A0(X)u + B0(X)(a − 1). It gives back u and a using the
projections P1 and P2 of (3.15). We have u = P1v, a = P2v. Here we use the convention
that (like multiplication by A0(X), B0(X)), P1 is applied to the coefficient of each power εj

of V =
∑∞

j=1 vj(X)εj.
Now (3.14) reads

v = ε
d

dX
(P1v) − φ(X, ε) −A(X, ε)(P1v) −

∑

p+q≥2

fpq(X, ε) (P1v)
p(P2v − 1)q .(3.17)

Definition 3.2 We say that a series g =
∑∞

k=0 gk(x)ε
k is majorized (‘≪’) by a series h(z) =∑∞

l=0 hlz
l if and only if

||gj||j ≤ hj j! for j = 0, 1, 2...

We have the following relations for ≪.

Lemma 3.7 Assume that g ≪ h(z) and g̃ ≪ h̃(z). Then

g g̃ ≪ h(z) h̃(z)

ε
d

dx
g ≪ e z h(z)
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Proof: See Appendix B.

We extend the notion of majorisation to series of vectors by using the maximum norm
and to series of matrices by using a compatible matrix norm.

By applying the
|| ||j
j!

to the coefficient of εj of the functions in equation (3.17), we

find majorant (scalar) series φ̂(z), Â(z), f̂pq(z) of φ(x, ε), A(x, ε) and fpq(x, ε). By Cauchy’s
estimate for the coefficients of a convergent power series, all these series have a common
positive radius of convergence, and furthermore, the series

∑
p+q≥2 f̂pq(z)g

p+q is convergent
if |z| and |g| are sufficiently small. We can now consider the following so-called majorant
equation related to (3.17)

w(z) = φ̂(z) + eKzw(z) + Â(z)Kw(z)

+
∞∑

ν=2

(
∑

p+q=ν

f̂pq(z)

)
Kνw(z)ν .(3.18)

Here K > 0 denotes the constant of lemma 3.6. As φ̂(0) = Â(0) = 0, it is easy to see that
(3.18) has a unique formal solution w(z) =

∑∞
j=1wjz

j and that all wj are nonnegative.
Furthermore, (3.18) is an implicit equation for w(z) and therefore its solution series w(z)

converges, i.e. there are constants M,N > 0 such that wj ≤MN j , j = 1, 2, ....
Now, we claim that w(z) majorizes our solution v of (3.17). To make this clear in a

formal way, denote the right hand side of (3.17) by Rv, the right hand side of (3.18) by
R̂w(z). Then our lemmas 3.7, 3.6 show that

y ≪ w(z) ⇒ Ry ≪ R̂w(z) .(3.19)

Here we also need that φ̂, Â, f̂pq have been chosen as majorants of the corresponding terms
φ,A, fpq.

Let us start with v0 =
∑

j 0εj and w0(z) =
∑

j 0zj . We clearly have v0 ≪ w0(z). We

define recursively vk = Rvk−1 and wk(z) = R̂wk−1(z) for k = 1, 2, ..., and have by (3.19) that
vk ≪ wk(z) for all k.

Now, remark that the coefficients of ε, ..., εl in v (or v̂) determine those of ε, ..., εl+1 in
Rv (or R̂). This implies that the coefficients of ε1, ..., εk in each vk (or wk(z)) agree with
those of the formal solution v of (3.17) (or w of (3.18) respectively). Therefore, the fact that
vk ≪ wk(z) for all k implies that v ≪ w(z) for the formal solutions v of (3.17) and w of
(3.18).

The relation (3.10) now implies for every 0 < δ < r − ρ that

|vk(X)| ≤ ||vk||k δ−k ≤ k!wk δ
−k

for X with |X| ≤ r − δ and hence v is Gevrey of order 1 on each subdisk Dr̃, r̃ < r of Dr.
Using P1 and P2 (and lemma 3.6) again we obtain that u = P1v, a = P2v are Gevrey of
order 1. This proves our theorem.

Remark 3.1 We can prove the result 2. by direct upperbounds ([Ca91]). See exercises IV.

3. See ([Ca91]), p. 10 - 12.
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Remark 3.2 These results have been improved by A. Fruchard et R. Schäfke [FS96-1]: they
use the relief method of J.-L. Callot [Cal93] to obtain the theorem:

Theorem 3.8 The coefficients cj of the series â(ε) verify:

∀ j ≥ 0, | cj |= l j! (3/4 + o(1))j

where l = O(1) as j → +∞.

