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CHAPTER 0

Introduction

1. General terminology and notations

In this section we collect some standing (usually, standard) nota-
tions and definitions; it can be consulted as long as the corresponding
objects appear in the text.

Complex plane and its affiliates

As usually, N = {1, 2, . . . } stands for the set of natural numbers;
R stands for the real line;
C stands for the complex plane,
and C̄ = C ∪ {∞} stands for the Riemann sphere.
For a ∈ C, r > 0, let

D(a, r) = {z ∈ C : |z − a| < r}; D̄(a, r) = {z ∈ C : |z − a| ≤ r}.
Let Dr ≡ D(0, r), and let D ≡ D1 denote the unit disk.
Let Tr = ∂Dr, and let T ≡ T1 denote the unit circle;
C∗ = C r {0}, D∗ = D r {0}.
A(r, R) = {z : r < |z| < R} is an open round annulus; The no-
taions A[r, R] or A(r, R] for the closed or semi-closed annuli are self-
explanatory.
The equator of A(r, R) is the curve |z| =

√
Rr.

H = {z : Im z > 0} is the upper half plane, Hh = {z : Im z > h} ;
P = {z : 0 < Im z < π};
A plane domain is a domain in C̄.

General topology

In what follows, all topological spaces are assumed to satisfy the
Second Countability Axiom, i.e., they have a countable base of neigh-
borhoods. X̄ denotes the closure of a set X; intX denotes its interior.
U ⋐ V means that U is compactly contained in V , i.e., Ū is a compact
set contained in V .
A compact space is called perfect if it does not have isolated points.
A Cantor set is a totally disconnected perfect set. All compact sets are
homeomorphic.

9



10 0. INTRODUCTION

For two sets X and Y in a metric space with metric d, let

dist(X,Y ) = inf
x∈X, y∈Y

d(x, y).

If one of these sets is a singleton, say X = {x}, then we use notation
dist(x, Y ) for the distance from X to Y .

diamX = sup
x,y∈X

d(x, y).

Notation (X,Y ) stands for the pair of spaces such that X ⊃ Y . A pair
(X, a) of a space X and a “preferred point” a ∈ X is called a pointed
space.
Notation f : (X,Y ) → (X ′, Y ′) means a map f : X → X ′ such that
f(Y ) ⊂ Y ′. In the particular case of pointed spaces f : (X, a) →
(X ′, a′) we thus have: f(a) = a′.
Similar notations apply to triples, (X,Y, Z), where X ⊃ Y ⊃ Z, etc.

For a manifold M , TxM stand for its tangent space at x, and TM
stands for its tangent bundle.

Group actions

SL(2, R) is the group of 2× 2 matrices over a ring R with determi-
nant 1 (we will deal with R = C, R, or Z);
PSL(2, R) = SL(2, R)/{±I}, where I is the unit matrix;
O(2) ≈ T is the group of plane rotations.

An action of a discrete group Γ on a locally compact space X is said
to be properly discontinuous if any two points x, y ∈ X have neighbor-
hoods U ∋ x, V ∋ y such that γ(U) ∩ V = ∅ for all but finitely many
γ ∈ Γ. The quotient of X by a properly discontinuous group action is
a Hausdorff locally compact space.

The stabilizer Stab(X) of a subset Y ⊂ X is the subgroup {γ ∈ Γ :
γ(Y ) = Y }. A set Y called completely invariant under some subgroup
G ⊂ Γ if G = Stab(Y) and γ(Y ) ∩ Y = ∅ for any γ ∈ Γ rG.

A group element γ is called primitive if it generates a maximal cyclic
group.

2. Coverings

In this section we summarize for reader’s convenience necessary
background in the theory of covering spaces.

Let S and T be connected topological manifolds. A continuous map
f : S → T is called a covering of degree d ∈ N∪{∞} if any point y ∈ T



2. COVERINGS 11

has a neighborhood V such that

f−1(V ) =
d

⊔

i=1

Ui,

where each Ui is mapped homeomorphically onto V . The preimages
f−1(y) are called fibers of the covering. Coverings f : S → T and f ′ :
S ′ → T ′ are called equivalent if there exist homeomorphisms φ : S → S ′

and ψ : T → T ′ such that ψ ◦ f = g ◦ φ.
A covering is called Galois if there is a group Γ acting freely and

properly discontinuously on S whose orbits are fibers of the covering.
In this case T ≈ S/Γ. The group Γ is called the group of deck trans-
formations of f .

Vice versa, if a group Γ acts free and properly discontinuous on
a manifold S then the quotient S/Γ is a manifold, and the natural
projection f : S → S/Γ is a covering.

A covering p : T̂ → T is called universal if the space T̂ is simply
connected. Any manifold has a unique universal covering up to equiv-
alence. This covering is Galois, with the fundamental group p1(T ) as
a group of deck transformations.

To any subsgoup G of π1(T ) naturally corresponds a covering f :

T̂ /G→ T , and this arises to one-to-one correspondence between classes
of conjugate subgroups of π1(T ) and classes of equivalent coverings over
T . Moreover, the covering f is Galois if and only if the corresponding
subgroup G is normal (in this case, the group of deck transformations
of f is π1(T )/G).

The crucial property of coverings is a lifting property. Given a
curve γ on T with a marked point a (“beginninng of γ) and some point
ã ∈ f−1(a), there exists a unique lift of γ to a curve γ̃ on S that begins
at ã. If γ is a simple closed curve then γ̃ is either a simple closed curve
as well or is a topological line, and the map f : γ̃ → γ is a covering. If
f is a Galois covering then Stab(γ̃) is a cyclic group (finite or infinite),
γ̃ is completely invariant under it, and γ ≈ γ̃/G. Stabilizers of different
lifts of γ are conjugate in Γ.

In case of the universal covering p : T̂ → T , we see that to any
simple closed curve γ on T corresponds the conjugacy class in π1(T )
consisting of the generators of Stab(γ̃) for various lifts γ̃. Moreover,
these stabilizers do not change if replace γ with a freely homotopic
curve, so the conjugacy class can be associated to the class [γ] of freely
homotopic curves.
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CHAPTER 1

Conformal geometry

1. Riemann surfaces

1.1. Topological surfaces.
1.1.1. Definitions and examples.

Definition 1.1. A (topological) surface S (without boundary) is
a two-dimensional topological manifold with countable base. It means
that S is a topological space with a countable base and any z ∈ S
has a neighborhood U ∋ z homeomorphic to an open subset V of R2.
The corresponding homeomorphism φ : U → V is called a (topological)
local chart on S. Such a local chart assigns to any point z ∈ U its local
coordinates (x, y) = φ(z) ∈ R2.

A family of local charts whose domains cover S is called a topological
atlas on S.

Given two local charts φ : U → V and φ̃ : Ũ → Ṽ , the composition

φ̃ ◦ φ−1 : φ(U ∩ Ũ) → φ̃(U ∩ Ũ)

is called the transition map from one chart to the other.
A surface is called orientable if it admits an atlas with orientation

preserving transition maps. Such a surface can be oriented in ex-
actly two ways. In what follows we will only deal with orientable (and
naturally oriented) surfaces.

Unless otherwise is explicitly said, we will assume that the surfaces
under consideration are connected. The simplest (and most important
for us) surfaces are:

• The whole plane R2 (homeomorphic to the open unit disk D ⊂ R2).

• The unit sphere S2 in R3 (homeomorphic via the stereographic pro-
jection to the one-point compactification of the plane); it is also called
a “closed surface of genus 0” (in this context “closed” means “compact
without boundary”).

• A cylinder or topological annulus C(a, b) = T × (a, b), where −∞ ≤
a < b ≤ +∞. It can also be represented as the quotient of the strip
P (a, b) = R×(a, b) modulo the cyclic group of translations z 7→ z+2πn,

15



16 1. CONFORMAL GEOMETRY

n ∈ Z. All the cylinders C(a, b) are homeomorphic to any annulus
A(r, R), to the punctured disk D∗ and to the punctured plane C∗).

• The torus T2 = T × T, also called a “closed surface of genus 1”. It
can also be represented as the quotient of R2 modulo the action of a
rank 2 abelian group z 7→ z + αm+ βn, (m,n) ∈ Z2, where α and β is
an arbitrary basis in R2.

It is intuitively obvious that (up to a homeomorphism) there are
only two simply connected surfaces: the plane and the sphere.

If we have a certain standard surface S (say, the unit disk or the unit
sphere), a “topological S” (say, a “topological disk” or a “topological
sphere”) refers to a surface homeomorphic to the standard one.

One can also consider surfaces with boundary. The local model of
a surface near a boundary point is given by a relative neighborhood
of a point (x, 0) in the closed upper half-plane H̄. The orientation
of a surface naturally induces an orientation of its boundary (locally
corresponding to the positively oriented real line).

For instance, we can consider cylinders with boundary: C[a, b] =
T× [a, b] or C[a, b) = T× [a, b). They will be still called “cylinders” or
“topological annuli”. Cylinders C(a, b) without boundary will be also
called “open”, while cylinders C[a, b] will be called “closed” (according
to the type of the interval involved).

Cylinders (with or without boundary) are the only topological sur-
faces whose fundamental group is Z.

A Jordan curve γ ⊂ S on a surface is a topologically embedded
unit circle. A Jordan disk D ⊂ S is a topological disk bounded by a
Jordan curve. Both open and closed Jordan disks are allowed.

1.1.2. New surfaces from old ones. There are two basic ways of
building new surfaces out of old ones: making holes and gluing their
boundaries. Of course, any open subset of a surface is also a surface.
In particular, one can make a (closed) hole in a surface, that is, remove
a closed Jordan disk. A topologically equivalent operation is to make
a puncture in a surface. By removing an open Jordan disk (open hole)
we obtain a surface with boundary.

If we have two open holes (on a single surface or two different sur-
faces Si) bounded by Jordan curves γi, we can glue these bound-
aries together by means of an orientation reversing homeomorphism
h : γ1 → γ2. (It can be also thought as attaching a cylinder to these
curves.) We denote this operation by S1 ⊔h S2. For instance, by gluing
together two closed disks we obtain a topological sphere: D⊔h D ≈ §2.

Combining the above operations, we obtain operations of taking
connected sums and attaching a handle. To take a connected sum of
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two surfaces S1 and S2, make an open hole in each of them and glue
together the boundaris of these holes. To attach a handle to a surface
S, make two open holes in it and glue together their boundaries.

If we attach a handle to a sphere, we obtain a topological torus. If
we attach g handles to a sphere, we obtain a “closed surface of genus
g”. It turns out that any closed orientable surface is homeomorphic to
one of those. Thus closed orientable surfaces are topologically classified
by a single number g ∈ Z+, its genus.

One says that a surface S (with or without boundary) has a finite
topological type if its fundamental group π(S) is finietly generated (e.g.,
any compact surface is of finite type). It turns out that it is equivalent
to saying that S is homeomorpic to a closed surface with finitely many
open or closed holes. Clearly such a surface admits a decomposition

S = K
⋃

i

⊔hi
Ci ,

where K is a compact surface and Ci ≈ T × [0, 1) are half-open cylin-
ders. The set K = KS is called the compact core of S. Note that it
is obviously a deformation retract for S. We say that the cylinders Ci

represent the ends of S.
Each end can be compactified in two ways, by adding a missing

boundary curve to the cylinder, or by adding one point. In the former
case, the added boundary curve is called the ideal boundary of the end.
Let Ŝ denote the compactification of S by adding ideal boundaries to
all ends.

1.1.3. Euler characteristic. Let S be a compact surface (with or
without boundary) Its Euler characteristic is defined as

χ(S) = f − e+ v,

where f , e and v are respectively the numbers of faces, edges and
vertices in any triangulation of S.

The Euler characteristic is obviously additive:

χ(S1 ⊔h S2) = χ(S1) + χ(S2).

Since the cylinder T×[0, 1] has zero Euler characteristic, χ(Ŝ) = χ(KS)
for a surface S of finite type. We can use this as a definition of χ(S)
in this case.

Making a hole in a surface drops its Euler characteristic by one;
attaching a handle does not change it. Hence χ(S) = 2 − 2g − n for a
surface of genus g with n holes.
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Note that the above list of simplest surfaces is the full list of sufaces
of finite type without boundary with non-negative Euler characteristic:

χ(R2) = 1, χ(S2) = 2, χ(T × (0, 1)) = χ(T2) = 0.

1.1.4. Marking. A surface S can be marked with an extra topo-
logical data. It can be either several marked points ai ∈ S, or several
closed curves γi ⊂ S up to homotopy (usually but not always they form
a basis of π1(S)), or a parametrization of several boundary components
Γi ⊂ ∂S, φi : T → Γi.

The marked objects may or may not be distinguished (for instance,
two marked points or the generators of π1 may be differently colored).
Accordingly, the marking is called colored or uncolored.

A homeomorphism h : S → S̃ between marked surfaces should re-
spect the marked data: marked points should go to the corresponding
points (h(ai) = ãi), marked curves γi should go to the corresponding
curves γ̃i up to homotopy (h(γi) ≃ γ̃i), and the boundary parametriza-

tions should be naturally related (h ◦ φi = φ̃i).

1.2. Analytic and geometric structures on surfaces. Rough
topological structure can be refined by requiring that the transition
maps belong to a certain “structural pseudo-group”, which often means:
“have certain regularity”. For example, a smooth structure on S is
given by a family of local charts φi : Ui → Vi such that all the tran-
sition maps are smooth (with a prescribed order of smoothness). A
surface endowed with a smooth structure is naturally called a smooth
surface. A local chart φ : U → V smoothly related to the charts φi

(i.e., with smooth transition maps) is referred to as a “smooth local
chart”. A family of smooth local charts covering S is called a “smooth
atlas” on S. A smooth structure comes together with affiliated notions
of smooth functions, maps and diffeomorphisms.

There is a smooth version of the connected sum operation in which
the boundary curves are assumed to be smooth and the boundary glu-
ing map h is assumed to be an orientation reversing diffeomorphism.
To get a feel for it, we suggest the reader to do the following exercise:

Exercise 1.1. Consider two copies D1 and D2 of the closed unit
disk D ⊂ R2. Glue them together by means of a diffeomorphism h :
∂D1 → ∂D2 of the boundary circles. You obtain a topological sphere
S2. Show that it can be endowed with a unique smooth structure com-
patible with the smooth structures on D1 and D2 (that is, such that the
tautological embeddings Di → S2 are smooth). The boundary circles
∂Di become smooth Jordan curves on this smooth sphere. Show that
this sphere is diffeomorphic to the standard “round sphere” in R3.
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Real analytic structures would be the next natural refinement of
smooth structures.

If R2 is considered as the complex plane C with z = x+ iy, then we
can talk about complex analytic ≡ holomorphic transition maps and
corresponding complex analytic structures and surfaces. Such surfaces
are known under a special name of Riemann surfaces. A holomorphic
diffeomorphism between two Riemann surfaces is often called an iso-
morphism. Accordingly a holomorphic diffeomorphism of a Riemann
surface onto itself is called its automorphism.

Connected sum operation still works in the category of Riemann
surfaces. In its simplest version the boundary curves and the gluing
diffeomorphism should be taken real analytic. Here is a representative
statement:

Exercise 1.2. Assume that in Exercise 1.1 R2 ≡ C and the gluing
diffeomorphism h is real analytic. Then S2 can be supplied with a
unique complex analytic structure compatible with the complex analytic
structure on the disks Di ⊂ C. The boundary circles ∂Di become real
analytic Jordan curves on this “Riemann sphere”.

More generally, we can attach handles to the sphere by means of real
analytic boundary map, and obtain an example of a Riemann surface
of genus g. It is remarkable that, in fact, it can be done with only
smooth gluing map, or even with a singular map of a certain class. This
operation (with a singular gluing map) has very important applications

in Teichml̈ler theory, theory of Kleinian groups and dynamics (see ??).
If R2 is supplied with the standard Euclidean metric, then we can

consider conformal transition maps, i.e., diffeomorphisms preserving
angles between curves. The first thing students usually learn in com-
plex analysis is that the class of orientation preserving conformal maps
coincides (in dimension 2!) with the class of invertible complex analytic
maps. Thus the notion of a conformal structure on an oriented surface
is equivalent to the notion of a complex analytic structure (though it
is worthwhile to keep in mind their conceptual difference: one comes
from geometry, the other comes from analysis).

One can go further to projective, affine, Euclidean/flat or hyperbolic
structures. We will specify this discussion in a due course.

One can also go in the opposite direction and consider rough struc-
tures on a topological surface whose structural pseudo-group is bigger
then the pseudo-group of diffeomorphisms, e.g., “bi-Lipschitz struc-
turs”. Even rougher, quasi-conformal, structures will play an impor-
tant role in our discussion.
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To comfort a rigorously-minded reader, let us finish this brief excur-
sion with a definition of a pseudo-group on R2 (in the generality ade-
quate to the above discussion). It is a family of local homeomorphisms
f : U → V between open subsets of R2 (where the subsets depend on
f) which is closed under taking inverse maps and taking compositions
(on the appropriately restricted domains). The above structures are
related to the pseudo-groups of all local (orientation preserving) home-
omorphisms, local diffeomorphisms, locally biholomorphic maps, local
isometries (Euclidean or hyperbolic) etc.

1.3. Three geometries.
1.3.1. Affine geometry. Consider the complex plane C. Holomor-

phic automorphisms of C are complex affine maps A : z 7→ az + b,
a ∈ C∗, b ∈ C. They form a group Aff(C) acting freely bi-transitively
on the plane: any pair of points can be moved in a unique way to any
other pair of points. Moreover, it acts freely transitively on the tangent
bundle of C.

Thus the complex plane C is endowed with the affine structure
canonically affiliated with its complex analytic structure. Of course,
the plane can be also endowed with a Euclidean metric |z|2. However,
this metric can be multiplied by any scalar t > 0, and there is no
way to normalize it in terms of the complex structure only. All these
Euclidean structures have the same group Euc(C) of Euclidean motions
A : z 7→ az + b with |a| = 1. This group acts transitively on the plane
with the group of rotations z 7→ e2πiθz, 0 ≤ θ < 1, stabilizing the
origin. Moreover, it acts freely transitively on the unit tangent bundle
of C (corresponding to any Euclidean structure).

The group Aff has very few discrete subgoups acting freely on C:
rank 1 cyclic group actions z 7→ z+an, n ∈ Z, and rank 2 cyclic group
actions z 7→ an+ bm, (m,n) ∈ Z2, where (a, b) is an arbitrary basis in
C over R. All rank 1 actions are conjugate by an affine transformation,
so that the quotients modulo these actions are all isomorphic. Taking
a = 1 we realize these quotients as the bi-infinite cylinder C/Z. It is
isomorphic to the puncured plane C∗ by means of the exponential map
C/Z → C∗, z 7→ e2πz. The quotients of rank 2 are all homeomorphic
to the torus. However, they may represent different Riemann surfaces
(see below 1.4.2).

Note that the above discrete groups preserve the Euclidean struc-
tures on C. Hence these structures can be pushed down to the quotient
Riemann surface. Moreover, now they can be canonically normalized:
in the case of the cylinder we can normalize the lengths of the closed
geodesics to be 1. In the case of the torus we can normalize its total
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area. Thus, complex tori and the bi-infinite cylinder are endowed with
a canonical Euclidean structure. For this reason, they are called flat.

1.3.2. Spherical (projective) geometry. Consider now the Riemann
sphere C̄ = C ∪ {∞}. Its bi-holomorphic automorphisms are Möbius
transformations

φ : z 7→ az + b

cz + d
; det

(

a b
c d

)

6= 0.

We will denote this Möbius group by Möb(Ĉ). It acts freely triply
transitive on the sphere: any (ordered) triple of points (a, b, c) on the
sphere can be moved by a unique Möbius transformation to any other
triple (a′, b′, c′).

Exercise 1.3. Show that topology of PSL(2,R) and topology of
uniform convergence on the sphere coincide. Given an ǫ > 0, let
us consider the set of Möbius transformations φ such that the triple
(φ−1(0, 1,∞) is ǫ-separated in the spherical metric (i.e., the three points
stay at least distance ǫ apart one from another). Show that this set is

compact in Möb(Ĉ).