Moreover, the formal solution â(ε) is 1-summable in every direction except R+ ([FS96-1]).

Remark 3.3 Recently, E. Matzinger gives an equivalent for the cj as j → +∞.

Remark 3.4 We are here in a “pure” situation, as it can be frequently observed. In general,
the coefficients of a series Gevrey of order 1/k and type A,

∑
j≥0 cjε

j verify:

| cj |∼ CAj/kΓ(α + j/k)

So we can consider the notion of cut-off ([RS96]) and the index of the sum at the smallest
term, N(ε) is equal to [ k

A|ε|k ].

Here, we can compare N(ε) = [ 1
A|ε| ] with A = 3/4 and the observed index N0(ε) of the

minimum of the sequence (cjε
j)j and we notice that these index are similar (see table 4.1).

ε N0(ε) N(ε) = [ 1
A|ε| ]

0.05 27 26

0.1 13 13

0.033 40 40

table 4.1: Index N0(ε) and N(ε)
for formal solutions of Van der Pol equation.

3.3 Existence of solutions

This subsection is concerned with the existence of couples (z(X, ε), a(ε)) of functions
called overstable solution. These functions must verify

ε z
dz

dX
= −X((2 +X)z + 1) + a− 1

for all ε in a sector V and for all X ∈ Dr(0).
We remind that z and a must be holomorphic in ε in V and z holomorphic in X for X
in Dr(0). Moreover (z, a) will have (ẑ, â) as asymptotic expansion of Gevrey order 1 as
V ∋ ε → 0, uniformly for X in D′

r(0), r′ < r.
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3.3.1 Quasi-solutions

With the unique formal solution (ẑ, â) of (3.8) we construct a couple (z̃(X, ε), ã(ε)) of
quasi-solution of (3.7), that is to say the couple satisfy the differential equation except for
an exponentially small error.

Let Û = ẑ + 1
2+X

, α̂ = â− 1. These series are the unique formal solution of

ε (Û − 1

2 +X
)
dÛ

dX
= −X(2 +X)Û + α̂(3.20)

As (Û , α̂) is a couple of series Gevrey of order 1 in ε, we define powers series called formal

Borel transforms of (Û , α̂).

B̂1(Û)(λ) =
∑

j≥0

bj+1(X)

j!
λj

B̂1(α̂)(λ) =
∑

j≥0

cj+1

j!
λj

The series defined above are convergent and there exists T > 0 such that B̂1(Û) and B̂1(α̂)
define two holomorphic functions U(X, λ) and α(λ) in the λ-plane, at the neighbourhood of
D̄T (0).
One can thus compute truncated Laplace transforms of these functions25

Ũ(X, ε) := LT (U)(ε) =

∫ T

0

e−λ/ε U(X, λ) dλ

α̃(ε) := LT (α)(ε) =

∫ T

0

e−λ/ε α(λ) dλ

They are analytic for ε ∈ S−π/2,π/2 and X ∈ Dr(0), r < 2 and they admit (Û , α̂) as their
asymptotic expansion of the Gevrey order 1, uniformly in X ∈ D̄r′(0), r′ < r.

Theorem 3.9 Let α̃(ε) =
∫ T
0
e−λ/ε α(λ) dλ. Then, Ũ(X, ε) satisfy the equation

ε (Ũ − 1

2 +X
)
dŨ

dX
= −X(X + 2)Ũ + α̃(ε) + exp(−T/ε)P (X, ε)(3.21)

where P (X, ε) is an holomorphic function in the neighbourhood of D̄r′(0)×R+ and we have:

‖ P (X, ε) ‖r1≤ T 2M(U′
X) M(

∫
U) + 1, ∀ ε > 0, ε → 0

where M(f) is the supremum of ‖ f ‖ when X ∈ D̄r′(0) and λ ∈ D̄T (0).

25We suppose ε positive real.
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The equation (3.21) is similar to the Van der Pol equation except an exponentially small
term exp(−T/ε)P (X, ε) with P (X, ε) limited. The couple

(z̃(X, ε) = Ũ(X, ε) − 1

X + 2
, ã(ε) = α̃(ε) + 1)

is a quasi-solution of the Van der Pol equation.
Proof: We apply the formal Borel transform to the equation (3.20). We obtain:

∫ λ

0

(U − (
1

2 +X
) δ)(u) du ⋆

dU

dX
= −X(2 +X)U + α(3.22)

Then we apply the truncated Laplace transform:

LT (

∫ λ

0

(U − (
1

2 +X
) δ)(u) du) . LT (

dU

dX
) − E(ε) = −X(2 +X)Ũ + α̃

with | E(ε) |≤ T 2M(U′
X) M(

∫
U). Or

(
ε (Ũ − 1

2 +X
) − εe−T/ε

∫ T

0

(U − (
1

2 +X
) δ) (u) du

)
.
dŨ

dX
=(3.23)

E(ε) −X(X + 2)Ũ + α̃

So

ε (Ũ − 1

2 +X
)
dŨ

dX
= −X(X + 2)Ũ + α̃(ε) + exp(−T/ε)P (X, ε)

with ‖ P (X, ε) ‖r′≤ T 2M(U′
X) M(

∫
U) + 1.

Remark 3.5 Another proof, more elegant, uses the characterization of functions with an
asymptotic expansion of the Gevrey order 1 (Ramis-Sibuya theorem, [RSi89]). See exercises
IV.

3.3.2 Solutions

Now we can prove the main result of this subsection. As (z̃(X, ε), ã(ε)) have (ẑ, â) as an
asymptotic expansion with Gevrey of order 1, it seems natural to choose a∗(ε) = ã(ε) and
to try to prove that (3.7)

εz
dz

dX
= −X(X + 2)(z +

1

X + 2
) + ã(ε) − 1

with this choice of the parameter has an (exact) solution (z∗(X, ε), a∗(ε)), analytic for small
X, small ε in a sector V , which is exponentially close to (− 1

X+2
+ Ũ(X, ε), ã(ε)).

Theorem 3.10 The equation

εz
dz

dX
= −X(X + 2)(z +

1

X + 2
) + ã(ε) − 1
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has an overstable solution (z∗(X, ε), a∗(ε)) analytic for X ∈ D̄r̃0(0), r̃0 < 2 and ε ∈ V .
Moreover,
∃ M > 0 such that ∀ X ∈ D̄r̃0(0), ∀ ε ∈ V

z∗(X, ε) = − 1

X + 2
+ Ũ(X, ε) +Q(X, ε) with | Q(X, ε) |≤ exp(−M/| ε |)

Proof: Ũ = z̃ + 1
2+X

satisfies the system

{
Ẋ = Ũ − 1

2+X

ε ˙̃U = −X(2 +X)Ũ + ã− 1 + exp(−T/ε)P (X, ε)
(3.24)

Let z∗ a solution of Van der Pol equation in the Liénard plane for a = ã:

{
Ẋ = z∗

ε ż∗ = −X(2 +X)(z∗ + 1
2+X

) + ã− 1
(3.25)

We make the following transformation (an exponential split-off)

W = ε Log
(
z∗ +

1

2 +X
− Ũ(X, ε)

)

We remark that z∗ = − 1
2+X

+ Ũ(X, ε) + exp(W/ε) and

Ẇ =
ε(ż∗ − ˙̃U)

z∗ − Ũ
= exp(−W/ε)(εż∗ − ε ˙̃U)

Thus, the system (3.25) can be rewritten in the variables (X,W )

{
Ẋ = z∗ = − 1

2+X
+ Ũ(X, ε) + exp(W/ε)

ε Ẇ = −X(2 +X) − exp(−(T +W )/ε) P (X, ε)
(3.26)

With a Non Standard approach ([DR89]), we have the next results

Remark 3.6 If T +W > 0, T +W 6≃ 0, then | exp(−T+W
ε

) P (X, ε) |≃ 0.
Moreover, if W < 0, W 6≃ 0, then z∗(X, ε) ≃ − 1

X+2
.