Note that the Riemann sphere is isomorphic to the complex projec-
tive line CP1. For this reason Möbius transformations are also called
projective. Algebraicly the Möbius group is isomorphic to the linear
projective group PSL(2,C) = SL(2,C)/{±I} of 2× 2 matrices M with
detM = 1 modulo reflection M 7→ −M .

Any Möbius transformation has a fixed point on the sphere. Hence
there are no Riemann surfaces whose universal covering is C̄. In fact,
any non-identical Möbius transformations has either one or two fixed
points, and can be classified depending on their nature.

We would like to bring a Möbius transformation to a simplest nor-
mal form by means of a conjugacy φ−1 ◦ f ◦ φ by some φ ∈ Möb(Ĉ).

Since Möb(Ĉ) acts double transitively, we can find some φ which sends
one fixed point of f to ∞ and the other (if exists) to 0. This leads to
the following classification:

(i) A hyperbolic Möbius transformation has an attracting and re-
pelling fixed points with multipliers1. λ amd λ−1, where 0 < |λ| < 1.
Its normal form is a global linear contraction z → λz (with possible
spiralling if λ is unreal2.)

1The multiplier of a fixed point α is the derivative f ′(α) calculated in any local
chart around α, compare §14

2Hyperbolic Möbius transformations with unreal λ are also called loxodromic
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(ii) An elliptic Möbius transformation has two fixed points with
multipliers λ and λ−1 where λ = e2πiθ, θ ∈ [0, 1). Its normal form is
the rotation z → e2πiθz.

(iii) (ii) A parabolic Möbius transformation has a single fixed point
with multiplier 1. Its normal form is a translation z 7→ z + 1.

Exercise 1.4. Verify those of the above statements which look new
to you.

1.3.3. Hyperbolic geometry. Let us now consider a Riemann surface
S conformally equivalent to the unit disk D, or equivalently, to the
upper half plane H, or equivalently, to the strip P (we refer to such
a Riemann surface as a “conformal disk”). Using the isomorphism
S ≈ D, S can be naturally compactified by adding to it the ideal
boundary ∂S ≈ T, also called the circle at infinity or the absolute.

The group Aut(S) of conformal automorphisms of S looks partic-
ularly nice in the the upper half-plane model as it consist of Möbius
transformations with real coefficients:

f : z 7→ az + b

cz + d
;

(

a b
c d

)

∈ SL(2,R).

Hence Aut(S) ≈ SL(2,R)/{±I} = PSL(2,R).

The above classification of Möbius transformations M ∈ PSL(2,R)
has a clear meaning in terms of their action on S:

(i) A hyperbolic transformationM ∈ PSL(2,R) has two fixed points
on the ideal boundary ∂S (and does not have fixed points in S). Its
normal form in the H-model is a dialtion z 7→ λz (0 < λ < 1), and is
a translation z 7→ z + a in the P-model, where a = log λ.

(ii) A parabolic transformation has a single fixed point on ∂S (and
does not have fixed points in S). Its normal form in the H-model is a
translation z 7→ z + 1.

(iii) An elliptic transformation M 6= id has a single fixed point
a ∈ S (and does not have fixed points on ∂S). Its normal form in the
D-model is a rotation z 7→ e2πiθz.

A remarkable discovery by Poincaré is that a conformal disk S is
endowed with the intrinsic hyperbolic structure, that is, there exists a
Riemannian metric ρS on S of constant curvature −1 invariant with re-
spect PSL(2,R)-action. In the H-, D- and P-models, the length element
of ρS is given respectively by the following expressions:

dρD =
2|dz|

1 − |z|2 , dρH =
|dz|
y
, dρP =

|dz|
sin y

,
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where z = x+ iy. This metric is called hyperbolic .

Exercise 1.5. Verify that the above three expressions correspond to
the same metric on S, which has curvature −1 and is invariant under
PSL(2,R). Moreover, any orientation preserving isometry of S belongs
to PSL(2,R).

A conformal disk S endowed with the hyperbolic metric is called the
hyperbolic plane. In this way, PSL(2,R) assumes the meaning of the
group of (orientation preserving) hyperbolic motions of the hyperbolic
plane. It acts freely transitively on the unit tangent bundle of H.
Thus, the unit tangent bundle over H can be identified with PSL(2,R),
while the hyperbolic plane itself can be identified with the quotient
PSL(2,R)/O(2).

A Fuchsian group Γ is a discrete subgroup of PSL(2,R) acting on
S.

Exercise 1.6. Show that any Fuchsian group acts properly dicon-
tinuously on S.

Hence the quotient X = S/Γ is a Hausdorff space. Moreover, if Γ
acts freely on S, then the complex structure and the hyperbolic metric
naturally descend from S to X, and we obtain a hyperbolic Riemann
surface.

1.3.4. Hyperbolic geodesics and horocycles. Hyperbolic geodesics in
the D-model of the hyperbolic plane are Euclidean half-circles orthogo-
nal to the absolute T. For any hyperbolic unit tangent vector v ∈ TD,
there exists a unique oriented hyperbolic geodesic tangent to v. For any
two points x and y on the absolute, there exists a unique hyperbolic
geodesic with endpoints x and y. The group PSL(2,R) acts freely and
transitively on the space of oriented hyperbolic geodesics.

Exercise 1.7. Verify the above assertions if they are not familiar
to you.

A horocycle in D centered at x ∈ T is a Euclidean circle γ ⊂ D tan-
gent to T at x. A horodisk D ⊂ D is the disk bounded by the horocycle.
In purely hyperbolic terms, horocycles centered at x form a foliations
orthogonal to the foliation of geodesics ending at x. The stabilizer of
any horocycle (and the corresponding horoball) is the parabolic group
fixing its center.

In fact, the H-model fits better for describing horocycles: in this
model the horocylces centered at x = ∞ are horizontal lines Lh =
{Im z = h}, the corresponding horoballs are the upper half-planes Hh,
and their stabilizer is the group of translations z 7→ z + t, t ∈ R.
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The quotient of a horoball Hh by a discrete cyclic group of parabolic
transformations Z =< z 7→ z + n > is called a cusp. Conformally it
is the punctured disk D∗, hyperbolically it is the pseudosphere (see
Figure ??). Simple closed curves Lt/Z ⊂ Hh/Z, t > h, are also called
horocycles (in the cusp).

Exercise 1.8. Any cusp Hh/Z has infinite hyperbolic diameter but
a finite hyperbolic area. The hyperbolic length of the horocylcle Lt/Z
goes to zero as t→ ∞.

Let us now consider a Fuchsian group Γ and the corresponding
hyperbolic Riemann surface S = D/Γ. Hyperbolic geodesics on S are
(obviously) projections of the hyperbolic geodesics on D; horocycles on
S are (by definition) projections of the horocycles on D.

Let γ be a non-trivial simple closed curve on S, and let [γ] be
the class of simple closed curves freely homotopic to γ. To this class
corresponds a conjugacy class A(γ) of deck transformations (see §2).
Since deck transformations cannot be elliptic, the elements of A(γ) are
either all hyperbolic or all parabolic. Accordingly, we say that the class
[γ] itself is either hyperbolic or parabolic.

Proposition 1.1. a) If the class [γ] is hyperbolic then it is rep-
resented by a unique closed hyperbolic geodesic δ ∈ [γ]. This geodesic
minimizes the hyperbolic length of the closed curves in [γ].

b) If the class [γ] is parabolic then S contains a neighborhood U iso-
metric to a cusp, and [γ] is represented by any horocycle in it. In this
case, the class contains arbitrary short curves.

Proof. Let us consider a lift γ̃ of γ, and let G =< φn >n∈Z be its
stabilizer.

a) If φ is hyperbolic then it has two fixed points, x− and x+, on the
absolute, and then the closure of γ̃ in D̄ is a topological interval with
endpoints x1 and x+. Let us consider the hyperbolic geodesic δ̃ in D

with endpoints x±. It is invariant under the action of the cyclic group
G. In fact, it is completely invariant. Indeed, if ψ(δ̃) ∩ δ̃ 6= ∅ for some
ψ ∈ Γ rG, then ψ(γ̃)∩ γ̃ 6= ∅ as well, which is impossible since γ does

not have self-intersections. Hence the projection of δ̃ to S is equal to
δ̃/G, which is the desired simple closed geodesic representing [γ].

b) If φ is parabolic then it has a single fixed point x on the absolute,
and the closure of γ̃ in D̄ is a topological circle touching T at x (a
“topological horocycle centered at x”).

Let Ũ be the corresponding topological horoball bounded by γ̃. Let
us show that it is completely invariant under G. Indeed, for ψ ∈ ΓrG,
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ψ(Ũ) is a topological horoball centered at β(x) 6= x. But since γ is a
simple curve, ψ(γ̃) ∩ γ̃ = ∅ for any β ∈ Γ r G. Since two topological
horoballs with disjoint boundaries are disjoint, ψ(Ũ) ∩ Ũ = ∅.

It follows that Ũ/G is is isometrically embedded into D/Γ = S. But
Ũ/G is a conformal punctured disk containing some standard cusp
Hh/Z. Thus, this cusp isometrically embeds into S as well, and its
horocycles give us desired representatives of [γ]. �

We express part b) of the above statement by saying that the class
[γ] (or, the curve γ itself) is represented by a horocycle, or by a puncture,
or by a cusp.

A simple closed curve on S is called peripheral if it is either trivial or
is represented by a cusp. For instance, if S = C̄r{xi} is a sphere with
finitely many punctures then γ is non-peripheral iff each component of
C̄ r γ contains at least two punctures.

Exercise 1.9. Show that there is one-to-one correspondence be-
tween conjugacy classes of primitive parabolic transformations in a
Fuchsian group Γ and cusps of the Riemann surface S = D/Γ.

1.4. Annulus and torus.
1.4.1. Modulus of an annulus. Consider an open topological annu-

lus A. Let us endow it with a complex structure. Then A can be
represented as the quotient of either C or H modulo an action of a
cyclic group < γ >. As we have seen above, in the former case A is
isomorphic to the flat cylider C/Z ≈ C∗. In the latter case, we obtain
either the punctured disk D∗ (if γ is parabolic) or an annulus A(r, R) (if
γ is hyperbolic). In the hyperbolic case we call A a conformal annulus.

Exercise 1.10. Write down explicitly the covering maps H → D∗

and H → A(r, R).

Exercise 1.11. Prove that two round annuli A(r, R) and A(r′, R′)
are conformally equivalent if and only if R/r = R′/r′.

Let

mod(A) =
1

2π
log

R

r
for a round annulus A = A(r, R). For an arbitrary conformal annu-
lus A, define its modulus, mod(A), as the modulus of a round annulus
A(r, R) isomorphic to A. According to the above exercise, this defini-
tion is correct and, moreover, mod(A) is the only conformal invariant
of a conformal annulus.

If A is isomorphic to C∗ or D∗ then we let mod(A) = ∞.
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If A is a topological annulus with boundary whose interior is en-
dowed with a complex structure, then mod(A) is defined as the modulus
of the int(A).

The equator of a conformal annulus A is the image of the equator
of the round annulus (see §1) under the uniformization A(r, R) → A.

Exercise 1.12. (i) Write down the hyperbolic metric on a confor-
mal annulus represented as the quotient of the strip Sh = {0 < Im z <
h} modulo the action of the cyclic group generated by z 7→ z + 2π.
(What is the relation between h and modA?)

(ii) Prove that the equator is the unique closed hypebolic geodesic of
a conformal annulus A in the homotopy class of the generator of π1(A).

(iii) Show that the hyperbolic length of the equator is equal to 1/mod(A).
Relate it to the multiplier of the deck transformation of H covering A.

Even if A is a hyperbolic annulus, it is possible to endow it with
a flat, rather than hyperbolic, metric. To this end realize A as the
quotient of a strip Sh modulo the cyclic group of translations (see the
above exercise). Since the flat metric on Sh is translation invariant, it
descends to A. In this case we call A a flat cylinder.

1.4.2. Modulus of the torus. Let us take a closer look at the actions
of the group Γ ≈ Z2 on the (oriented) affine plane P ≈ C by transla-
tions (see §1.3.1). We would like to classify these actions up to affine
conjugacy, i.e., two actions T and S are considered to be equivalent if
there is an (orientation preserving) affine automorphism A : P → P
and an algebraic automorphism i : Γ → Γ such that for any γ ∈ Γ the
following diagram is commutative:

P −→
T γ

P

A ↓ ↓ A
P −→

Si(γ)
P

(1.1)

This is equivalent to classifying the quotient tori P/T Γ up to conformal
equivalence (since a conformal isomorphism between the quotient tori
lifts to an affine isomorphism between the universal covering spaces
conjugating the actions of the covering groups).

The conjugacy A in the above definition will also be called equi-
variant with respect to the corresponding group actions.

The problem becomes easier if to require first that i = id in (1.1).
Fix an uncolored pair of generators α and β of Γ. Since T acts by
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translations and since P is affine, the ratio

τ = τ(T ) =
T β(z) − z

Tα(z) − z

makes sense and is independent of z ∈ P . Moreover, by switching the
generators α and β we replace τ with 1/τ . Thus, we can color the
generators in such a way that Im τ > 0. (With this choice, the basis of
P corresponding to the generators {α, β} is positively oriented.)

Exercise 1.13. Show that two actions T and S of Γ =< α, β >
are affinely equivalent with i = id if and only if τ(T ) = τ(T̃ ).

According to the discussion in §1.1.4, the choice of generators of
Γ means (uncolored) marking of the corresponding torus. Thus, the
marked tori are classified by a single complex modulus τ ∈ H.

Forgetting the marking amounts to replacement one basis {α, β} in

Γ by another, {α̃, β̃}. If both bases are positively oriented then there
exists a matrix

(

a b
c d

)

∈ SL(2,Z)

such that α̃ = aα+ b β, β̃ = c α + d β. Hence

τ̃ =
aτ + b

cτ + d
.

Thus, the unmarked tori are parametrized by a point τ ∈ H mod-
ulo the action of SL(2,Z) on H by Möbius transformations. The
kernel of this action consists of two matrices, ±I, so that the quo-
tient group of Möbius transformations is isomorphic to PSL(2,Z) =
SL(2,Z)/mod{±I}. This group is called modular. (In what follows,
the modular group is identified with PSL(2,Z).)

Remark. Passing from SL(2,Z) to PSL(2,Z) has an underlying
geometric reason. All tori C/Γ have a conformal symmetry z 7→ −z.
It change marking {α, β} by −I{α, β}. Thus, remarking by −I acts
trivially on the space of marked tori.

The modular group has two generators, the translation z 7→ z + 1
and the second order rotation z 7→ −1/z. The intersection of their
fundamental domains gives the standard fundamental domain ∆ for
this action.

Exercise 1.14. a) Verify the last statement.

b) Find all points in ∆ that are fixed under some transformation of
PSL(2,Z). What are the orders of their stabilizers?
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c) What is the special property of the tori corresponding to the fixed
points?

d) Show that by identifying the sides of ∆ according to the action of
the generators we obtain a topological plane Q ≈ R2.

e) Endow the above plane with the complex structure so that the natural
projection H → Q is holomorphic. Show that Q ≈ C. (The correspond-
ing holomorphic function H → C is called modular).

Thus, the unmarked tori are parametrized by a single modulus µ ∈
H/PSL(2,Z) ≈ C.

In the dynamical context we will be dealing with the intermadiate
case of partially marked tori, i.e., tori with one marked generator α of
the fundamental group. This space can be viewed as the quotient of the
space of fully marked tori by means of forgetting the second generator,
β. If we have two bases {α, β} and {α, β̃} in Γ with the same α, then

β̃ = β + nα for some n ∈ Z. Hence τ̃ = τ + n.
Thus, the space of partially marked tori is parametrized by H mod-

ulo action of the cyclic group by translations τ 7→ τ + n. The quotient
space is identified with the punctured disk D∗ by means of the expo-
nential map H → D∗, τ 7→ λ = e2πiτ . So, the partially marked tori are
parametrized by a single modulus λ ∈ D∗. We will denote such a torus
by T2

λ.
This modulus λ makes a good dynamical sense. Consider the cov-

ering p : S → T2
λ of the partially marked torus corresponding to the

marked cyclic group. Its covering space S is obtained by taking the
quotient of C by the action of the marked cyclic group z 7→ z + n,
n ∈ Z. By means of the exponential map z 7→ e2πiz, this quotient is
identified with C∗. Moreover, the action of the complementary cyclic
group z 7→ z+nτ , n ∈ Z, descends to the action ζ 7→ λnζ on C∗, where
the multiplier λ = e2πiτ is exactly the modulus of the torus!

Thus, the partially marked torus T2
λ with modulus λ ∈ D∗ can be

realized as the quotient of C∗ modulo the cyclic action generated by
the hyperbolic Möbius transformation ζ 7→ λζ with multiplier λ.

1.5. Geometry of quadratic differentials.
1.5.1. Flat structures with cone singularities and boundary corners.

Recall that a Euclidean, or flat, structure on a surface S is an atlas
of local charts related by Euclidean motions. However, for topological
reasons, many surfaces do not admit any flat structure: the Gauss-
Bonnet Theorem bans such a structure on any compact surface except
the torus (see below). On the other hand, if we allow some simple
singularities, then these obstruction disappears.
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Everybody is familiar with a Euclidean cone of angle α ∈ (0, 2π).
To give a formal definition, just take a standard Euclidean wedge of
angle α and glue its sides by the isometry. It is harder to define (and
even harder to visualize) a cone of angle α > 2π. One possible way
is to partition α into several angles αi ∈ (0, 2π), i = 0, 1, . . . n − 1, to
take wedges Wi of angles αi, and paste Wi to Wi+1 by gluing the sides
isometrically (where i is taken mod n) ( and then to check, by taking a
“common subdivision”, that the result is independent of the particular
choice of the angles αi).

But there is a more natural way. Consider a smooth universal
covering exp : H → D∗, z 7→ eiz, over the punctured disk, and endow
H with the pullback of the Euclidean metric, e−y|dz|. Let us define the
wedge W = W (α) of angle α as the strip {z : 0 ≤ ℜz ≤ α} completed
with one point at Im z = +∞. If we isometrically glue the sides of this
wedge, we obtain the cone C = C(α) of angle α. (We can also define
C(α) as the one-point completion at +∞ of the quotient H/αZ.)

Exercise 1.15. Let γ be a little circle around a cone singularity of
angle α. Check that the tangent vector γ′ rotates by angle α as we go
once around γ.

According to the discussion in Appendix 3, a cone singularity x
with angle α = α(x) carries curvature 2π − α.

Let us now consider a compact flat surface S with boundary. As-
sume that the boundary is piecewise linear with corners. It means that
near any boundary point, S is isometric to a wedge W (α) with some
α > 0. Points where α 6= π are called corners of angle α (as the corners
are isolated, there are only finitely many of them). The rotation ρ(x)
at a corner x ∈ ∂S of angle α = α(x) is defined as π−α (see Appendix
3).

1.5.2. Gauss-Bonnet Formula.

Theorem 1.2. If S is a compact flat surface with cone singularities
and piecewise linear bounady with corners then

∑

K(x) +
∑

ρ(y) = 2πχ(S),

where the first sum is taken over the cone singularities while the second
sum is taken over the boundary corners.

This is certainly a particular case of the general Gauss-Bonnet for-
mula (3.4) from Appendix 3, but in our special case we will give a
direct combinatorial proof of it.

Proof. Let us triangulate S by Euclidean triangles in such a way
that all cone singularities and all boundary corners are contained in the
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set of vertices. Let αi be the list of the angles of all triangles. Summing
these angles over the triangles, we obtain:

∑

αi = π(# triangles).

On the other hand, summation over the vertices gives:
∑

αi = 2π(# regular vertices) +
∑

cones

α(x) +
∑

corners

α(y)

= 2π (# vertices) −
∑

cones

K(x) −
∑

corners

ρ(y) + π(# corners).

Hence
∑

K(x)+
∑

ρ(y) = π (2(# vertices)+(# corners)−(# triangles)) = 2πχ(S),

where the last equality follows from

3(# triangles) = 2(# edges) + (# corners).

�

1.5.3. Geodesics. Let S be a flat surface with cone singularities. A
piecewise smooth curve γ(t) in S is called a geodesic if it is locally
shortest, i.e., for any x = γ(t) there exists an ǫ > 0 such that for any
t1, t2 ∈ [t− ǫ, t+ ǫ], γ : [t1, t2] → S is the shortest path connecting γ(t1)
to γ(t2).

Obviously, any geodesic is piecewise linear: a concatenation of
straight Euclidean intervals meeting at cone points. Moreover, both
angles between two consecutive intervals in a geodesic must be at least
π (in particular, the intervals cannot meet at a cone point with angle
< 2π).

Exercise 1.16. Verify these assertions by exploring geodesics on a
cone C(α).

Theorem 1.3. Let S be a closed flat surface with only negatively
curved cone singularities. Then for any path γ : [0, 1] → S, there is a
unique geodesic δ : [0, 1] → S homotopic to γ rel the endpoints.

Proof. Existence. Let L be the infimum of the lengths of smooth
paths homotopic to γ rel the endpoints. We can select a minimizing
sequence of picewise linear paths with the intervals of definite length.
Such paths form a precompact sequece in S, so we can select a subse-
quence converging to a path δ in S of length L. Obviously, δ is a local
minimizer, and hence is a geodesic.

Uniqueness. Let γ and δ be two geodesics on S homotopic rel the
endpoints. They can be lifted to the universal covering Ŝ to geodesics
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γ̂ and δ̂ with common endpoints. We can assume without loss of gen-
erality that the endpoints a and b are the only intersection points of
these geodesics (replacing them if needed by the arcs γ̂′ and δ̂′ bounded

by two consecutive intersection points). Then γ̂ and δ̂ bound a polygon
Π with vertices at a and b and some corner points xi. Let yj be the
cone poins in int Π. By the Gauss-Bonnet formula,

(π − ρ(a)) + (π − ρ(b)) +
∑

(π − ρ(xi)) +
∑

K(yj) = 2π.

But the first two terms in the left-hand side are less than π wlile the
others are negative – contradiction. �

1.5.4. Quadratic differentials and Euc(2)-structures. Let S∗ stand
for a flat surface S with its cone singularities punctured out.

A parallel line field on S is a family of tangent lines l(z) ∈ TzS,
z ∈ S∗, that are parallel in any local chart of S.

Let j : Euc(C) → U(2) be the natural projection that associates
to a Euclidean motion its rotational part. Let Euc(n) stand for the j-
preimage of the cyclic group of order n in U(2). In other words, motions
A ∈ Euc(n) are compositions of rotations by 2πk/n and translations.
(So, the complex coordinate, they assume the form A : z 7→ e2πk/nz+c.)

Lemma 1.4. A flat surface S admits a parallel line field if and only
if its Euclidean structure can be refined to a Euc(2)-structure.

Proof. Let S be Euc(2)-surface and let θ ∈ R/mod πZ. Given
a local chart, we can consider the parallel line field in the θ-direction.
Since the θ-direction is preserved (modπ) by the group Euc(2), we
obtain a well defined parallel line field on S∗.

Vice versa, assume we have a parallel line field on S∗. Then we
can rotate the local charts so that this line field becomes horizontal.
The transit maps for this atlas are Euclidean motions preserving the
horizontal direction, i.e., elements of Euc(2). �

Lemma 1.5. S admits a parallel line field if and only if all cone
angles are multiples of π.

Proof. Any tangent line can be parallely trnsported along any
path in S∗. Since S is flat, the result is independent of the choice of
a path within a certain homotopy class. S admits a parallel line field
if and only if the holonomy of this parallel transport around any cone
singularity is trivial, i.e., it rotates the line by a multiple of π. But
the holonomy around a cone singularity of angle α rotates the line by
angle α. �
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Next, we will relate flat geometry to complex geometry. Namely,
any flat surface S is naturally a Riemann surface. Indeed, since Eu-
clidean motions are conformal, the flat structure induces complex struc-
ture on S∗. To extend it through cone singularitites, consider a con-
formal isomorphism φ : H/αZ → D∗, z 7→ e2πiz/α. It extend to a
homeomorphism C(α) → D that serves as a local chart on the cone
C(α).

Exercise 1.17. Show that the extension of the conformal structures
from S∗ to S is unique.

Formulate as a general statement about removing punctures.
1.5.5. Abelian differentials and translation surfaces.

2. Appendix 1 : Tensor calculus in complex dimesnion one

For (n,m) ∈ Z2, an (n,m)-tensor on a Riemann surface S is an
object τ that can be locally written as a differential form

τ(z) dzndz̄m. (2.1)

Formally speaking, to any local chart z = γ(x) on S corresponds a
function τγ(z), and this family of functions satisfy the transforamtion
rule: if ζ = δ(x) is another local chart and z = φ(ζ) is the transit map,
then

τδ(ζ) = τγ(φ(ζ))φ′(ζ)nφ′(ζ)
m
.

The regularity of the tensor (e.g., τ can be measurable, smooth or holo-
morphic) is determined by the regularity of all its local representative
τγ.

Even when dealing with globally defined tensors, we will often use
local notaion (2.1), and we will usually use the same notation for a
tensor and the representing local function.

For instance, a holomorphic (1, 0)-tensor ω(z)dz is called an Abelian
differential; a holomorphic (2, 0)-tensor q(z)dz2 is called a quadratic
differential; a (−1, 1)-tensor µ(z)dz̄/dz is called a Beltrami differential.
Notice that the absolute value of a Beltrami differential, |µ|, is a global
function on S.

(In this book all Beltrami differentials under consideration are as-
sumed measurable and bounded.)

A (1, 1)-tensor ρ(z) dzdz̄ can be interpreted either as a conformal
Riemannian metric ρ(z)|dz|2 on S, or as its area form ρ(z) dz ∧ dz̄ (as
all these objects are transformed under according to the same rule,
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by the factor |φ(ζ)|2).3 In what follows we will not make distinctions
between tensors of these types.

For instance, if q is a quadratic differential then |q| is a (1, 1)-form,
so that we can evaluate

∫

|q| (at least locally). If q is a quadratic
differential and µ is a Beltrami differential, then qν is again a (1, 1)-
tensor, so that the local integral

∫

qµ makes sense.

A (−1, 0)-tensor
v(z)

dz
has the same type as the vector field v(z)

d

dz
.

In fact, any vector field can be viewed as such (−1, 0)-form, up to the
following convention. Let us consider a vector field

v = v1∂x + v2∂y = v∂z + v̄∂z̄,

where

∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y). (2.2)

Here v∂z and v̄∂z̄ are called the holomorphic and anti-holomorphic parts
of v, and they can be viewed as (−1, 0) and (0,−1) forms repsectively.
The projection of a vector field on its holomorphic part, v 7→ v/dz,
is an isomorphism between the space of vector fields and the space of
(−1, 0)-tensors, which allows us to identify these objects.

Remark 1.1. The holomorphic part of a tangent vector can be
invarinatly defined as follows. Let E be a one-dimensional complex
vector space. Let is us first decompexify it to obtain a two-dimensional
real vector space ER, and then compexify it to obtain a complex two
dimensional space F = (ER)C. The multiplication by i in E becomes
a real linear operator J : ER → ER such that J2 = −I. Its compexifi-
cation JC : F → F has one-dimensinal eigenspaces, F± corresponding
to eigenvalues ±i respectively. The first one is called the holomorphic
part of F , while the second is called the anti-holomorphic part. The
projection of E to F+ parallel to F− is a complex isomorphism that
allows to identify these two spaces.

In coordinates this discussion assumes the following form. Decom-
plexification of E means that we introduce real coordinates x+ iy = z.
Compexification of ER means that x and y are now considered as
complex coordinates X and Y . The operator J acts in F as follows:
(X,Y ) 7→ (Y,−X). The coordinates that diagonalize the operator are
Z = X + iY and Z̄ = X − iY . In these coordinates, the projection
E → F+ assumes the form z 7→ (z, 0).

3We call forms q(z)dz ∧ dz̄ “area forms” even when they are not positive, as in
the case of dz ∧ dz̄ = −2idx ∧ dy.
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Let us now introduce differential operators ∂ and ∂̄ acting on the
tensors as follows:

∂(τ dzndz̄m) = ∂zτdz
n+1dz̄m), ∂̄(τ dzndz̄m) = ∂zτdz

ndz̄m+1).

Exercise 1.18. Check that these operators are correctly defined.

For instance, if v is a vector field viewed as a (−1, 0) tensor, then
∂v is a Beltrami differential.

For simplicity, we will often use notation ∂ and ∂̄ for the partial
derivatives (2.2), unless it can lead to a confusion.

3. Appendix 2: Gauss-Bonnet formula for variable metrics

Formally speaking, we can skip a discussion of this general version of
the Gauss-Bonnet formula as we have verified it directly in all special
cases that we need. However, it does give a deeper insight into the
matter. The reader can consult, e.g., [] for a proof.

Let S be a compact smooth Riemannian surface, maybe with bound-
ary. Let K(x) be the Gaussian curvature at x ∈ S, and let κ(x) be
the geodesic curvature at x ∈ ∂S. The Gauss-Bonnet formula related
these gemeotric quantities to topology of S:

∫

S

Kdσ +

∫

∂S

κds = 2πχ(S), (3.1)

where dσ and ds are the area and length elements respectively.
In particular, if S is closed then

∫

S

Kdσ = 2πχ(S), (3.2)

which, in particular, implies that there are no flat structures on a closed
surface of genus g 6= 0.

The boundary term in (3.1) admits a nice interpretation. Let us
parametrize a closed boundary curve γ with the length parameter, so
that γ′(t) is the unit tangent vector to γ. Then for nearby points γ(t)
and γ(τ), where τ = t + ∆t > t, let v(t, τ) be the tangent vector
γ′(τ) parallelly transported from γ(τ) back to γ(t). Then let θ(t, τ)
be the angle between γ′(t) and v(t, τ) (taking with positive sign if v
points “into S”. Summing these angles up over a partition of γ into
small intervals, we obtain the rotation number of the tangent vector.

It coincides with

∫

γ

κds.

Note that if ∂S consists of geodesics, the boundary term in (3.1)
disappears, and it assumes the same form (3.2) as in the closed case.
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If we allow the Riemannian metric to have an isolated singularity
at some point x ∈ S then using the Gauss-Bonnet formula for a small
disk arround x, we can assign the Gaussian curvature to x:

K(x) = 2π − lim
γ→x

∫

γ

κds, (3.3)

provided the limit exists. (Here γ is a small circle around x, and K(x)
is assumed to be integrable.)

If we allow a corner of angle α ∈ (0,∞) at a boundary point y ∈ ∂S
(see §1.5.1), we can assign the rotation number ρ(y) = π−α ∈ (π,−∞)
to it as the angle between the incoming and outgoing tangent vectors.

Then the Gauss-Bonnet formula is still valid for surfaces with sin-
gularities and boundary corners, assuming the following form:

∫

S

Kdσ +
∑

sing

K(x) +

∫

∂S

κds+
∑

corners

ρ(y) = 2πχ(S).
(3.4)

4. Uniformization Theorem

4.1. The following theorem of Riemann and Koebe is the most
fundamental result of complex analysis:

Theorem 1.6. Any simply connected Riemann surface is confor-
mally equivalent to either the Riemann sphere C̄, or to the complex
plane C, or the unit disk D.

4.2. Classification of Riemann surfaces. Consider now any
Riemann surface S. Let π : Ŝ → S be its universal covering. Then
the complex structure on S naturally lifts to Ŝ turning S into a simply
connected Riemann surface which holomorphically covers S. Thus, we
come up with the following classification of Riemann surfaces:

Theorem 1.7. Any Riemann surface S is conformally equivalent
to one of the following surfaces:

• The Riemann sphere C̄ (spherical case);
• The complex plane C, or the punctured plane C∗, or a torus

T2
τ , τ ∈ H (parabolic case);

• The quotient of the hyperbolic plane H2 modulo a discrete
group of isometries (hyperbolic case).

Thus, any Riemann surface comes endowed with one of the three
geometries described in §1.3: projective, affine, or hyperbolic.

4.3. Simply connected plane domains.
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4.4. Thrice punctured sphere and modular function λ. Let
us now consider the case of the biggest hyperbolic plane domain, the
thrice punctured sphere U = Cr{0, 1}4. In this case, there is a simple
explicit construction of the universal covering. Namely, let us consider
an ideal triangle ∆ in the hyperbolic plane, that is, the geodesic tri-
angle with vertices on the absolute5 (see Figure ??). By the Riemann
Mapping Theorem, it can be conformally mapped onto the upper half
plane H so that its vertices go to the points 0, 1 and ∞. By the Schwarz
Reflection Principle, this conformal map can be extended to the three
symmetric ideal triangles obtained by reflection of ∆ in its edges. Each
of these symmetric rectangles will be mapped onto the lower half-plane
H−. Then we can extend this map further to the six symmetic rect-
angles each of which will be mapped onto H again, etc. Proceeding in
this way, we obtain the desired universal covering λ : D → U called a
modular function.

Exercise 1.19. Verify the follwing properties:
a) The union of these triangles tile the whole disk D;
b) The modular function λ is the desired universal covering;
c) Its group of deck transforamations is the congruent group Γ2, that
is, the subgroup of PSL(2,Z) consisting of matrices congruent to I mod
2.

4.5. Do we need the full strength of the Uniformization
Theorem?

4.6. Appendix: harmonic functions.
4.6.1. Definitions. There are three equivalent definitions of a har-

monic function h : U → R on a domain U ⊂ C:

• h ∈ C2(U) and ∆h = 0 where ∆ = ∂2
x + ∂2

y is the usual Euclidean
Laplacian ;

• h is continuous and for any disk |D(a, r) ⊂ U , h(a) =
∫ 2π

0
1
2π
h(a +

reiθ)dθ.

• Locally h = ℜφ for some holomortphic function φ.
distributional stuff? comment on proof?
The last definition makes obvious that harmonicity is well-defined

on an arbitrary Riemann surface S. It can be also seen from the first
definition as follows. In terms of the differential operators ∂ and ∂̄ (see

4Note that all thrice punctured spheres are equivalent under the action of the
Möbius group Möb(Ĉ).

5Note that all these triangles are equivalent under the action of PSL(2, R).
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§2) we have: ∂z∂z̄ = 1
4
∆, so that

∂∂̄h = ∂z∂z̄h dz ∧ dz̄ =
1

2i
∆h dx ∧ dy.

Since ∂∂̄ is a well-defined operator (from functions to 2-forms) on a
Riemann surface S, we see that ∆h dx ∧ dy is a well defined 2-form
on S. In particular, zeros of ∆h, and hence harmonicity of h, are well
defined.

4.6.2. Maximum Principle. Given a domain U on a Riemann sur-
face S, let H(U) stand for the space of harmonic functions in U , and
let H(Ū) stand for the subspace of H(U) consisting of functions that
admit continuous extension to Ū .

Maximum Principle. If a harmonic function h on U has a local
maximum/minimum in U then it is constant.

Corollary 1.8. Let U ⋐ S be a compactly embedded domain in
a Riemann surface S, and let h : H(Ū). Then h attains its maximum
and minimum on ∂U .

Corollary 1.9. Under the above circumstances, h is uniquely de-
termined by its boundary values, h| ∂U .

4.6.3. Poisson Formula. The Poisson Formula allows us to recover
a harmonic function h ∈ H(D̄) from its boundary values.

Poisson Formula. Any continuous function g ∈ C(T) on the unit
circle admits a unique harmonic extension h ∈ H(Ū) to the unit disk
(so that g = h|T). This extension is given by the following formula:

h(z) =
1

2π

∫ 2π

0

g(ζ)
1 − |z|2
|z − ζ|2dθ, z ∈ D, ζ = eiθ ∈ T.

Proof. For z = 0, this formula just says that

h(0) =

∫ 2π

0

h(eiθ)dθ.

It implies the formula at any point z ∈ D by making a conformal change
of variable φz : D̄ → D̄

ζ 7→ ζ + z

1 − z̄ζ

that moves 0 to z. Since the spaceH(D̄) is invariant under such changes
of variable, we have:

h(z) = (h ◦ φz)(0) =

∫ 2π

0

h ◦ φz(e
iθ)dθ =

∫ 2π

0

h(eiθ)dθz,
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where

dθz = (φz)∗(dθ) = |(φ−1
z )′(θ)|dθ,

and the latter derivative is equal to the Poisson kernel
1 − |z|2
|z − ζ|2 (check

it!).
Uniqueness of the extension follows from the Maximum Principle.

�

5. Principles of the hyperbolic metric

5.1. Schwarz Lemma. In terms of the hyperbolic metric, the
elementary Schwarz Lemma can be brought to a conformally invariant
form that plays an outstanding role in holomorphic dynamics:

Schwarz Lemma. Let φ : S → S ′ be a holomorphic map between
two hyperbolic Riemann surfaces. Then
• either φ is a strict contraction, i.e., ‖Dφ(z)‖ < 1 for any z ∈ S, where
the norm of the differential is evaluated with respect to the hyperbolic
metrics of S and S ′;
• or else, φ is a covering map.

Proof. Given a point z ∈ S, let π : (D, 0) → (S, z) and π′ :
(D, 0) → (S ′, φ(z)) be the universal coverings of the Riemann surfaces
S and S ′ respectively. Then φ can be lifted to a holomorphic map
φ̃ : (D, 0) → (D, 0). By the elementary Schwarz Lemma, |φ̃′(0)| < 1

or else φ̃ is a conformal automorphism of D (in fact, rotation). This
yields the desired dichotomy for φ. �

In particular, if S ⊂ S ′ then ρS ≥ ρS′ (“a smaller Riemann surface
is more hyperbolic”).

5.2. Hyperbolic metric blows up near the boundary. For a
domain U ⊂ C̄, let d(z) stand for the spherical distance from z ∈ U to
∂U .

Exercise 1.20. Show that dρD∗(z) = − |dz|
|z| log |z| ;

Lemma 1.10. Let S be a Riemann surface, x ∈ S, and assume that
the punctured surface S = S r {x} is hyperbolic with the hyperbolic
metric ρ. Then

dρ(z) ≍ − |dz|
|z| log |z| ,

where z is a local coordinate on S with z(x) = 0.
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Proof. By Proposition 1.1, a standard cusp Hh/Z is isometrically
embedded into S so that its puncture corresponds to x. On the other
hand, by means of the exponential maps H → D∗, z 7→ e2πiz, the
cusp Hh/Z is isometric to the punctured disk D∗

r, r = e−2πh, in the
hyperbolic metric of D∗. By the previous Excercise, the latter has the
desired form in the plane coordinate of D∗

r (which extends to a local
coordinate on S near x). Hence it has the desired form in any other
local coordinate on S near x. �

Proposition 1.11. For any hyperbolic plane domain U ⊂ C̄, there
exists κ = κ(U) > 0 such that:

dρU

dσ
(z) ≥ − κ

d(z) log d(z)
,

where σ is the spherical metric.

Proof. Take some point z ∈ U , and find the closest to it point
a ∈ ∂U . Since ∂U consists of at least three points, we can find two
more points, b, c ∈ ∂U , such that the points a, b, c are ǫ-spearated
on C̄, where ǫ > 0 depends only on U . Let us consider the Möbius
transformation φ that moves (a, b, c) to (0, 1,∞). By Exercise 1.3,
thes transformations are uniformly bi-Lipschitz in the spherical metric,
which reduces the problem to the case when (a, b, c) = (0, 1,∞). But
in this case, ρU(z) dominates the hyperbolic metric on U = C r {0, 1},
and the desired estimate follows from Lemma 1.10. �

Exercise 1.21. More generally, let S be a Reimann surface en-
dowed with a conformal Riemannian metric σ, and let K be a com-
pact subset of S such that S rK is a hyperbolic Riemann surface with
hyperbolic metric ρ. Then

dρ

dσ
(z) ≥ − κ

d(z) log d(z)
, as z → K, z ∈ S,

where d(z) = dist(z,K).