Besides, Y (X) = Y0 +
∫ X
0
s(s+ 2)2 ds satisfies the equation

− 1

X + 2

dY

dX
= −X(X + 2)

So if Y0 is choosen such that −T < Y0 < 0, Y0 6≃ −T, Y0 6≃ 0, there exists r̃0 > 0, r̃0 < 2
such that ∀ X ∈ D(0, r̃0), Y (X) is between −T and 0, Y (X) 6≃ −T , Y (X) 6≃ 0.
A non standard Analysis result (short shadow lemma) claims that for X ∈ D(0, r̃0), Y (X) ≃
W (X). Thus, ∀ X ∈ D(0, r̃0), ∀ ε ∈ V , the function

z∗(X, ε) := − 1

X + 2
+ Ũ(X, ε) + exp(W/ε)
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is a solution of Van der Pol equation that remains bounded. (∀ ε ∈ V , ∀ X ∈ D(0, r̃0),
Y (X) ≃W (X) and −T < Y (X) < 0, Y (X) 6≃ 0, Y (X) 6≃ −T . So there exists M > 0 such
that

| exp(W/ε) |≤ exp(−M/| ε |)
z∗ is a canard solution, moreover, the difference between z∗(X, ε) and − 1

X+2
+ Ũ(X, ε) is

exponentially small of order 1 and Ũ(X, ε) has Û(X, ε) as asymptotic expansion with Gevrey

of order 1. So z∗ has − 1
X+2

+ Û(X, ε) as asymptotic expansion with Gevrey of order 1, the

first term being − 1
X+2

.

Remark 3.7 We can use Gronwall lemma [Har73] for the proof (see ([CRSS00])).

3.4 General case

All these results about the Van der Pol equation can be generalized to singularly per-
turbed differential equations ([CRSS00]):

3.4.1 Preliminaries

Let us consider a system of n differential equations.

εD
dy

dx
= F (x, y, a, ε)(3.27)

with a small parameter ε ∈ C and a vector a of m parameters, a ∈ Cm. System (3.27) is
called a system of singularly perturbed differential equations. We suppose

• D := diag(σ1, ..., σn), where σi are positive integers.

• The function F is an analytic function of the variables x, y and a in the open neigh-
bourhood D := Dr1(x0) × Dr2(y0) × Dr3(a0) ⊂ C × C

n × C
m of (x0, y0, a0) where

r1, r2, r3 are positive. 26

• Let σ := Min{σ1, ..., σn} and let V be an open sector of the complex plane whose vertex
is at the origin. The function F is analytic for ε ∈ V and is asymptotic of Gevrey order
1/σ to the formal series

∑
k≥0 fk(x, y, a) ε

k as V ∋ ε→ 0 uniformly for (x, y, a) ∈ D.

• F (x0, y0, a0, 0) = 0 for some point (x0, y0, a0) ∈ D.

Here and in the sequel, “asymptotic of Gevrey order 1/σ” means that there are positive
constants A,C such that for all ε ∈ V, (x, y, a) ∈ D and all N ∈ N∗

∣∣∣∣∣F (x, y, a, ε) −
N−1∑

k=0

fk(x, y, a) ε
k

∣∣∣∣∣ ≤ CAN/σ Γ(N/σ + 1) |ε|N .

The functions fk are necessarily holomorphic on D. Furthermore in this case, also the formal
series

∑
k≥0 fk(x, y, a) ε

k is of Gevrey order 1/σ; this means that there are positive constants

A,C such that for all (x, y, a) ∈ D and all k ∈ N one has |fk(x, y, a)| ≤ CAk/σΓ(k/σ + 1).
We define some geometric sets as in [Wall90].

26Here and in the sequel, Dr1(x0) denotes the open disk of radius r1 and center x0 etc.
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Definition 3.3 The set L0 := {(x, y) ∈ C × Cn / F (x, y, a0, 0) = 0} is called the slow set
of equation (3.27).

Definition 3.4 A slow curve C0 of the equations (3.27) is a smooth subset of the slow set
L0. It is the graph of a function φ0 holomorphic on Dr′1

(x0), r
′
1 < r1.

In this case, we have F (x, φ0(x), a0, 0) = 0 and φ0(x0) = y0.

Definition 3.5 An overstable solution of (3.27) is a couple (y∗(x, ε), a∗(ε)) of functions such
that

• y∗(x, ε) is holomorphic in x on Dr1(x0),

• y∗ and a∗ are holomorphic in ε on a subsector W of V and satisfy

εD
dy∗

dx
= F (x, y∗, a∗, ε)

for x ∈ Dr1(x0) and ε ∈W ,

• a∗(ε) → a0 as W ∋ ε → 0,

• y∗(x, ε) → φ0(x) as W ∋ ε → 0, uniformly with respect to x ∈ Dr′1
(x0), 0 < r′1 < r.