5.3. Normal families and Montel’s Theorem. Let U be a Rie-
mann surface, and let M(U) be the space of meromorphic functions
φ : U → C̄. Supply the target Riemann sphere C̄ with the spherical
metric ds and the space M(U) with the topology of uniform conver-
gence on compact subsets of U . Thus φn → φ if for any compact
subset K ⊂ U , ds(φn(z), φ(z)) → 0 uniformly on U . Since locally uni-
form limits of holomorphic functions are holomorphic, M(U) is closed
in the space C(U) of continuous functions φ : U → C̄ (endowed with
the topology of uniform convergence on compact subsets of U).
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Exercise 1.22. Endow M(U) with a metric compatible with the
above convergence that makes M(U) a complete metric space.

It is important to remember that the target should be supplied with
the spherical rather than Euclidean metric even if the original family
consists of holomorphic functions. In the limit we can still obtain a
meromorphic function, though of a very special kind:

Exercise 1.23. Let φn : U → C be a sequence of holomorphic
functions converging to a meromorphic function φ : U → C̄ such that
φ(z) = ∞ for some z ∈ U . Then φ(z) ≡ ∞, and thus φn(z) → ∞
uniformly on compact subsets of U .

A family of meromorphic functions on U is called normal if it is
precompact in M(U).

Exercise 1.24. Show that normality is the local property: If a
family is normal near each point z ∈ U , then it is normal on U .

Exercise 1.25. If a domain U ⊂ C is supplied with the Euclidean
metric |dz| while the target C̄ is supplied with the spherical metric
|dz|/(1 + |z|2), then the corresponding “ES norm” of the differential
Dφ(z) is equal to |φ′(z)|/(1 + |φ(z)|2), z ∈ U . Show that a family of
meromorphic functions φn : U → C̄ is normal if and only if the ES
norms ‖Dφn(z)‖ are uniformly bounded on compact subsets of U .

Theorem 1.12 (Little Montel). Any bounded family of holomorphic
functions is normal.

Proof. It is because the derivative of a holomorphic function can
be estimated via the function itself. Indeed by the Cauchy formula

|φ′(z)| ≤ max ζ∈U |φ(ζ)|
dist(z, ∂U)

.

Thus, if a family of holomorphic functions φn is uniformly bounded,
their derivatives are uniformly bounded on compact subsets of U . By
the Arzela-Ascoli Criterion, this family is precompact in the space C(U)
of continuous functions. Making use of Exercise 1.22), we see that the
original family is precompact in the space M(U). �

Exercise 1.26. A sequence of holomorphic functions is normal if
and only if from any subsequence one can extract a further subsequence
which is either bounded or divergent to ∞.

Theorem 1.13 (Montel). If a family of meromorphic functions φn :
U → C̄ does not assume three values then it is normal.
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Proof. Since normality is a local property, we can assume that U
is a disk. Let us endow it with the hyperbolic metric ρ. Let a, b, c be
omitted values on C̄, and let ρ′ be the hyperbolic metric on the thrice
punctured sphere C̄ r {a, b, c}.

By the Schwarz Lemma, all the functions φn are contractions with
respect to these hyperbolic metrics. By Exercise 1.11 (iii), the spherical
metric is dominated by ρ′, so the φn are uniformly Lipschitz from metric
ρ to the spherical metric. Normality follows. �

Theorem 1.14 (Refined Montel). Let {φn : U → C̄} be a family of
meromorphic functions. Assume that there exists three meromorphic
functions ψi : U → C̄ such that for any z ∈ U and i 6= j we have:
ψi(z) 6= ψj(z) and φn(z) 6= ψi(z). Then the family {φn} is normal.

Proof. Let us consider the holomorphic family of Möbius trans-
formations hz : C̄ → C̄ depending on z ∈ U as a parameter such
that hz : (ψ1(z), ψ2(z), ψ3(z)) 7→ (0, 1,∞). Then the family of func-
tions Φn(z) = hz(φn(z)) omits value 0, 1,∞, and hence is normal by
Theorem 1.13. It follows that the original family is normal as well. �

Exercise 1.27. Show that the theorem is still valid if we allow
ψi(z) = ψj(z) for some z ∈ U .

Given a family {φn} of meromorphic functions on U , we can define
its set of normality as the maximal open F ⊂ U set on which this
family is normal.

5.4. Koebe Distortion Theorem. We are now going to discuss
one of the most beautiful and important theorems of the classical geo-
metric functions theory.

The inner radius rD,a ≡ dist(a, ∂D) of a pointed disk (D, a) is as
the biggest round disk D(a, ρ) contained in D. The outer radius RD,a ≡
H-dist(a, ∂D) is the radius of the smallest disk D̄(a, ρ) containing D.
(If a = 0, we will simply write rD and RD.) The eccentricity of a
pointed disk (D, a) is the ratio RD,a/rD,a.

Theorem 1.15 (Koebe Distortion). Let φ : (D, 0) → (D, a) be a
conformal map, and let k ∈ (0, 1), Dk = φ(Dk). Then there exist
constants C = C(k) and L = L(k) (independent of a particular φ!)
such that

|φ′(z)|
|φ′(ζ)| ≤ C(k) for all z, ζ ∈ Dk (5.1)

and

L(k)−1|φ′(0)| ≤ rDk,a ≤ RDk,a ≤ L(k) |φ′(0)|. (5.2)
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In particular, the inner radius of the image φ(D) around a is bounded
from below by an absolute constant times the derivative at the origin:

rφ(D),a ≥ ρ|φ′(0)| > 0. (5.3)

The expression in (5.1) is called the distortion of φ, its logarithm
is called the non-linearity of φ. Thus estimate (5.1) tells us that the
function φ restricted to Dk has a uniformly bounded distortion. Es-
timate (5.2) tells that the eccentricity of the domain Dk around a is
uniformly bounded. Note that since any topological disk in C, except
C itself, can be uniformized by D, there could be no possible bounds
on the distortion and eccentricity in the whole unit disk D. However,
once the disk is shrunk a little bit, the bounds appear!

The Koebe Distortion Theorem is equivalent to the normality of
the space of normalized univalent functions:

Theorem 1.16. The space U of univalent functions φ : (D, 0) →
(C, 0) with |φ′(0)| = 1 is compact (in the topology of uniform conver-
gence on compact subsets of D).

Proof. Note first that the image φ(D) cannot contain the whole
unit circle T. Otherwise the inverse map φ−1 would be well-defined on
some disk Dr with r > 1, and by the Schwarcz Lemma, |Dφ−1(0)| ≤
1/r < 1 contrary to the normalization assumption.

Hence for any φ ∈ U there is a θ ∈ R such that the rotated function
eiθφ does not assume value 1. Since the group of rotation is compact, it
is enough to prove that the space U0 ⊂ U of univalent functions φ ∈ U
which do not assume value 1 is compact.

Let us puncture D at the origin, and restrict all the functions φ ∈ U0

to the punctured disk D∗. Since all the φ are univalent, they do not
assume value 0 in D∗. By the Montel Theorem, the family U0 is normal
on D∗.

Let us show that it is normal at the origin as well. Take a Jordan
curve γ ⊂ D∗ around 0, and let ∆ be the disk bounded by γ. Restrict
all the functions φ ∈ U0 to γ. By normality in D∗, the family U0 is either
uniformly bounded on γ, or admits a sequence which is uniformly going
to ∞. But the latter is impossible since all the curves φn(γ) intersect
the interval [0, 1] (as they go once around 0 and do not go around 1).
Thus, the family U0 is uniformly bounded on γ. By the Maximum
Principle, it is is uniformly bounded, and hence normal, on ∆ as well.

Thus, the family U0 is precompact. What is left, is to check that
it contains all limiting functions. By the Argument Principle, limits of
univalent functions can be either univalent or constant. But the latter
is not possible in our situation because of normalization |φ′(0)| = 1. �
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Exercise 1.28. (a) Show that a family F of univalent functions
φ : D → C is precompact in the space of all univalent functions if and
only if there exists a constant C > 0 such that

|φ(0)| ≤ C and C−1 ≤ |φ′(0)| ≤ C for all φ ∈ F .
b) Let (Ω, a) be a pointed domain in C and let C > 0. Consider a

family F of univalent functions φ : Ω → C such that |φ(a)| ≤ C. Show
that this family is normal if and only if there exists ρ > 0 such that
each function φ ∈ F omits some value ζ with |ζ| < ρ.

Proof of the Koebe Distortion Theorem. Compactness of the family
U immediately yields that functions φ ∈ U and their derivatives are
uniformly bounded on any smaller disk Dk, k ∈ (0, 1). Combined
with the fact that all functions of U are univalent, compactness also
implies a lower bound on the inner radius rφ(Dk) and on the derivative
φ′(z) in Dk. These imply estimates (5.1) and (5.2) on the dsitortion
and eccentricity by normalizing a univalent function φ : D → C, i.e.,
considering

φ̃(z) =
φ(z) − a

f ′(0)
∈ U .

(Note that this normalization does not change either distortion of the
function, or the eccentricity of the image.)

Estimate (5.3) is an obvious consequence of the left-hand side of
(5.2). ⊔⊓

We have given a qualitative version of the Koebe Distortion The-
orem, which will be sufficient for all our purposes. The quantitative
version provides sharp constants C(k), L(k), and ρ, all attained for a
remarkable extremal Koebe funcion f(z) = z/(1 − z)2 ∈ U . The sharp
value of the constant ρ is particularly famous:

Koebe 1/4-Theorem. Let φ : (D, 0) → (C, 0) be a univalent function
with φ′(0) = 1. Then φ(D) ⊃ D1/4, and this estimate is attained for
the Koebe function.

We will sometimes refer to the Koebe 1/4-Theorem rather than
its qualitatve version (5.3), though as we have mentioned, the sharp
constants never matter for us.

Exercise 1.29. Find the image of the unit disk under the Koebe
function.

Let us finish with an invariant form of the Koebe Distortion Theo-
rem:
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Theorem 1.17. Consider a pair of conformal disks ∆ ⋐ D. Let
mod(D r ∆) ≥ µ > 0. Then any univalent function φ : D → C has a
bounded (in terms of µ) distortion on ∆:

|φ′(z)|
|φ′(ζ)| ≤ C(µ) for all z, ζ ∈ ∆.

The proof will make use of one important property of the modulus
of an annulus: if an annulus is getting pinched, then its modulus is
vanishing:

Lemma 1.18. Let 0 ∈ K ⊂ D, where K is compact. If

mod(D rK) ≥ µ > 0

then K ⊂ Dk where the radius k = k(µ) < 1 depends only on µ.

Proof. Assume there exists a sequence of compact sets Ki satis-
fying the assumptions but such that Ri → 1, where Ri is the outer
radius of Ki around 0. Let us uniformize D rKi by a round annulus,
hi : A(ρi, 1) → D rKi. Then ρi ≤ ρ ≡ e−µ < 1. Thus, the maps hi are
well-defined on a common annulus A = A(ρ, 1). By the Little Montel
Theorem, they form a normal family on A, so that we can select a
converging subsequence hin → h.

Let γ ⊂ A be the equator of A. Then h(γ) is a Jordan curve in
D which separates the sets Kin (with sufficiently big n) from the unit
circle - contradiction. �

Remark. The extremal compact sets in the above lemma (minimiz-
ing k for a given µ) are the straight intervals [0, keiθ].

Proof of Theorem 1.17 Let us uniformize D by the unit disk, h :
D → D, in such a way that h(0) ∈ ∆. Let ∆̃ = h−1∆ and φ̃ = φ◦h. By
Lemma ??, ∆̃ ⊂ Dk, where k = k(µ) < 1. By the Koebe Theorem, the

distortion of the functions h and φ̃ on ∆̃ is bounded by some constant
C = C(k). Hence the distortion of φ is bounded by C2. ⊔⊓
We will often use the following informal formulation of Theorem 1.17:
“If φ : D → C is a univalent function and ∆ ⊂ D is well inside D, then
φ has a bounded distortion on ∆”.

Or else: “If a univalent function φ : ∆ → C has a definite space
around ∆, then it has a bounded distortion on ∆”.

5.5. Hyperbolic metric on simply connected domains. For
simply connected plane domains, the hyperbolic metric can be very
well controlled:
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Lemma 1.19. Let D ⊂ C be a conformal disk endowed with the
hyperbolic metric ρD. Then

1

4

|dz|
dist(z, ∂D)

≤ dρD(z) ≤ |dz|
dist(z, ∂D)

.

Remark. Of course, particular constants in the above estimates will
not matter for us.

Proof. Let r = dist(z, ∂D); then D(z, r) ⊂ D. Consider a linear
map h : D → D(z, r) as a map from D into D. By the Schwarz Lemma,
it contracts the hyperbolic metric. Hence

dρD(z) ≤ h∗(dρD(0)) = h∗(|dζ|) = |dz|/r.
To obtain the opposite inequality, consider the Riemann mapping

ψ : (D, 0) → (D, z). By definition of the hyperbolic metric,

dρD(z) = ψ∗(dρD(0)) = ψ∗(|dζ|) =
|dz|

|ψ′(0)| .

But by the Koebe 1/4-Theorem, r ≤ |ψ′(0)|/4, so that dρD(z) ≥
|dz|/4r. �

The 1/d-metric on a plane domain U is a continuous Riemannian
metric with the length element |dz|/d(z). The previous lemma tells us
that the hyperbolic metric on a simply connected domain is equivalent
to the 1/d-metric.

5.6. Hyperbolic metric on the thick part.

6. Proper maps and branched coverings

A continuous map f : S → T between two topological spaces is
called proper if for any compact set K ⊂ T , its full preimage f−1K is
compact. In other words, fz → ∞ in T as z → ∞ in S (where the
neighborhoods of “∞” are defined as complements of compact subsets).
Full preimages of points under a proper map will also be called its
fibers. Note that discrete fibers are finite. If a proper map f : S → T
is injective then we say that S is properly embedded into T .

Exercise 1.30. Assume that S & T are precompact domains in
some ambient surfaces and that f admits a continuos extension to the
closure S̄. Then f is proper if and only if f(∂S) ⊂ ∂T .

Exercise 1.31. Let V ⊂ T be a domain and U ⊂ S be a component
of f−1V . If f : S → T is proper, then the restriction f : U → V is
proper as well.
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Let now S and T be topological surfaces, and f be a topologically
holomorphic map. The latter means that for any point a ∈ S, there
exist local charts φ : (U, a) → (C, 0) and ψ : (V, fa) → (C, 0) such that
ψ ◦ f ◦φ−1(z) = zd, where d ∈ N. This number d ≡ dega f is called the
(local) degree of f at a. If dega f > 1, then a is called a branched or
critical point of f , and f(a) is called a branched or critical value of f .
We also say that d is the multiplicity of a as a preimage of b = f(a).

Exercise 1.32. Show than any non-constant holomorphic map be-
tween two Riemann surfaces is topologically holomorphic.

A basic property of topologically holomorphic proper maps is that
they have a global degree:

Proposition 1.20. Let f : S → T be a topologically holomorphic
proper map between two surfaces. Assume that T is connected. Then
all points b ∈ T have the same (finite) number of preimages counted
with multiplicities. This number is called the degree of f , deg f .

Proof. Since the fibers of a topologically holomorphic map are
discrete, they are finite. Take some point b ∈ T , and consider the
fiber over it, f−1b = {ai}l

i=1. Let di = degai
f . Then there exists a

neighborhood V of b and neighborgood Ui of ai such that any point
z ∈ V , z 6= b, has exactly di preimages in Ui, and all of them are
regular.

Let us show that if V is sufficiently small then all preimages of
z ∈ V belong to ∪Ui. Otherwise there would exist sequences zn → b
and ζn ∈ Sr∪Ui such that f(ζn) = zn. Since f is proper, the sequence
{ζn} would have a limit point ζ ∈ S r ∪Ui. Then f(ζ) = b while ζ
would be different from the ai - contradiction.

Thus all points close to b have the same number of preimages
counted with multiplicities as b, so that this number is locally con-
stant. Since T is connected, this number is globally constant. �

Corollary 1.21. Topologically holomorphic proper maps are sur-
jective.

The above picture for proper maps suggests the following gener-
alization. A topologically holomorphic map f : S → T between
two surfaces is called a branched covering of degree d ∈ N ∪ {∞}
if any point b ∈ T has a neighborhood V with the following prop-
erty. Let f−1b = {ai} and let Ui be the components of f−1V con-
taining ai. Then these components are pairwise disjoint, and there
exist maps φi : (Ui, ai) → (C, 0) and ψ : (V, b) → (C, 0) such that
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ψ ◦ f ◦ φ−1
i (z) = zd

i . Moreover,
∑

di = d. (A branched covering of
degree 2 will be also called a double branched covering.)

We see that a topologically holomorphic map is proper if and only
if it is a branched covering of finite degree. All terminilogy developed
above for proper maps immediately extends to arbitrary branched cov-
erings.

Note that if V ⊂ T is a domain which does not contain any criti-
cal values, then the “map f is unbranched over V ”, i.e., its restriction
f−1V → V is a covering map. In particular, if V is simply connected,
then f−1V is the union of d disjoint domains Ui each of which home-
omorphically projects onto V . In this case we have d well-defined
branches f−1

i : V → Ui of the inverse map. (We will often use the same
notation f−1 for the inverse branches.)

Let us finish with a beautiful relation between topology of the sur-
faces S and T , and branching properties of f .

Riemann - Hurwitz formula. Let f : S → T be a branched covering
of degree d between two topological surfaces of finite type. Let C be
the set of branched points of f . Then

χ(S) = deg f · χ(T ) −
∑

a∈C

(dega f − 1).

Let us define the multiplicity of a ∈ C as a critical point to be equal
to dega f − 1 (in the holomorphic case it is the multiplicity of a as the
root of the equation f ′(a) = 0). Then the sum in the right-hand side of
the Riemann-Hurwitz formula is equal to the number of critical points
of f counted with multiplicities.

Exercise 1.33. A double branched covering between two topological
disks has a single branched point of degree 2.

6.1. Topological Argument Principle. Consider the punctured
plane R2 r{b}. If γ : S1 → R2 r{b} is a smooth oriented Jordan curve
then one can define the winding number of γ around b as

wb(γ) =

∫

γ

d(arg(x− b)).

Since the 1-form d(arg(x−b)) is closed, the winding number is the same
for homotopic curves. Hence we can define the winding number wb(γ)
for any continuous Jordan curve γ : S1 → R2 r {b} by approximating
it with a smooth Jordan curves.

Furthermore, the winding number can be linearly extended to any
simplicial 1-cycle in R2 r {b} with integer coefficients (i.e., a formal
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combination of oriented Jordan curves in R2 r {b}) and then factored
to the first homology group. It gives an isomorphism

w : H1(R
2 r {b}) → Z, [γ] 7→ wb(γ). (6.1)

Exercise 1.34. Prove the last statement.

Let x ∈ D be an isolated preimage of b = fx. Then one can define
the indx(f) as follows. Take a disk V ⊂ D around x that does not
contain other preimages of b = fx. Take a positively oriented Jordan
loop γ ⊂ V r {x} around x whose image does not pass through b, and
calculate the winding number of the curve f : γ → R2 r {b} around b:

indx(f) = wfx(f ◦ γ).

Clearly it does not depend on the loop γ, since the curves corresponding
to different loops are homotopic without crossing b.

Proposition 1.22. Let D ⊂ R2 be a domain bounded by a Jordan
curve Γ, and let f : D̄ → R2 be a continuous map such that the curve f◦
Γ does not pass through some point b ∈ R2. Assume that the preimage
of this point f−1b is discrete in D. Then

∑

x∈f−1b

indx(f) = wb(f ◦ Γ),

provided Γ is positively oriented.

Proof. Note first that since f−1b is a discrete subset of a compact
set D̄, f−1x is actually finite, so that the above sum makes sense.

Select now small Jordan loops γi around points xi ∈ f−1b, and
orient them anti-clockwise. Since Γ and these loops bound a 2-cell,
[Γ] =

∑

[γi] in H1(D̄r f−1b). Hence f∗[Γ] =
∑

f∗[γi] in H1(R
2 r {b}).