3.4.2 The hypothesis of transversality

We consider the linear part of equations (3.27), more precisely we denote by A0(x) =
∂F
∂y

(x, φ0(x), a0, 0) the Jacobian of F . We suppose that A0(x) is invertible except at x = x0

and hence
det(A0(x)) = (x− x0)

m K(x)

where m ∈ N and K(x) is analytic near x0 with K(x0) 6= 0.
For our method of proof, it will be important that the above m is the same as the number

of components of the parameter vector a. The integer m was called indice de fugacité of
φ0 [Wall94]. This number is an invariant associated to the slow curve C0 and the point x0.
We recall the following characterisation of this number in the one dimensional case (n = 1)
[Wall90]: The function x 7→ F (x, φ0(x) + η, a0, 0) has m zeros close to x0 for every η 6= 0, η
sufficiently small.

The right hand side of (3.27) can be rewritten

F (x, y, a, ε) = A0(x) (y − φ0(x)) +B0(x) (a− a0) + F(x, y, a, ε)

where B0(x) = ∂F
∂a

(x, φ0(x), a0, 0).

Definition 3.6 We call ‘hypothesis of transversality’ (H)

(H)
The mapping H(Dr)

n×Cm → H(Dr)
n defined by (y, a) 7→ A0 ·(y−φ0)+B0 ·(a−a0)

is bijective for sufficiently small r, 0 < r < r1.
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3.4.3 The main result

Theorem 3.11 Consider the singularly perturbed ordinary differential equation (3.27) and
suppose that the hypothesis below (3.27) are satisfied. Assume that φ0 : Dr1(x0) → Cn is
a slow curve corresponding to the parameter value a0 with φ0(x0) = y0 and that A0(x) =
∂F
∂y

(x, φ0(x), a0, 0) and B0(x) = ∂F
∂a

(x, φ0(x), a0, 0) satisfy the hypothesis (H) of transversal-
ity.

Then (3.27) has a unique formal solution

ŷ(x, ε) =

∞∑

j=0

bj(x)ε
j , â(ε) =

∞∑

j=0

cjε
j ,

where bj(x) are analytic in Dr1(x0) and b0 = φ0, c0 = a0. Moreover, these formal series are
of Gevrey order 1/σ.

For γ ∈ R and sufficiently small r̃0, ε0, δ0 > 0 such that W = {ε | |arg ε− γ| < δ0, |ε| <
ε0} defines a proper subsector W of V there is an overstable solution (y∗, a∗), a∗ : W → Cm,
y∗ : Dr̃0(x0)×W → Cn of (3.27) having (ŷ, â) as asymptotic expansion of Gevrey order 1/σ
uniformly for x ∈ Dr̃0(x0).

Remark 3.8 For the Van der Pol equation, A0(X) = −X(2 +X) so m = 1 and B0(X) =
−(1 +X)2 is equal to −4 6= 0 for X = 0, so the hypothesis of transversality (H) is verified.

Remark 3.9 The case A0(X) invertible was already known ([Sib58, Was65, Sib90-1]).
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(1928).
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[Can89] B. Candelpergher, Une introduction à la résurgence, Gazette des Mathématiciens
42 (1989), 31–64.

[Can95] B. Candelpergher, Fonctions d’une variable complexe, Armand Colin Editeur, Paris,
(1995).

[CDD90] B. Candelpergher, F. Diener, M. Diener, Retard à la bifurcation : du local au global,
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gularly perturbed differential equations, Fuer Die Reine Und Angewandte Mathematik
Crelles Journal 518 (2000), 95–129.

[Din73] R.B. Dingle, Asymptotic Expansions : their Derivation and Interpretation, Aca-
demic Press, (1973).

[DR89] F. Diener, G. Reeb, Analyse Non Standard, Collection Enseignement des Sciences,
Hermann, Paris, (1989).
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Taylor, Ann. Fac. Université de Toulouse, (1900), 317–430.

[Lie28] A. Liénard, Etude des oscillations entretenues, Rev. Gén. Electr. 23 (22), (1928),
901–954.
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Ann. Inst. Fourier 40, 3 (1990), 557–95.

58
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