Applying the isomorphism (6.1), we obtain the desired formula. �

Exercise 1.35. Let f : D → R2 be a continuous map, and let
a ∈ D be an isolated point in the fiber f−1b, where b = f(a). Assume
that inda(f) 6= 0. Then f is locally surjective near a, i.e., for any ǫ > 0
there exists a δ > 0 such that f(Dǫ(a)) ⊃ Dδ(b).

Hint: For a small ǫ-circle γ around a, the curve f ◦ γ stays some
positive distance δ from b. Then for any b′ ∈ Dδ(b) we have: indb(f ◦
γ) = indb(f ◦ γ) 6= 0. But if b′ 6∈ f(Dǫ(a)) then the curve f ◦ γ could
be shrunk to b without crossing b′.

6.1.1. Degree of proper maps.
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6.2. Lifts.

Lemma 1.23. Let f : (S, a) → (T, b) and f̃ : (S̃, ã) → T̃ , b̃) be two
double branched between topological disks (with or without boundary)
coverings branched at points a and ã respectively. Then any homeomor-
phism h : (T, b) → (T̃ , b̃) lifts to a homeomorphism H : (S, a) → (S̃, ã)
which makes the diagram

(S, a) −→
H

(S̃, ã)

f ↓ ↓ f̃

(T, b) −→
h

(T̃ , b̃)

commutative. Moreover, the lift H is uniquely determined by its value
at any unbranched point z 6= a. Hence there exists exactly two lifts.

If the above surfaces are Riemann and the map h is holomorphic
then then the lifts H are holomorphic as well.

Proof. Puncturing all the surfaces at their preferred points, we
obtain four topological annuli. The maps f and f̃ restrict to the un-
branched double coverings between respective annuli, while h restricts
to a homeomorphism. The image of the fundamental group π1(Sr{a})
under f consist of homotopy classes of curves with winding number 2
around b, and similar statement holds for f̃ . Since the winding number
is preserved under homeomorphisms,

h∗(f∗(π1(S r {a})) = f̃∗(π1(S̃ r {ã})). (6.2)

By the general theory of covering maps, h admits a lift

H : S r {a} → S̃ r {ã}
which makes the “punctured” diagram (6.2) commutative. Moreover,
this lift is uniquely determined by the value of H at any point z ∈
S r {a}.

Extend now H at the branched point by letting H(a) = ã. It is
clear from the local structure of branched coverings that this extension
is continuous (as well as the inverse one), so that it provides us with
the desired lift.

If all the given maps are holomorphic then the lift H is also holo-
morphic on the punctured disk Sr{a}. Since isolated singularities are
removable for bounded holomorphic maps, the extension of H to the
whole disk is also holomorphic. �

Exercise 1.36. Similar statement holds for branched coverings f
and f̃ with a single branched point (of any degree). Analyse the situa-
tion with two branched points.
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Exercise 1.37. Assume that all the topological disks in the above
lemma are R-symmetric and that all the maps commute with the re-
flection σ with respect to R. Assume also that h(f(T ∩R)) = f̃(T̃ ∩R).
Then both lifts H also commute with σ (in particualar, they preserve
the real line).

7. Extremal length and width

7.1. Definitions. Let us now introduce one of the most powerful
tools of conformal geometry. Given a family Γ of curves in a Riemann
surface U , we will define a conformal invariant L(Γ) called the extremal
length of Γ. Consider a measurable conformal metric ρ|dz| on C with
finite total mass

mρ(U) =

∫ ∫

ρ2dx ∧ dy

(such metrics will be called admissible). Let

ρ(γ) =

∫

γ

ρ|dz|,

stand for the length of γ ∈ Γ in this metric (with the convention
ρ(γ) = ∞ if γ is non-rectifiable, or ρ| γ is not measurable, or else
it is not integrable6. Define the ρ-length of Γ as

ρ(Γ) = inf
γ∈Γ

ρ(γ).

Normalize it in the scaling invariant way:

Lρ(Γ) =
ρ(Γ)2

mρ(U)
,

and define the extremal length of Γ as follows:

L(Γ) = sup
ρ

Lρ(Γ),

where the supremum is taken over all admissible metrics.
A metric ρ on which this supremum is attained (if exists) is called

extremal.

Exercise 1.38. Show that the value of L(Γ) does not change if one
uses only continuous admissible metrics ρ.

Let us summarize immediate consequences of the definition:

6For this to make sense, we should think of ρ as an actual function rather than
a class of functions up to modification on null-sets. It is also convenient to assume
that ρ is defined everywhere.
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Exercise 1.39. • Extension of the family: If a family of curves Γ′

contains a family Γ, then L(Γ′) ≤ L(Γ).

• Overflowing: If Γ overflows Γ′ (i.e., each curve of Γ contains some
curve of Γ′), then L(Γ) ≥ L(Γ′).

• Independence of the embient surface: If U ⊂ U ′ and Γ is a family of
curves in U then L(Γ) = L(Γ′). (This justifies skipping of “U” in the
notation.)

The extremal width of the family Γ is defined as the inverse to its
length: W(Γ) = L(Γ)−1. One can also conveniently define it as follows:

Exercise 1.40.

W(Γ) = infmρ(U),

where the infimum is taken over all admissible metrics with ρ(γ) ≥ 1
for all curves γ ∈ Γ.

Remark 1.2. One should think that a family is “big” if it has big
extremal width. So, big families are short.

The extremal lenght and width are conformal invariants:
If φ : U → U ′ is a conformal isomorphism between two Riemann sur-
faces such that φ(Γ) = Γ′, then L(Γ) = L(Γ′). This immediately follows
from the observartion that φ tranfers the family of admissible metrics
on U onto the family of admissible metrics on U ′.

7.2. Electric circuits laws. We will now formulate two crucial
properties of the extremal length and width which show that the former
behaves like the resistance in electric circuits, while the latter behaves
like conductance.

Let Γ1, Γ2 and Γ be three families of curves on U . We say that
Γ disjointly overflows Γ1 and Γ2 if any curve γ ∈ Γ contains a pair of
disjoint curves γ1 ∈ Γ1 and γ2 ∈ Γ2.

Series Law. Assume that a family Γ disjointly overflows families Γ1

and Γ2. Then

L(Γ) ≥ L(Γ1) + L(Γ2),

or equivalently,

W(Γ) ≤ W(Γ1) ⊕W(Γ2).

Proof. Let ρ1 and ρ2 be arbitrary admissible metrics. By appro-
priate scalings, we can normalize them so that

ρi(Γi) = mρi
(U) = Lρi

(Γi), i = 1, 2.
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Let ρ = max(ρ1, ρ2). Since any γ ∈ Γ contains two disjoint curves
γi ∈ Γi, we have:

ρ(γ) ≥ ρ1(γ1) + ρ2(γ2) ≥ ρ1(Γ1) + ρ2(Γ2) = Lρ1(Γ1) + Lρ2(Γ2).

Taking the infimum over all γ ∈ Γ, we obtain:

ρ(Γ) ≥ Lρ1(Γ1) + Lρ2(Γ2).

On the other hand,

mρ(U) ≤ mρ1(U) +mρ2(U) = Lρ1(Γ1) + Lρ2(Γ2).

Hence

Lρ(Γ) ≥ Lρ1(Γ1) + Lρ2(Γ2).

Taking the supremum over all normalized metrics ρ1 and ρ2, we obtain
the desired inequality. �

We say that two families of curves, Γ1 and Γ2, are disjoint if they
are contained in disjoint measurable sets.

Parallel Law. Let Γ = Γ1 ∪ Γ2. Then

W(Γ) ≤ W(Γ1) + W(Γ2).

Moreover, if Γ1 and Γ2 are disjoint then

W(Γ) = W(Γ1) + W(Γ2).

Proof. This time, let us normalize admissible metrics ρ1 and ρ2

so that ρi(Γi) ≥ 1, and let again ρ = max(ρ1, ρ2). Then ρ(Γ) ≥ 1 as
well, and hence

W(Γ) ≤ mρ(U) ≤ mρ1(U) +mρ2(U).

Taking the infimum over the metrics ρi, we obtain the desired inequal-
ity.

Assume now that Γ1 and Γ2 are disjoint. Let X1 and X2 be two
disjoint measurable sets supporting the respective families. Take any
admissible metric ρ with ρ(Γ) ≥ 1, and let ρi = ρ|Xi. Then ρi(Γi) ≥ 1
as well, and hence

mρ(U) = mρ1(U) +mρ2(U) ≥ W(Γ1) + W(Γ2).

Taking the infimum over ρ, we obtain the opposite inequality. �

Remark 1.3. Both laws obviously extend to the case of n families
Γ1, . . . , Gamman.

7.3. Modulus of an annulus revisited.
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7.3.1. Modulus as the extremal length. We will now calculate the
modulus of an annulus (see §1.4.1) in terms of the extremal length.
Consider a flat cylinder C = C[l, h] = (R/lZ)×[0, h] with circumferance
l and height h. Curves joining the top to the bottom of C will be
called vertical. Among these curves there are genuinly vertical, that is,
straight intervals perpendicular to the top and the bottom. Horizontal
curves in C are closed curves homotopic to the top and the bottom
of C. Among them there are genuinly horizontal, that is, the circles
parallel to the top and the bottom. Genuinly verical and horizontal
curves form the vertical and horizontal foliations respectively.

If A is an open conformal annulus, then it is isomorphic to a flat
cylinder, A ≈ C(0, h), and we will freely identify them. In particular,
curves in A corresponding to vertical/horizontal curves in the cylinder
will be also referred to as vertical/horizontal.7

Proposition 1.24. Let Γ be a family of vertical curves in the an-
nulus A containing almost all genuinly vertical ones. Then L(Γ) =
mod(A).

Proof. We will identify A with the cylinder C(l, h). Take first the
flat metric e on the cylinder.8 Then e(γ) ≥ h for any γ ∈ Γ, so that,
e(Γ) = h. On the other hand, me(Γ) = lh. Hence

L(Γ) ≥ Le(Γ) = h2/lh = mod(A).

Take now any admissible metric ρ on A. Let γθ be the genuinly
vertical curve through θ ∈ R/lZ. Then ρ(Γ) ≤ ρ(γθ) for any θ ∈ R/lZ.
Integrating this over R/lZ (using that γθ ∈ Γ for a.e. θ ∈ R/lZ) and
applying the Cauchy-Schwarz inequality, we obtain:

(l · ρ(Γ))2 ≤
(

∫

R/lZ

ρ(γθ) dθ

)2

=

(
∫

A

ρ dme

)2

≤ lhmρ(A).

Hence Lρ(A) ≤ mod(A), and the conclusion follows. �

There is also the “dual” way to evaluate the same modulus:

Exercise 1.41. Let Γ be a family of horizontal curves in A con-
taining almost all genuinly horizontal curves. Then

mod(A) = W(Γ).

7Notice that if A ⊂ C but ∂A is not locally connected, then vertical curves do
not have to land at some points of ∂A.

8As we will see, e will happen to be the extremal metric.
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7.3.2. Gröztsch Inequality. The following inequality plays an out-
standing role in holomorphic dynamics (the name we use for it is widely
adopted in the dynamical literature):

Proposition 1.25. Consider a conformal annulus A containing
n disjoint conformal annuli A1, . . . An homotopically equivalent to A.
Then

mod(A) ≥
∑

modAk.

Proof. Let Γk be the horizontal family of Ak and Γ be the hori-
zontal family in A. By the Parallel Law, W(Γ) ≥ ∑W(Γk), and the
concusion follows from Exercise 1.41. (Dually, one can apply the Series
Law to the extremal length of the vertical families.)

�

7.3.3. Euclidean geometry of an annulus. The length-area method
allows one to relate mod(A) to the Euclidean geometry of A. As a sim-
ple illustration, let us show that mod(A) is bounded by the “distance
between the inner and the outer complements of A rel the size of the
inner complement”:

Lemma 1.26. Consider a topological annulus A ⊂ C. Let K and Q
stand for its inner and outer complements respectively. Thendefine

mod(A) ≤ C dist(K,Q)/ diamK.

Proof. Let Γ be the family of horizontal curves in A. According
to the last Exercise, we need to bound λ(Γ) from below.

Take points a ∈ K and c ∈ Q on minimal distance dist(K,Q), and
then select a point b ∈ K such that dist(a, b) > diamK/2. Consider
a family ∆ of closed Jordan curves γ ⊂ C r {a, b, c} with winding
number 1 around a and b and winding number 0 around c. Since
Γ ⊂ ∆, λ(Γ) ≥ λ(∆).

Let us estimate λ(∆) from below. Rescale the configuration {a, b, c}
(without changing notations) so that |a− b| = 1 and |a− c| = d, where

1

2
dist(K,Q)/ diamK ≤ d ≤ dist(K,Q)/ diamK.

Consider a unit neighborhood B of the union [a, b]∪ [a, c] of two inter-
vals, and endow it with the Euclidean metric E (extended by 0 outside
B). Then lE(∆) ≥ 1 while mE(B) ≤ Ad. Hence λE(∆) ≥ 1/Ad, and
we are done. �

Exercise 1.42. For an annulus A as above, prove a lower bound:

mod(A) ≥ µ(dist(K,Q)/ diam(K)) > 0.
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7.3.4. Shrinking nests of annuli. Let X ⊂ C be a compact con-
nected set. Let us say that a sequence of disjoint annuli An ⊂ C is
nested around X if for any any n, An separates both An+1 and X from
∞. (We will also call it a “nest of annuli around X”.)

Corollary 1.27. Consider a nest of annuli An around X. If
∑

modAn = ∞ then X is a single point.

Proof. Only the first annulus, A1, can be unbounded in C. Take
some disk D = DR containing A2, and consider the annulus D r X.
By the Gröztsch Inequality,

mod(D rX) ≥
∑

n≥2

modAn = ∞.

Hence X is a single point. �

7.3.5. Quadrilaterals. Given a standard flat recatangle Π[l, h] =
[0, l] × [0, h], we can naturally define (genuinly) vertical/horizontal
curves in it. We let mod Π = h/l. Two rectangels Π and Π′ are called
conformally equivalent if there is a conformal isomorphism Π → Π′ that
maps the horizontal sides of Π to the horizontal sides of Π′.

Exercise 1.43. Two rectangles Π and Π′ are conformally equiva-
lent if and only if mod Π = mod Π′.

Exercise 1.44. Let Γ be a family of vertical curves in Π[l, h] that
contains almost all genuinly vertical curves. Then L(Γ) = mod(Π).

A quadrilateral Q is a conformal disk with four marked points on
its ideal boundary. It has four ideal boundary sides. Marking of a
quadrilateral is a choice of pair of opposite sides called “horizontal”
(and then the other pair is naturally called “vertical”). Any marked
quadrilateral can be conformally mapped onto a rectangle Π(l, h) so
that the horizontal sides of Q go to the horizontal sides of Π(l, h). At
this point, we can naturally define (genuinly) vertical/horizontal curves
in Q, and also let modQ = mod Π(l, h). With this at hands, Exercises
1.43 and 1.44 immediately extend to general marked quadrilaterals.

7.3.6. Tori. Let us now consider a flat torus T2. Given a non-zero
homology class α ∈ H1(T

2), we let Γα be the family of closed curves
on T2 representing α (we call them α-curves). Among these curves,
there are closed geodesics, α-geodesics (they lift to straight lines in the
universal covering R2) . They form a foliation. All these geodesics have
the same length, lα.



56 1. CONFORMAL GEOMETRY

Exercise 1.45. Let Γ be a family of α-curves containing all α-
geodesics. Then

W(Γ) =
area T2

l2α
.

An annulus A emebedded into T2 is called an α-annulus if its hor-
izontal curves represent the class α. The following obseravation finds
interesting applictions in dynamics and geometry:

Proposition 1.28. Let A1, . . . , An be a family of disjoint α-annuli.
Then

∑

modAi ≤
area T2

l2α
.

Proof. Let Γi be the family of horizontal curves of the annulus Ai.
Then by the Parallel Law,

∑W(Γi) ≤ W(Γα), and the result follows
from Exercises 1.41 and 1.45. �

7.4. Dirichlet integral.
7.4.1. Definition. Consider a Riemann surface S endowed with a

smooth conformal metric ρ. The Dirichlet integral (D.I.) of a function
χ : S → C is defined as

D(χ) =

∫

‖∇χ‖ρ dmρ,

where the norm of the gradient and the area form are evaluated with
respect to ρ. However:

Exercise 1.46. The Dirichlet integral is independent of the choice
of the conformal metric ρ. In particular, it is invariant under conformal
changes of variable.

In the local coordinates, the Dirichlet integral is expressed as fol-
lows:

D(h) =

∫

(|hx|2 + |hy|2)dm =

∫

(|∂h|2 + |∂̄h|2)dm.

In particular, for a conformal map h : U →֒ C we have the area formula:

D(h) =

∫

|h′(z)|2dm = areah(U).

7.4.2. D.I. of a harmonic function.

Exercise 1.47. Consider a flat cylinder A = S1 × (0, h) with the
unit circumference. Let χ : A → (0, 1) be the projection to the second
coordinate (the “height” function) divided by h. Then D(χ) = 1/h.
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Note that the function χ in the exercise is a harmonic function with
boundary values 0 and 1 on the boundary components of the cylinder
(i.e., the solution of the Dirichlet problem with such boundary values).

Exercise 1.48. Such a harmonic function is unique up to switching
the boundary components of A, which leads to replacement of χ by 1−χ.

Due to the conformal invariance of the Dirichlet integral (as well as
the modulus of an annulus and harmonicity of a function), these trivial
remarks immediately yield a non-trivial formula:

Proposition 1.29. Let us consider a conformal annulus A. Then
there exist exactly two proper harmonic function χi : A → (0, 1) (such
that χ1 + χ2 = 1) and D(χi) = 1/mod(A).

7.4.3. Multi-connected case. Let S be a compact Riemann surface
with boundary. Let ∂S = (∂S)0 ⊔ (∂S)1, where each (∂S)i 6= ∅ is the
union of several boundary components of ∂S. Let us consider two
families of curves: the “vertical family” Γv consisting of arcs joining
(∂S)0 to (∂S)1, and the “horizontal family” Γh consisting of Jordan
multi-curves separating (∂S)0 from (∂S)1. (A multicurve is a finite
union of Jordan curves.)

Let χ : S → [0, 1] be the solution of the Dirichlet problem equal to
0 on (∂S)0 and equal to 1 on (∂S)1.

Theorem 1.30.

L(Γv) = W(Γh) =
1

D(h)
.

The modulus of S rel the boundaries (∂S)0 and (∂S)1 is defined as
the above extremal length:

mod((∂S)0, (∂S)1) = L(Γv).

Remark. Physically, we can think of the pair (∂S)0 and (∂S)1

in S as an electric condensator. The harmonic function χ represents
the potential of the electric field created by the uniformly distributed
charge on (∂S)1. The Dirichlet integral D(χ) is the energy of this field.
Thus, mod((∂S)0, (∂S)1) = 1/D(χ) is equal to the ratio of the charge
to the energy, that is, to the capacity of the condensator.

8. Boundary values

8.1. Prime ends.

8.2. Local connectivity and continuous extensions.
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8.3. Landing rays. Let K ⊂ C be a continuum.
If R1 and R2 are two rays landing at some point a ∈ K, then

R1∪R2∪{a} is a simple curve whose both ends go to ∞. By the Jordan
Theorem, it divides C into two domains called the sectors bounded by
R1 and R2.

Lemma 1.31. If two rays R1 and R2 land at the same point a ∈ K
then each sector bounbed by these rays contains a component of Kr{a}.

For this reason, landing points of at least two rays are called dividing
points of K.

9. Carathéodory topology

9.1. Hausdorff convergence. Let (X, d) be a metric space. The
Hausdorff distance between two subsets Y and Z in X is defined as
follows:

H-dist(Y, Z) = max(sup
y∈Y

d(y, Z), sup
z∈Z

d(Y, z))

Note that H-dist(Y, Z) < ǫmeans that Z is contained in an ǫ-neighborhood
of Y and vice versa.

Let X be the space of closed subsets in X.

Exercise 1.49. (i) Show that that H-dist defines a metric on X ;
(ii) If X is complete then X is complete as well;
(iii) If X is compact then X is compact as well.

9.2. Carathéodory convergence. Let us consider the space D
of all pointed conformal disks (D, a) in the complex plane. This space
can be endowed with a natural topology called Carathéodory. We will
describe it it terms of convergence:

Definition 1.2. A sequence of pointed disks (Dn, an) ∈ D con-
verges to a disk (D, a) ∈ D if:

(i) an → a;

(ii) Any compact subset K ⊂ D is eventually contained in all disks Dn:

∃N : K ⊂ Dn ∀n ≥ N ;

(iii) If K is a topological disk contained in infinitely many domains Dn

then K is contained in D.

Note that this definition allows one to pinch out big bubbles from
the domains Dn (see Figure ...).
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Exercise 1.50. a) Describe a topology on D which generates the
Carathéodory convergence.

b) Show that if ∂Dn converges to ∂D in the Hausdorff metric then
the disks Dn converge to D in the Carathéodory sense.

The above purely geometric definition can be reformulated in terms
of the uniformizations of the disks under consideration. Let us uni-
formize any pointed disk (D, a) ∈ D by a conformal map φ : D → D
normalized so that φ(0) = a and φ′(0) > 0.

Proposition 1.32. A sequence of pointed disks (Dn, a) ∈ D con-
verges to a pointed disk (D, a) ∈ D if the corresponding sequence of
normalized uniformizations φ : Dn → D converges to D uniformly on
compact subsets of D.

Proof. �

Recall that rD,a stands for the inner radius of the domain D with
respect to a ∈ D (see §5.4). For r ∈ (0, 1), let Dr stand for the family
of pointed disks (D, a) ∈ D with r ≤ rD,a ≤ 1/r.

Corollary 1.33. The space Dr is compact.

Proof. Let φD : (D, 0) → (D, a) be the normalized uniformization
of D. Then

r ≤ φ′
D(0) ≤ 1

4r
(The left-hand estimate follows from the Schwarz Lemma applied to
φ−1 : D(a, r) → D. The right-hand estimate follows from the Koebe
1/4-Theorem applied to φD itself.) By the Koebe Distortion Theo-
rem, the family of univalent functions φD, D ∈ Dr, is compact. By
Proposition 1.32, the space Dr is compact as well.

�





CHAPTER 2

Quasi-conformal geometry

7. Analytic definition and regularity properties

7.1. Linear discussion.
7.1.1. Hyperbolic metric on the space of conformal structures. Let

V ≈ R2 be a real two-dimensional vector space. A conformal structure
on V is a Euclidean structure (v, w) up to scaling. Equivalently, it is
an ellipse centered at the origin up to scaling. Let Conf(V ) stand for
the space of conformal structures on V .

Let us fix some reference Euclidean structure on V , and call the
corresponding conformal structure σ (given by “round circles”) “stan-
dard”. Let A ∈ GL+(2,R) be an orientation preserving invertible linear
operator on V . It preserves the standard conformal structure if and
only if it is a similarity, i.e., a composition of a rotation and a scalar
operator. Let Sim(2) stand for the group of similarities.

Any operator A ∈ GL+(2,R) determines a new Euclidean structure
(Av,Aw) on V , the pullback of the standard one under A. Euclidean
structures corresponding to operators A and A′ are conformally equiv-
alent (i.e., proportional) if and only if A′ = SA where S ∈ Sim(2).
Thus, the space Conf(V ) is naturally identified with the symmetric
space Sim(2) GL(2,R) = O(2) SL(2,R).

But recall from §?? that the hyperbolic plane H is naturally iden-
tified with the symmetric space PSL(2,R)/PR(2) ≈ SL(2,R)/O(2).
Since the left and right symmetric spaces are isomorphic by the in-
version A 7→ A−1, we obtain a natural identification Conf(V ) ≈ H.
Thus, the hyperbolic metric can be transferred from H to Conf(V ).
Since the hyperbolic metric on H is invariant under the left action of
PSL(2,R), the corresponding metric on Conf(V ) is invariant under the
right action of PSL(2,R), which is induced by action of GL+(2,R) by
pullbacks:

disthyp(µ, ν) = disthyp(T
∗µ, T ∗ν)

for any (orientation preserving invertible) linear operator T : V → V .
To calculate this metric, let us select an orthonormal basis in V and

consider first a diagonal matrix A ∈ SL(2,R) with eigenvalues e±K/2,
K ≥ 1. On the one hand, it represents the point A(i) ∈ H; on the other
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hand, it represents the conformal structure with ellipse E = A−1(T).
Hence

disthyp(µ, σ) = disthyp(A(i), i) = logK.

But K is the ratio of the axes of the ellipse E, which will be called its
shape (and the “shape” of the corresponding conformal structure). So,
the hyperbolic distance from a conformal structure µ to the standard
one is equal to the logarithm of the shape of µ.

Now, if µ and ν are arbitrary conformal structures then we can find
an operator T : V → V such that T ∗(ν) = σ, and by invariance of
the hyperbolic metric we have: disthyp(µ, ν) = disthyp(T

∗µ, σ). Thus,
disthyp(µ, ν) can be interpreted as the logarithm of the shape of µ rel
to ν.

According to a well-known structural theorem for linear operators,
any operator A can be decomposed into a product of a self-adjoint
operator S and a rotation O, A = O · S. This decomposition is unique
up to multiplying S and O by −1. We can normalize it so that the
eigenvalue σmax of S with the maximal absolute value is positive.

Let σmin stands for the eigenvalue of S with the minimal absolute
value; it is positive or negative depending on whether A preserves or
reverses the orientation. The operator A is a similarity if and only if
S is scalar, i.e., σmax = σmin. Otherwise we have two uniquely defined
eigenlines lmax and lmin corresponding to σmax and σmin respectively, and
moreover, these eigenlines are orthogonal. In this case, E := A−1(T) =
S−1(T) is an ellipse with the big axis of length 1/|σmin| on lmin and the
small axis of length 1/σmax on lmax.The shape of this ellipse, i.e., the
ratio of the axes, is equal to σmax/|σmin|. This shape will be also called
the dilatation of A, DilA.picture

This ellipse E is the unit circle of a new Euclidean structure

(Av,Av) = (Sv, Sv)

on V . If A is postcomposed with a conformal linear map, then the
ellipse E is scaled and the Euclidean structure is replaced by a con-
formally equivalent (i.e., proportional). Thus, an invertible operator
A : V → V up to left multiplication by a similarity determines a con-
formal structure on V , and vice versa. So, the space of conformal struc-
tures on V is naturally identified with the quotient Sim GL(2,R) =
O(2) SL(2,R).

7.1.2. Beltrami coefficients. Let V = CR be the complex plane
viewed as the two-dimensional oriented real Euclidean space (with
{1, i} being a positively oriented orthonormal basis), and let A : CR →
CR be an invertible linear operator.
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Let us calculate the above quantities in coordinates z, z̄ of CR. The
operator A can be represented as z 7→ az + bz̄ = a(z + µz̄), where
µ = b/a is called the Beltrami coefficient of A. Let µ = e2iθ, where
θ ∈ R/(πZ). Then the maximum of A on the unit circle T = {eiφ}
is attained at the direction φ = θ modπZ, while the minimum is
attained at the orthognal direction θ + π/2 modπZ. These are the
eigenlines lmax and lmin of S. The corresponding eigenvalues are equal
to σmax = |a|(1 + |µ|) = |a| + |b| and σmin = |a|(1 − |µ|) = |a| − |b|.
Thus

Dil(A) =
1 + |µ|
1 − |µ| , det(A) = |a|2 − |b|2 = σmin Dil(A).

(7.1)

So the shape and orientation of the ellipse E is controlled by |µ| and
arg µ respectively. We also see that A is orientation preserving if and
only if |b| < |a|, i.e., |µ| < 1, and A is conformal if and only if µ = 0.

7.1.3. Infinitesimal notation. Let us now interprete the above dis-
cussion in infinitesimal terms. Consider a map h : U → C on a do-
main U ⊂ C differentiable at a point z ∈ U , and apply the above
considerations to its differential Dh(z) : TzU → ThzC. In the (dz, d̄z)-
coordinates of the tangent spaces, it assumes the form

∂h+ ∂̄h = ∂zh dz + ∂z̄h d̄z,

where the partial derivatives ∂z and ∂̄z and the corresponding operators
∂ and ∂̄ are defined in §2. Moreover,

Dh(z) = ∂zh(z) dz

(

1 + µh(z)
dz

dz̄

)

,

where µh = ∂z̄h/∂zh is the Beltrami coefficient of h at z. In fact, the
above expression suggests that we should instead consider the (−1, 1)-
tensor

∂̄h/∂h = µh
dz̄

dz
called Beltrami differential of h. However, in what follows we will not
make a notational difference between the Beltrami differential and the
coefficient.

Assume that Dh(z) is non-singular, i.e., |µh| 6= 1. The map f is
orientation preserving at z if and only if |µh(z)| < 1, and h is conformal
at z if and only if µh(z) = 0, which is equivalent to the Cauchy-Riemann
equation ∂̄h(z) = 0.

Let us consider an infinitesimal ellipse

Eh(z) ≡ Dh(z)−1(Thz) ⊂ TzC, (7.2)
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where Thz is a round circle in the tangent space ThzU . If h is not
conformal at z, then Eh(z) is a genuine (not round) ellipse with the
small axis in the direction arg(µ(z))/2 mod π and the shape

Dilh(z) =
1 + |µh(z)|
1 − |µh(z)|

. (7.3)

Moreover, by the second formula of (7.1), we have:

Jach(z) = |∂h(z)|2 − |∂̄h(z)|2 = σmin(z) Dilh(z), (7.4)

where Jach(z) ≡ detDh(z) and σmin(z) = inf
|v|=1

Dh(z) v.

7.2. Conformal structures. A (measurable) conformal structure
on a domain U ⊂ C is a measurable family of conformal structures in
the tangent planes TzU , z ∈ U . In other words, it is a measurable
family of infinitesimal ellipses E(z) ⊂ TzU defined up to scaling by a
measurable function ρ(z) > 0, z ∈ U . (As always in the measurable
category, all the above objects are defined almost everywhere.) Accord-
ing to the linear discussion, any conformal structure is determined by
its Beltrami coefficient µ(z), z ∈ U , a measurable function in z assum-
ing its values in D, and vice versa. Thus conformal structures on U are
described analytically as elements µ from the unit ball of L∞(U). We
say that a conformal structure has a bounded dilatation if the eccen-
tricities of the ellipses E(z) are bounded almost everywhere. In terms
of Beltrami coefficients, it means that ‖µ‖∞ < 1. The standard con-
formal structure σ is given by the family of infinitesimal circles. The
corresponding Beltrami coefficient vanishes almost everywhere: µ = 0.

Denote by DH+(U, V ) (standing for “differentiable homeomorphisms”)
the space of orientation preserving homeomorphisms f : U → V , which
are differentiable almost everywhere (with respect to the Lebesgue mea-
sure) with a non-singular differential Df(z) measurably depending on
z. ( If we do not need to specify the domain and the range of f we write
simply f ∈ DH+; if we do not assume that f is orientation preserving,
we skip “+”). Consider some homeomorphism f ∈ DH+(U, V ) between
two domains in C. Then by the above discussion we obtain a measur-
able family E of infinitesimal ellipses Ef (z) = Df(z)−1(Tfz) ⊂ TzU .
If f is postcomposed with a conformal map φ : V → C, then the fam-
ily of ellipses is scaled by a real factor (depending on z). Thus any
homeomorphism f ∈ DH+(U, V ) (defined up to a postcomposition
with a conformal map) determines a (measurable) conformal structure
Ef = f ∗σ on U . The Beltrami coefficient of this structure is equal topicture
µf (z) = ∂̄f(z)/∂f(z). It is also called the Beltrami coefficient of f .



7. ANALYTIC DEFINITION AND REGULARITY PROPERTIES 65

We say that f has a bounded dilatation if the corresponding conformal
structure Ef does. In this case we let

Dil(f) = Dil(Ef ) =
1 + ‖µf‖∞
1 − ‖µf‖∞

.

What happens with conformal structures under conformal changes
of variable? Let us consider a conformal map φ : Ũ → U . Let
E(z) be an infinitesimal ellipse in TzU and Ẽ(z̃) = Dφ−1E(z) be the
corresponding ellipse in Tz̃Ũ . Then the dilatations of these ellipses
are equal, while the small axis of E(z) is obtained from the small
axis of Ẽ(z̃) by rotation through the angle arg f ′(z). It follows that
µ̃(z̃)/µ(z) = f ′(z)/ ¯f ′(z), so that the differential (-1,1)-form µ(z)dz̄/dz
is invariant under the above change of variable.

This allows us to generalize the above discussion to arbitrary Rie-
mann surfaces. A (measurable) conformal structure on a Riemann
surface S is a measurable family of infinitesimal ellipses defined up to
scaling. Analytically it is described as a measurable Beltrami differ-
ential (i.e., (1,-1)-differential form) µ with ‖µ‖∞ < 1. To any homeo-
morphism f ∈ DH+(S, S ′) between two Riemann surfaces corresponds
a conformal structure Ef = f ∗σ on S with the Beltrami differential
µf = ∂̄f/∂f (where ∂̄f and ∂f are now understood as differential 1-
forms). Note that the ellipses Ef (z) are well-defined only up to scaling
since the round circles on S ′ are well-defined only up to scaling (as
there is no preferred metric on S ′).

Remark. A key problem is whether any conformal structure E is
associated to a certain map f . This problem has a remarkable positive
solution in the category of quasi-conformal maps.

Let us consider a smaller class AC+(U, V ) ⊂ DH+(U, V ) of abso-
lutely continuous orientation preserving homeomorphisms from U onto
V . (Reminder: f is absolutely continuous if for any set X of zero
Lebesgue measure, the preimage f−1X has also zero measure.) Then
we can naturally pull back any measurable conformal structure E ′ on S ′

to obtain a structure E = f ∗(E ′) on S. If f−1 is also absolutely contin-
uous then we can push forward the structures: E ′ = f∗(E). We will use
similar notations for pull-backs and push-forwards of Beltrami differ-
entials. In fact, in what follows we will not make notational differences
between conformal structures and Beltrami differentials.

Exercise 2.1. Calculate the Beltrami differential f ∗µ in terms of
µ and Df . Show that Dil(f ∗µ(z)) ≤ DilDf(z) ·Dilµ(f(z)). Moreover,
dilatation behaves submultiplicatively under compositions:

Dil(f ◦ g) ≤ Dil(f) · Dil(g).
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Thus, if a conformal structure ν on S ′ has a bounded dilatation
and f has a bounded dilatation, then the pull-back structure f ∗ν has
a bounded dilatation as well.

More generally, let us consider a (non-invertible) map f : U →
V which locally belongs to class AC+ outside a finite set of “critical
points”. For such maps the push-forward operation is not well-defined,
but the pull-back ν = f ∗µ is still well-defined. The fact that f has
critical points does not cause any troubles since we need to know µ
only almost everywhere. The property that Dil(f ∗µ) ≤ Dil(f) · Dil(µ)
is obviously valid in this generality.

7.3. Distributional derivatives and absolute continuity on
lines. Let U be a domain in C ≡ CR. All functions below are as-
sumed to be complex valued. A test function φ on U is an infinitely
differentiable function with compact support. One says that a locally
integrable function f : U → C has distributional partial derivatives of
class L1

loc if there exist functions h and g of class L1
loc on U such that

for any test function φ,
∫

U

f · ∂φdm = −
∫

U

hφdm;

∫

U

f · ∂̄φdm = −
∫

U

gφdm,

where m is the Lebesgue measure. In this case h and g are called ∂
and ∂̄ derivatives of f in the sense of distributions. Clearly this notion
is invariant under smooth changes of variable, so that it makes sense
on any smooth manifold (and for all dimensions).

Exercise 2.2. Prove that a function f on the interval (0, 1) has
a destributional derivative of class L1

loc if and only if it is absolutely
continuous. Moreover, its classical derivative f ′(x) coincides with the
distributional derivative.

There is a similar criterion in the two-dimensional setting. A con-
tinuous function f : U → C is called absolutely continuous on lines
if for any family of parallel lines in any disk D ⋐ U , f is absolutely
continuous on almost all of them. Thus, taking a typical line l of the
above family, the curve f : l → C is rectifiable. Clearly such functions
have classical partial derivatives almost everywhere.

Proposition 2.1. Consider a homeomorphism f : U → V between
two domains in the complex plane. It has distributional partial deriva-
tives of class L1

loc if and only if it is absolutely continuous on lines.

In fact, in the proof of existence of distributional partial deriva-
tives (the easy direction of the above Proposition), just two transversal
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families of parallel lines are used. Thus one can relax the definition of
absolutele continuity on lines by taking any two directions (“horizon-
tal” and “vertical”).

Proposition 2.2. Consider a homeomorphism f : U → V which
is absolutely continuous on lines. Then for almost any z ∈ U , f is
differentiable at z in the classical sense, i.e., f ∈ DH.

This result can be viewed as a measurable generalization of the
elementary fact that existence of continuous partial derivatives implies
differentiability.

7.4. Definition. We are now ready to give a definition of quasi-
conformality. An orientation preserving homeomorphism f : S → S ′

between two Riemann surfaces is called quasi-conformal if

• It has locally integrable distributional partial derivatives;
• It has bounded dilatation.

Note that the second property makes sense because the first prop-
erty implies that f is differentiable a.e. in the classical sense (by the
results of §7.3).

We will often abbreviate “quasi-conformal” as “qc”. A qc map f is
called K-qc if Dil(f) ≤ K.

A map f : S → S ′ is called K- quasi-regular if for any z ∈ S there
exist K-qc local charts φ : (U, z) → (C, 0) and ψ : (V, f(z)) → (C, 0)
such that ψ ◦ f ◦ φ−1 : z 7→ zd. Sometimes we will abbreviate K-quasi-
regular maps as “K-qr”. A map is called quasi-regular if it is K-qr for
some K.

Exercise 2.1. Show that any quasi-regular map f : S → S ′ can be
decomposed as g ◦ h, where h : S → T is a qc map to some Riemann
surface T and g : T → S ′ is holomorphic. In particular, if S = S ′ = C̄

then also T = C and g : C̄ → C̄ is a rational map.

7.5. Absolute continuity and Sobolev class H. We will now
prove several important regularity properties of quasi-conformal maps.
Let us define a Sobolev class H = H(U) as the space of uniformly
continuous functions f : U → C whose distributional partial deriva-
tives on U belong to L2(U). The norm on H is the maximum of the
uniform norm of f and L2-norm of its partial derivatives. Infinitely
smooth functions are dense in H. This can be shown by the standard
regularization procedure: convolute f with a sequence of functions
φn(x) = n2φ(n−1x), where φ is a non-negative test function on U with
∫

φ dm = 1 (see [?, Ch V, §2.1] or [LV, Ch. III, Lemma 6.2]).
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Proposition 2.3. Quasiconformal maps are absolutely continuous
with respect to the Lebesgue measure, and thus for any Borel set X ⊂ U ,

m(fX) =

∫

X

Jac(f, z) dm.

The partial derivatives ∂f and ∂̄f belong to L2
loc.

Proof. Since both statements are local, we can restrict ourselves
to homeomorphisms f : U → U ′ between domains in the complex
plane. Consider the pull-back of the Lebesgue measure on U ′, µ = f ∗m.
It is a Borel measure defined as follows: µ(X) = m(fX) for any Borel
setX ⊂ U . Let us decompose it into absolutely continuous and singular
parts: µ = h · m + ν. By the Lebesgue Density Points Theorem, for
almost all z ∈ U , we have:

1

πǫ2

∫

D(z,ǫ)

h dm→ h(z);
1

πǫ2
ν(D(z, ǫ)) → 0 as ǫ→ 0.

Summing up we obtain:

m(f(D(z, ǫ))

m(D(z, ǫ))
=

µ(D(z, ǫ)

m(D(z, ǫ)
→ h(z) as ǫ→ 0.

But if f is differentiable at z then the left hand-side of the last
equation goes to Jac(f, z). Hence Jac(f, z) = h(z) a.e. It follows that
for any Borel set X,

∫

X

Jac(f, z) dm =

∫

X

h dm ≤ µ(X) = m(fX). (7.5)

But Jac(f, z) = |∂̄f(z)|2 − |∂f(z)|2 ≥ (1 − k2) |∂f(z)|2, where k =
‖µf‖∞. Thus

∫

X

|∂f |2 dm ≤ 1

1 − k2
m(fX);

∫

X

|∂̄f |2 dm ≤ k2

1 − k2
m(fX),

(7.6)

and we see that the partial derivatives of f are locally square integrable.
What is left is to prove the opposite to (7.5). As we have just shown,

f locally belongs to the Sobolev class H. Without loss of generality we
can assume that it is so on the whole domain U , i.e., f ∈ H(U). Let
us approximate f in H(U) by a sequence of C∞ functions fn. Take a
domain D ⋐ U with piecewise smooth boundary (e.g., a rectangle).

Let Vn ⊂ fnD be the set of regular values of fn. By Sard’s Theo-
rem, it has full measure in fnD. Let R = f−1

n Vn ∩ D. Note that the
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∫

Rn
Jac fn dm is equal to the area of the image of fn|Rn counted with

multiplicities:
∫

Rn

Jac(fn, z) dm =

∫

Vn

card(f−1
n ζ) dm ≥ m(Vn) = m(fnD).

Since fn → f uniformly onD, lim infm(fnD) ≥ m(fD). Since Jac(fn) →
Jac(f) in L1(U),

∫

R

Jac(fn, z) dm→
∫

R

Jac(f, z) dm ≤
∫

D

Jac(f, z) dm.

Putting the last estimates together, we obtain the desired estimate for
D.

For an arbitrary Borel set X ⊂ U , the result follows by a simple
approximation argument using a covering of X by a union of rectangles
Di with disjoint interiors such that m(∪Di rX) < ǫ. �

8. Geometric definitions

Besides the analytic definition given above, we will give two geo-
metric definitions of quasi-conformality, in terms of quasi-invariance
of moduli, and in terms of bounded circular dilatation (or, “quasi-
symmetricity”).

8.1. Quasi-invariance of moduli. In this section we will show,
by the length-area method, that the moduli of annuli are quasi-invariant
under qc maps. This will follow from a more general result on quasi-
invariance of extremal length:

Lemma 2.4. Let h : U → Ũ be a K-qc map. Let Γ and Γ̃ = f(Γ)
be two families of rectifiable curves in the respective domains such that
h is absolutely continuous on all curves of Γ. Then L(Γ) ≤ KL(Γ̃).

Proof. To any measurable metric ρ on U , we are going to associate
a metric ρ̃ on Ũ such that h∗(ρ̃) ≥ ρ while h∗(mρ̃) ≤ Kmρ (so, the
map h is expanding with respect to these metrics, with area expansion
bounded by K). Then ρ(γ̃) ≥ ρ(γ) for any γ ∈ Γ and γ̃ = f(γ) ∈ Γ̃,
while mρ̃(Ũ) ≤ Kmρ(U). Hence Lρ̃(Γ̃) ≥ K−1Lρ(Γ). Taking the
supremum over all metrics ρ, we obtain the desired estimate.

To define correspondence ρ 7→ ρ̃, recall formula (7.4) relating the
Jacobian and the minimal expansion. Letting ρ̃(hz) = ρ(z)/σmin(z),
we obtain for a.e. z ∈ U and any unit tangent v ∈ TzU :

|h∗(dρ̃) v| = ρ̃(hz)|Dh(z)v| ≥ dρ (v)

and

h∗(dmρ̃) = ρ̃(hz)2 Jach(z) dxdy = K(z)ρ(z)2dxdy ≤ Kdmρ,
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which are the required properties of the metrics. �

Proposition 2.5. Consider a K-qc map h : A → Ã between two
topological annuli. Then

K−1 mod(Ã) ≤ mod(A) ≤ Kmod(Ã).

Proof. Let Γ̃ be the family of genuinely vertical paths on Ã on
which h−1 is absolutely continuous, and let Γ = h−1(Γ̃). By Propo-
sition 1.24, mod Ã = L(Γ̃), while modA ≤ L(Γ). By Lemma 2.4,
L(Γ) ≤ KL(Γ̃), which yields the desired right hand-side estimate. The
left-hand side estimate is obtained by replacing h with h−1. �

Exercise 2.2. Show that the moduli of rectangles are quasi-invariant
in the same sense as for the annuli.

Exercise 2.3. Prove that C and D are not qc equivalent.

8.2. Bounded circular dilatation. For a homeomorphism h :
U → V between Riemannian surfaces with metric d, let is consider its
maximal and minimal expansions of the circle of radius ǫ:

Mh(z, r) = max
d(ζ,z)=r

d(h(ζ), h(z)), mh(z, r) = min
d(ζ,z)=r

d(h(ζ), h(z)),

and let

Lh(z, r) =
Mh(z, r)

mh(z, r)
, Lh(z) = lim sup

r→0
Lh(z, r).

The latter quantity is called the dilatation of h at z. We say that
a map h has an L-bounded circular dilatation if Lh(z) ≤ L for all
z ∈ U . (Notice that L is independent of the particular choice of the
Riemannian metric.)

Proposition 2.6. Any K-qc map has an L-bounded circular di-
latation where L = L(K).

Proof. Of course, we can assume that U and V are contained in
the complex plane endowed with the Euclidean metric. For notational
convenience, let us normalize h so that z = h(z) = 0, and let m(r) =
mh(0, r), M(r) = Mh(0, r). Let a and b be two points on the circle Tr

for which |h(a)| = m(r) and |h(b)| = M(r). Assume that r is so small
that the disk DM(r) is contained in V . Then let us consider an annulus
A′ = A(m(r),M(r)) and let A = h−1(A′). The inner component of
C r A contains points 0 and a ∈ Tr, while its outer component of
C r A contains b ∈ Tr. By Lemma 1.26, modA is bounded by an
absolute constant C. By Lemma 2.5,

1

2π
log

M(r)

m(r)
= modA′ ≤ KmodA ≤ K C,
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and we are done. �

Let X and Y be two metric spaces, and let η : R+ → R+. A
homeomorphism h : X → Y is called η-quasi-symmetric (“η-qs”) if for
any x, y, z ∈ X we have:

dist(h(z), h(x))

dist(h(y), h(x))
≤ η

(

dist(z, x)

dist(y, x)

)

.

Exercise 2.4. Assume that X and Y are compact Riemannian
manifolds. Then h : X → Y is η-qs if and only if there exists a
constant κ ≥ 1 such that for any x, y, z ∈ X with dist(z, x) = dist(y, x)
we have:

dist(h(z), h(x))

dist(h(y), h(x))
≤ κ. (8.1)

Homeomorphisms satisfying (8.1) will also be called κ-qs (we trust
that this slight terminological inconsistency will not cause confusion).

Proposition 2.7. Any K-qc homeomorphism h : C̄ → C̄ fixing
0, 1 and ∞ is κ-qs, where κ depends only on K.

Exercise 2.5. Without normalization, the above proposition would
fail.

8.3. Back to the analytic definition.

Proposition 2.8. If a homeomorphism h : U → V between do-
mains U and V has an L-bounded circular dilatation then it is L-qc.

Proof. Since the L-bounded circular dilatation implies the L-
bounded infinitesimal dilatation at any point of differentiability, all we
need to show is that h has the required regularity, i.e., it is absolutely
continuous on almost all parallel lines. Since this is a local property,
we can assume that U us the unit square, and that the parallel lines in
question are horizontal.

Let Ub = {z ∈ U : Im z ≤ b}. Since the area function

µ : b 7→ area(h(Ub))

is monotonic, it is differentiable for a.e. b. Let us take such a point
b where µ is differentiable, and prove absolute continuity of h on the
corresponding line γb = {z : Im z = b}.

For K ∈ N, let XK = {z ∈ γb : Lh(x, ǫ) ≤ K/2 for ǫ ≤ 1/K}.
Since the dilatation of h is bounded1, we have:

⋃

XK = γb. Hence it
is enough to prove that h|XK is absolutely continuous.

1For the regularity purposes, it is sufficient to assume that the circular dilata-
tion is finite everywhere.
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Let Q ⊂ XK be a set of zero length. We want to show that h(Q) has
zero length as well. By approximation, it is sufficinet to show for closed
sets. Then Q can be covered with finitely many disks Di = D(zi, ǫ)
(zi ∈ γb, i = 1, . . . , n) with intersection multiplicity at most 2 and an
arbitrary small total length. Hence for any δ > 0, we have nǫ ≤ δ once
ǫ is sufficiently small.

Let Mi = Mh(zi, ǫ) and mi = mh(zi, ǫ). Then Mi ≤ kmi, l(hX) ≤
∑

Mi, and by the Cauchy-Bunyakovsky inequality,

l(hX)2 ≤ n
∑

M2
i ≤ nK2

∑

m2
i ≤

K2δ

π
· area(h ∪Di))

ǫ
.

But the last ratio is bounded by

µ(b+ ǫ) − µ(b− ǫ)

ǫ
→ 1

2
µ′(b) as ǫ→ 0,

and the desired conclusion follows. �

9. Further important properties of qc maps

9.1. Weyl’s Lemma. This lemma asserts that a 1-qc map is con-
formal. In other words, if a qc map is infiniesimally conformal on the
set of full measure (i.e., ∂̄h(z) = 0 a.e.), then it is conformal in the
classical set. Since ∂̄h(z) = 0 is just the Cauchy-Riemann equation,
this statement is classical for smooth maps.

Let us formulate a more general version of Weyl’s Lemma:

Lemma 2.9 (Weyl). Assume that a continuous function h : U → C

has distributional derivatives of class L1
loc. If ∂̄h(z) = 0 a.e., then h is

holomorphic.

Proof. By approximation, Weyl’s Lemma can be reduced to the
classical statement. Since the statement is local, we can assume without
loss of generality that the partial derivatives of h belong to L1(U).
Convoluting h with smooth bump-functions we obtain a sequence of
smooth functions hn = h ∗ θn converging to h uniformly on U with
derivatives converging in L1(U). Let us show that ∂̄hn = 0. For a test
function η on U , we have:

∫

∂̄hn(z) η(z) dm(z) = −
∫

hn(z) ∂̄η(z) dm(z)

= −
∫

h(ζ) dm(ζ)

∫

θn(z − ζ)∂̄η(z) dm(z)

=

∫

h(ζ) dm(ζ)

∫

∂̄θn(z − ζ)η(z) dm(z)
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=

∫

η(z) dm(z)

∫

h(ζ) ∂̄θn(z − ζ) dm(ζ)

=

∫

η(z) dm(z)

∫

∂̄h(ζ) θn(z − ζ) dm(ζ) = 0

Here the first and the third equalities are the classical integration by
parts, the next to the last one comes from the definition of the distri-
butional derivative, and the intermediate ones come from the Fubini
Theorem.

It follows that the smooth functions hn satisfy the Cauchy-Riemann
equations and hence holomorphic. Since uniform limits of holomorphic
functions are holomorphic, h is holomorphic as well. �

9.2. Devil Staircase. The following example shows that Weyl’s
Lemma is not valid for homeomorphisms of class DH (i.e., differentiable
a.e.). The technical assumption that the classical derivative can be
understood in the sense of distributions (which allows us to integrate
by parts) is thus crucial for the statement.

Take the standard Cantor set K ⊂ [0, 1] and construct a devil
staircase h : [0, 1] → [0, 1], i.e., a continuous monotone function which
is constant on the complementary gaps to K.

Exercise 2.3. Do the construction. (Topologically it amounts to
showing that by collapsing the gaps to points we obtain a space home-
omorphic to the interval.)

Consider a strip S = [0, 1] × R and let f : (x, y) 7→ (x, y + h(x)).
This is a homeomorphism on S which is a rigid translation on every
strip G×R over a gap G ⊂ [0, 1] rK. Since m(K × R) = 0, this map
is conformal a.e. However it is obviously not conformal on the whole
strip P .

Clearly f in not absolutely continuous on the horizontal lines: it
translates them to devil staircases.

9.3. Quasiconformal Removability and Gluing. A closed set
K ⊂ C is called qc removable if any homeomorphism h : U → C defined
on an neighborhood U of K, which is quasiconformal on U r K, is
quasiconformal on U .

Remark. We will see later on (§??) that qc removable sets have
zero measure and hence Dil(f |U) = Dil(f |U rK).

Exercise 2.4. Show that isolated points are removable.

Proposition 2.10. Smooth Jordan arcs are removable.
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Proof. Let us consider a smooth Jordan arc Γ ⊂ U and a home-
omorphism f : U → C which is quasi-conformal on U r Γ. We should
check that f is absolutely continuous on lines near any point z ∈ Γ.
Take a small box B centered at z whose sides are not parallel to TzΓ.
Then any interval l in B parallel to one of its sides intersects Γ at a
sinle point ζ. Since for a typical l, f is absolutely continuous on the
both sides of l r {ζ}, it is absolutely continuous on the whole interval
l as well.

Moreover, Dil(f) is obviously bounded since it is so on U r Γ and
Γ has zero measure. �

The above statement is simple but important for holomorphic dy-
namics. It will allow us to construct global qc homeomorphisms by
gluing together different pieces without spoiling dilatation.

Let us now state a more delicate gluing property:

Lemma 2.11 (Bers). Consider a closed set K ⊂ C̄ and two its
neighborhoods U and V . Assume that we have two quasi-conformal
maps f : U rK → C̄ and g : V → C̄ that match on ∂K, i.e., the map

h(z) =

{

f(z), z ∈ U rK
g(z), z ∈ K

is continuous. Then h is quasi-conformal and µh(z) = µg(z) for a.e.
z ∈ K.

Proof. Consider a map φ = f−1 ◦ h. It is well-defined in a neigh-
borhood Ω of K, is identity on K and is quasi-conformal on ΩrK. Let
us show that it is quasi-conformal on Ω. Again, the main difficulty is
to show that h is abosultely continuous on lines near any point z ∈ K.

Take a little box near some point z ∈ K with sides parallel to the
coordinate axes. Without loss of generality we can assume that z 6= ∞
and φB is a bounded subset of C. Let ψ denote the extension of ∂φ/∂x
from BrK onto the whole box B by 0. By (7.6), ψ is square integrable
on B and hence it is square integrable on almost all horizontal sections
of B. All the more, it is integrable on almost all horizontal sections.
Take such a section I, and let us show that φ is absolutely continuous
on it.

Let Ij ⊂ I be a finite set of disjoint intervals; ∆φj denote the
increment of φ on Ij. We should show that

∑

|∆φj| → 0 as
∑

|I|j → 0. (9.1)
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Take one interval Ij and decompose it as L∪J ∪R where ∂J ⊂ K and
intL and intR belong to B rK. Then

|∆φj| ≤ |J | +
∫

L∪R

g dx ≤ |Ij| +
∫

Ij

g dx.

Summing up the last estimates over j and using integrability of g on
Ij, we obtain (9.1).

Absolute continuity on the vertial lines is treated in exactly the
same way. �

9.4. Weak topology in L2. Before going further, let us briefly
recall some background in functional analysis. Consider the space L2 =
L2(X) on some measure space (X,m). A sequence of functions hn ∈
L2 weakly converges to some function h ∈ L2, hn →

w
h, if for any

φ ∈ L2,
∫

hnφ dm →
∫

hφ dm. The main advantage of this topology is
the property that the balls of L2 are weakly compact (see e.g., [?, ]).
Note also that vice versa, any weakly convergent sequence belongs to
some ball in L2 (Banach-Schteinhaus [?, ]).

However, one should handle the weak topology with caution: for
instance, product is not a weakly continuous operation:

Exercise 2.6. Show that sinnx →
w

0 in L2[0, 2π], while sin2 nx →
w

1/2.

At least, the weak topology respects the order:

Exercise 2.7. Let hn →
w
h.

• If hn ≥ 0 then h ≥ 0;
• If hn = 0 a.e. on some subset Y ⊂ X, then h = 0 a.e. on Y ;
• After selecting a further subsequence,

(hn)+ →
w
h+ and (hn)− →

w
h−, so that |hn| →

w
|h|.

Here h+(z) = max(h(z), 0), h(z) = min(h(z), 0).

9.5. Compactness. We will proceed with the following funda-
mental property of qc maps:

Theorem 2.12. The space of K-qc maps h : C̄ → C̄ fixing 0, 1 and
∞ is compact in the topology of uniform convergence on C̄

Proof. It will be more convenient to consider the space X of K-qc
maps h such that h{0, 1,∞} = {0, 1,∞}. First, we will show that the
family of maps h ∈ X is equicontinuous. Otherwise we would have an
ǫ > 0, a sequence of maps hn ∈ X , and a sequence of points zn, ζn ∈ C̄
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such that such that d(zn, ζn) → 0 while d(hnzn, hnζn) ≥ ǫ, where d
stands for the sperical metric. By compactness of C̄, we can assume
that the zn, ζn ∈ C̄ converge to some point a and the hn(a) converge
to some b. Postcomposing or/and precomposing if necessary the maps
hn’s with z 7→ 1/z, we can make |a| ≤ 1, |b| ≤ 1.

Consider a sequence of annuli An = {z : rn < |z − a| < 1/2}
where rn = max(|zn − a|, |ζn − a|) → 0. Since the disk D(a, 1/2) does
not contain one of the points 0 or 1, its images hn(D(a, 1/2)) have
the same property. Hence the Euclidean distance from the point hn(a)
(belonging to the inner complement of hn(An)) to the outer complement
of that annulus is eventually bounded by 3. On the other hand, the
diameter of the inner complement of hn(An) is bounded from below
by ǫ > 0. By Lemma 1.26, mod(hn(An)) is bounded from above. But
mod(An) = 1/rn → 0 contradicting quasi-invariance of the modulus
(Proposition 2.5).

Hence X is precompact in the space of continuous maps C̄ → C̄.
Since X is invariant under taking the inverse h 7→ h−1, and the com-
position is a continuous operation in the uniform topology, X is pre-
compact in Homeo(C̄). Since Homeo+(C̄) is closed in Homeo(C̄), X is
precompact in the former space as well.

To complete the proof, we should show that the limit functions are
also K-qc homeomorphisms. Let a sequence hn ∈ X uniformly con-
verges to some h. Given a point a ∈ C̄, we will show that in some
neighborhood of a, f has distributional derivatives of class L2. With-
out loss of generality we can assume that a ∈ C. Take a neighborhood
B ∋ a such that h(B) is a bounded subset of C. Then the neighbor-
hoods hn(B) are eventually uniformly bounded. By (7.6), the partial
derivatives ∂hn and ∂̄hn eventually belong to a fixed ball of L2(D).
Hence they form weakly precompact sequences, and we can select lim-
its along subsequences (without changing notations):

∂hn →
w
φ ∈ L2(D); ∂̄hn →

w
ψ ∈ L2(D).

It is straightforward to show that φ and ψ are the distributional partial
derivatives of h. Indeed, for any test functions η we have:

∫

h ∂η dm = lim

∫

hn ∂η dm = − lim

∫

∂hn η dm = −
∫

φ η dm,
(9.2)

and the similarly for the ∂̄-derivative.
What is left is to show that |φ(z)| ≤ k|ψ(z)| for a.e. z, where

k = (K − 1)/(K + 1). To see this, select a further subsequence in such
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a way that |∂hn| →
w

|φ|, |∂̄hn| →
w

|ψ| and use the fact that the weak

topology respects the order (see Exercise 2.7). �

Exercise 2.8. Fix any three points a1, a2, a3 on the sphere C. A
family X of K-qc maps h : C̄ → C̄ is precompact in the space of all
K-qc homeomorphisms of the sphere (in the uniform topology) if and
only if the reference points are not moved close to each other (or, in
formal words: there exists a δ > 0 such that d(hai, haj) ≥ δ for any
h ∈ X and i 6= j, where d is the spherical metric). Consider first the
case K = 0.

We will also need a disk version of the above Compactness Theorem:

Corollary 2.13. The space of K-qc homeomorphisms f : D → D

fixing 0 is compact in the topology of uniform convergence on D.

Proof. Let Y be the space of K-qc homeomorphisms h : D → D

fixing 0, and X be the space of T-symmetric K-qc homeomorphisms
H : C → C fixing 0 and ∞. (To be T-symmetric means to commute
with the involution τ : C → C with respect to the circle.) Clearly
maps H ∈ X preserve the unit circle (the set of fixed points of τ); in
particular, they do not move 1 close to 0 and ∞. By Theorem 2.12
(and the Exercise following it), X is compact.

Let us show that X and Y are homeomorphic. The restriction of a
map H ∈ X to the unit disk gives a continuous map i : X → Y . The
inverse map i−1 : Y → X is given by the following extension procedure.
First, extend h ∈ Y continuously to the closed disk D (Theorem ??),
and then reflect it symmetrically to the exterior of the disk, i.e., let
H(z) = τ ◦ h ◦ τ(z) for z ∈ C̄ r D̄. Since τ is an (orientation reversing)
conformal map, H is K-qc on C̄ r T. By Lemma 2.10, it is K-qc
everywhere, and hence belongs to X .

Hence Y is compact as well. �

10. Measurable Riemann Mapping Theorem

We are now ready to prove one of the most remarkable facts of
analysis: any measurable conformal structure with bounded dilatation
is generated by a quasi-conformal map:

Theorem 2.14 (Measurable Riemann Mapping Theorem). Let µ be
a measurable Beltrami differential on C̄ with ‖µ‖∞ < 1. Then there is
a quasi-conformal map h : C̄ → C̄ which solves the Beltrami equation:
∂̄h/∂h = µ. This solution is unique up to post-composition with a
Möbius automorphism of C̄. In particular, there is a unique solution
fixing three points on C̄ (say, 0, 1 and ∞).
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The local version of this result sounds as follows:

Theorem 2.15 (Local integrability). Let µ be a measurable Bel-
trami differential on a domain U ⊂ C with ‖µ‖∞ < 1. Then there
is a quasi-conformal map h : U → C which solves the Beltrami equa-
tion: ∂̄h/∂h = µ. This solution is unique up to post-composition with
a conformal map.

The rest of this section will be occupied with a proof of these two
theorems.

10.1. Uniqueness. Uniqueness part in the above theorems is a
consequence of Weyl’s Lemma. Indeed, if we have two solutions h and
g, then the composition ψ = g ◦ h−1 is a qc map with ∂̄ψ = 0 a.e. on
its domain. Hence it is conformal.

10.2. Local vs global. Of course, the global Riemann Measurable
Riemann Theorem immediately yields the local integrability (e.g., by
zero extantion of µ from U to the whole sphere). Vice versa, the
global result follows from the local one and the classical Uniformization
Theorem for the sphere . Indeed, by local integrability, there is aref
finite covering of the sphere S2 ≡ C̄ by domains Ui and a family of
qc maps φi : Ui → C solving the Beltrami equation on Ui. By Weyl’s
Lemma, the gluing maps φi ◦ φ−1

j are conformal. Thus the family of

maps {φi} can be interpreted as a complex analytic atlas on S2, which
endows it with a new complex analytic structure m (compatible with
the original qc structure). But by the Uniformization Theorem, all
complex analytic structures on S2 are equivalent, so that there exists a
biholomorphic isomorphism h : (S2,m) → C̄. It means that the maps
h ◦ φ−1

i are conformal on φiUi. Hence h is quasi-conformal on each Ui

and h∗(µ) = (h ◦ φ−1
i )∗σ over there. Since the atlas is finite, h is a

global quasi-conformal solution of the Beltrami equation.

10.3. Strategy. The further strategy of the proof will be the fol-
lowing. First, we will solve the Beltrami equation locally assuming
that the coefficient µ is real analytic. It is a classical (and elementary)
piece of the PDE theory. By the Uniformization Theorem, it yields a
global solution in the real analytic case. Approximating a measurable
Beltrami coefficient by real analytic ones and using compactness of the
space of normalized K-qc maps, we will complete the proof.

10.4. Real analytic case. Assume that µ is a real analytic Bel-
trami coefficient in a neighborhood of 0 in R2 ≡ CR with |µ(0)| < 1.
Then it admits a complex analytic extension to a neighborhood of 0 in
the complexification C2. Let (x, y) be the standard coordinates in C2,
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and let u = x + iy, v = x − iy. In these coordinates the complexified
Beltrami equation assumes the form:

∂h

∂v
− µ(u, v)

∂h

∂u
= 0. (10.1)

This is a linear equation with variable coefficients, which can be solved
by the standard method of characteristics. Namely, let us consider a
vector field W (u, v) = (1,−µ(u, v)) near 0 in C2. Since the left-hand
side of (10.1) is the derivative of h along X, we come to the equation
Wh = 0. Solutions of this equation are the first integrals of the ODE
ẇ = W . But since W is non-singular at 0, this ODE has a non-
singular local first integral h(u, v). Restricting h to R2, we obtain a
local solution h : (R2, 0) → C of the original Beltrami equation. Since
h is non-singular at 0, it is a local (real analytic) diffeomorphism.

By means of the Uniformization Theorem, we can now pass from
local to global solutions of the Beltrami equation with a real analytic
Beltrami differential µ(z)dz̄/dz on the sphere (see §10.2). Note that
the global solution is real analytic as well since the complex structure
generated by the local solutions is compatible with the original real
analytic structure of the sphere (as local solutions are real analytic).

Exercise 2.9. For a real analytic Beltrami coefficient

µ(z) =
∑

an,mz
nz̄m

on C, find the condition of its real analyticity at ∞.

There is also a “semi-local” version of this result:
If µ is a real analytic Beltrami differential on the disk D with

‖µ‖∞ < 1, then there is a quasi-conformal (real analytic) diffeomor-
phism h : D → D solving the Beltrami equation ∂̄h/∂h = µ.

To see it, consider the complex structure m on the disk generated
by the local solutions of the Beltrami equation. We obtain a simply
connected Riemann surface S = (D,m). By the Uniformization The-
orem, it is conformally equivalent to either the standard disk (D, σ)
or to the complex place C. But S is quasi-conformally equivalent to
the standard disk via the identical map id : (D,m) → (D, σ). By Ex-
ercise 2.3, it is then conformally equivalent to the standard disk, and
this equivalence h : (D,m) → (D, σ) provides a desired solution of the
Beltrami equation.

By §10.1 Such a solution is unique up to a postcomposition with a
Möbius automorphism of the disk.

10.5. Approximation. Let us consider an arbitrary measurable
Beltrami coefficient µ on a disk D with ‖µ‖ < ∞. Select a sequence



80 2. QUASI-CONFORMAL GEOMETRY

of real analytic Beltrami coefficients µn on D with ‖µn‖∞ ≤ k < 1,
converging to µ a.e.

Exercise 2.10. Construct such a sequence (first approximate µ
with continuous Beltrami coefficients).

Applying the results of the previous section, we find a sequence
of quasi-conformal maps hn : (D, 0) → (D, 0) solving the Beltrami
equations ∂̄hn/∂hn = µn. The dilatation of these maps is bounded
by K = (1 + k)/(1 − k). By Corollary 2.13, they form a precompact
sequence in the topology of uniform convergence on the disk. Any limit
map h : D → D of this sequence is a quasi-conformal homeomorphism
of D. Let us show that its Beltrami coefficient is equal to µ.

By (7.6), the partial derivatives of the hn belong to some ball of
the Hilbert space L2(D). Hence we can select weakly convergent sub-
sequences ∂hn → φ, ∂̄hn → ψ. We have checked in (9.2) that φ = ∂h
and ψ = ∂̄h. What is left is to check that ψ = µφ. To this end, it is
enough to show that µn ∂hn → µφ weakly (to appreciate it, recall that
the product is not weakly continuous, see Exercise 2.6). For any test
function η ∈ L2(D), we have:

∣

∣

∣

∣

∫

(ηµφ− etaµn ∂hn) dm

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

∫

ηµ(φ− ∂hn) dm

∣

∣

∣

∣

+

∫

|η(µ− µn) ∂hn| dm.

The first term in the last line goes to 0 since the ∂hn weakly converge
to φ. The second term is estimated by the Cauchy-Schwarz inequality
by ‖η(µ−µn)‖2‖∂hn‖2, which goes to 0 since µn → µ a.e. and the ∂hn

belong to some Hilbert ball. This yields the desired.
It proves the Measurable Riemann Mapping Theorem on the disk

D, which certainly implies the local integrability. Now the global the-
orem on the sphere follows from the local integrability by §10.2. This
completes the proof.

10.6. Conformal and complex structures. Let us discuss the
general relation between the notions of complex and conformal struc-
tures. Consider an oriented surface S endowed with a qs structure, i.e.,
supplied with an atlas of local charts ψi : Vi → C with uniformly qc
transit maps ψi ◦ψ−1

j (“uniformly qc” means “with uniformly bounded
dilatation”). Note that a notion of a measurable conformal structure
with bounded dilatation makes perfect sense on such a surface (in what
follows we call it just a “conformal structure”).
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Endow S with a complex structure compatible with its qs structure.
By definition, it is determined by an atlas φi : Ui → C on S of uniformly
qc maps such that the transit maps are complex analytic. Then the
conformal structures µi = φ∗

i (σ) on Ui coincide on the intersections of
the local charts and have uniformly bounded dilatations. Hence they
glue into a global conformal structure on S.

Vice versa, any conformal structure µ determines by the Local Inte-
grability Theorem a new complex structure on the surface S compatible
with its qc structure (see §10.2).

Thus the notions of conformal and complex structures on a qc sur-
face are equivalent. In what follows we will not distinguish them either
conceptually or notationally.

Fixing a reference complex structure on S (so that S becomes a Rie-
mann surface), complex/conformal structures on S get parametrized by
measurable Beltrami differentials µ on S with ‖µ‖∞ < 1.

10.7. Moduli spaces. Consider some qc surface S (with or with-
out boundary, possibly marked or partially marked).

The moduli space M(S), or the deformation space of S is the
space of all conformal structures on S compatible with the underly-
ing qc structure, up to the action of qc homeomorphisms perserving
the marked data. In other words, M(S) is the space of all Riemann
surfaces qc equivalent to S, up to conformal equivalence relation (re-
specting the marked data).

If we fix a reference Riemann surface S0, then its deformations are
represented by qc homeomorphisms h : S0 → S to various Riemann
surfaces S. Two such homeomorphisms h and h̃ represent the same
point of the moduli space if there exists a conformal isomorphism A :
S → S̃ such that the composition H = h̃−1 ◦ A ◦ h : S0 → S0 respects
all the marked data. In particular, H = id on the marked boundary.
In the case when the whole fundamental group is marked, H must be
homotopic to the id relative to the marked boundary.

For instance, if S has a finite conformal type, i.e., S is a Riemann
surface of genus g with n punctures (without marking), then M(S) is
the classical moduli space M g,n. If S is fully marked then M(S) is
the classical Teichmüller space T g,n. This space has a natural complex
structure of complex dimension 3g − 3 + n for g > 1. For g = 1 (the
torus case), dimT 1,0 = 1 (see §1.4.2) and dimT 1,n = n − 1 for n ≥ 1.
For g = 0 (the sphere case), dimT 0,n = 0 for n ≤ 3 (by the Riemann-
Koebe Uniformization Theorem and 3-transitivity of the Möbius group
action) and dimT 0,n = n− 3 for n > 3.



82 2. QUASI-CONFORMAL GEOMETRY

Exercise 2.11. What is the complex modulus of the four punctured
sphere?

There is a natural projection (fogetting the marking) from T g,n

onto M g,n. The fibers of this projection are the orbits of the so called
“Teichmüller modular group” acting on T g,n (it generalizes the classical
modular group PSL(2,Z), see §1.4.2).

By the Riemann Mapping Theorem, the disk D does not have mod-
uli. However, if we mark its boundary T, then the space of moduli,
M(D,T), becomes infinitely dimensional! By definition, M(D,T) is
the space of all Beltrami differentials µ on D up to the action of the
group of qc homeomorphisms h : D → D whose boundary restrictions
are Möbius: h|T ∈ PSL(2,R). It is called the universal Teichmüller
space, since it contains all other deformation spaces. This space has
several nice descriptions, which will be discussed later on. It plays an
important role in holomorphic dynamics.

10.8. Dependence on parameters. It is important to know how
the solution of the Beltrami equation depends on the Beltrami differ-
ential. It turns out that this dependence is very nice. Below we will
formulate three statements of this kind (on continuous, smooth and
holomorphic dependence).

Proposition 2.16. Let µn be a sequence of Beltrami differentials
on C with uniformly bounded dilatation, converging a.e. to a differ-
ential µ. Consider qc solutions hn : C̄ → C̄ and h : C̄ → C̄ of the
corresponding Beltrami equations fixing 0, 1 and ∞. Then the hn con-
verge to h uniformly on C.

Proof. By Theorem 9.5, the sequence hn is precompact. Take any
limit map g of this sequence. By the argument of §10.5, its Beltrami
differential is equal to µ. By uniqueness of the normalized solution of
the Beltrami equation, g = h. The conclusion follows. �

Consider a family of Beltrami differentials µt depending on parame-
ters t = (t1, . . . , tn) ranging over a domain U ⊂ Rn. This family is said
to be differentiable at some t ∈ U if there exist Beltrami differentials
αi

t of class L∞(C) (but not necessarily in the unit ball of this space)
such that for all sufficiently small ǫ = (ǫ1, . . . , ǫn) ∈ Rn, we have:

µt+ǫ − µt =
n

∑

i=1

αi
tǫi + |ǫ| β(t, ǫ),

where the norm ‖βt,ǫ‖∞ stays bounded and βt,ǫ(z) → 0 a.e. on C as
ǫ→ 0.
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Assume additionally that the family µt is differentiable at all points
t ∈ U , that the norms ‖αi

t‖ are locally bounded, and that the αi
t(z)

continuously depend on t in the sense of the convergence a.e. Then the
family µt is said to be smooth.

Let us now consider a family of qc maps ht : C → C depending on
parameters t ∈ U . Considering these maps as elements of the Sobolev
space H, we can define differentiabilty and smoothness in the usual
way. This family is differentiable at some point t ∈ U if there exist
vector fields vi

t on C of Sobolev class H such that

ht+ǫ − ht =
n

∑

i=1

ǫiv
i
t + |ǫ|gt,ǫ,

where gt,ǫ → 0 in the Sobolev norm as ǫ → 0 (in particular gt,ǫ → 0
uniformly on the sphere). If additionally the vi

t depend continuously
on t (as elements of H), then one says that ht smoothly depends on t.
Of course, in this case, any point z ∈ C smoothly moves as parameter
t changes, i.e., ht(z) smoothly depends on t.

Theorem 2.17. If µt, t ∈ U ⊂ Rn, is a smooth family of Bel-
trami differentials, then the normalized solutions ht : C → C of the
corresponding Beltrami equations smoothly depend on t.

Let us finally discuss the holomorphic dependence on parameters.
Let U be a domain in Cn and let B be a complex Banach space. A
function f : U → B is called holomorphic if for any linear functional
φ ∈ B∗, the function φ ◦ f : U → C is holomorphic. Beltrami differ-
entials are elements of the complex Banach space L∞, while qc maps
h : C → C are elements of the complex Sobolev space H. So, it be careful here!
makes sense to talk about holomorphic dependence of these objects
on complex parameters t = (t1, . . . , tn) ∈ U . Note that if ht depends
holomorphically on t, then any point z ∈ C moves holomorphically
as t changes (in fact, holomorphic dependence on parameters is often
understood in this weak sense).

Theorem 2.18. If the Beltrami differential µt holomorphically de-
pends on parameters t ∈ U , then so do the normalized solutions ht :
C → C of the corresponding Beltrami equations.

The proofs of the last two theorems can be found in [AB].
10.8.1. Simple conditions.

Lemma 2.19. Let B be a Banach space, and let {fλ}, λ ∈ Dρ, be
a uniformly bounded family of linear functionals on B such that for
a dense linear subspace L of points x ∈ B, the function λ 7→ fλ(x)
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is holomorphic in λ. Then {fλ} as an element of the dual space B∗

depends holomorphically on λ.

Proof. For x ∈ L, we have a power series expansion

fλ(x) =
∑

an(x)λn

convergent in Dρ. By the Cauchy estimate,

|an(x)| ≤ C‖x‖
ρn

, x ∈ L,

where C is an upper bound for the norms ‖fλ‖, λ ∈ Dρ. Clearly,
the an(x) linearly depend on x ∈ L. Hence, an are bounded linear
functionals on L; hence they admit an extension to bounded linear
functionals on B. Moreover, ‖an‖ ≤ Cρ−n. It follows that the power
series

∑

anλ
n converges in the dual space B∗ uniformly in λ over any

disk Dr, r < ρ. Hence it represents a holomorphic function Dρ 7→ B∗,
which, of course, coincides with λ 7→ fλ. �

For further applications, let us formulate one simple condition of
holomorphic dependence:

Lemma 2.20. Let ρ > 0 and let U ⊂ C be an open subset in C̄

of full measure. Let µλ ∈ L∞(C), λ ∈ Dρ, be a family of Beltrami
differentials with ‖µλ‖∞ ≤ 1 whose restriction to U is smooth in both
variables (λ, z) and is holomorphic in λ. Then {µλ} is a holomorphic
family of Beltrami differentials.

Proof. Let us first assume that U = C̄. Then

µλ(z) =
∑

an(z)λn, λ ∈ Dρ,

where the an are smooth functions on C̄, and the series converges uni-
formly over C̄ × Dr for any r < ρ. It follows that the series

∑

anλ
n in

L∞ converges uniformly over Dr and hence represents a holomorphic
function Dr → L∞.

Let us now consider the general case; put K = C̄ r U . Consider
a sequence of smooth functions χl : C̄ → [0, 1] such that χl = 0 on K
and for any z ∈ U , χl(z) → 1 as l → ∞.

Consider smooth Beltrami differentials µl
λ = χlµλ. By the above

consideration, they depend holomorphically on λ. Moreover, since K
has zero area, χlµλ → µλ a.e. as l → ∞. Note also that ‖µl

λ‖∞ ≤ 1.
Take any smooth test function φ on C̄ and let

gl(λ) =

∫

µl
λφdA; g(λ) =

∫

µλφdA,
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where dA is the (normalized) area element on C̄. The family {gl} is
uniformly bounded: |gl(λ)| ≤ ‖φ‖∞ By the Lebesgue Bounded Con-
vergence Theorem, gl(λ) → g(λ) as l → ∞

By the previous discussion, functions gl are holomorphic functions
on Dρ. By the Little Montel Theorem, this family is normal. Hence we
can select a subsequence conveging to g uniformly on compact subsets
of C̄. It follows that g is holomorphic on Dρ.

Since smooth functions are dense in L1, Lemma 2.19 can be applied.
It implies the assertion. �

Exercise 2.12. Let f : S → T be a holomorphic map between two
Riemann surfaces, and let {µλ} be a holomorphic family of Beltrami
differentials on T . Then f ∗(µλ) is a holomorphic family of Beltrami
differentials on S.

11. Quasi-symmetric maps

Definition 2.1. A map h : X → Y between two metric spaces is
called κ-quasi-symmetric (“κ-qs”) if for any triple of points a, b, c with
dist(a, c) ≤ dist(a, b) we have: dist(h(a), h(c)) ≤ κ dist(h(a), h(b)). A
map is called quasi-symmetric (“qs”) if it is κ-qs for some κ. The
dilatation of a qs map is the smallest κ with this property.

Exercise 2.13. A metric space is called geodesic if any two points
in it can be joined with an isometric image of a real interval [x, y].
Assume that X is geodesic and h : X → Y is κ-qs. Then for any
L > 0 there exists an M = M(κ, L) > 0 such that

dist(a, c) ≤ L dist(a, b) ⇒ dist(h(a), h(c)) ≤M dist(h(a), h(b)).

On the plane, the class of orientation preserving quasi-symmetric
maps in fact coincides with the class of quasi-conformal maps. In one
direction, it is a simple consequence of the Compactness Theorem:

Proposition 2.21. Any K-quasi-conformal map h : C → C is
κ(K)-quasi-symmetric in the Euclidean metric of the plane.

Proof. Otherwise there would exist a sequence of K-qc maps hn :
C → C and a sequence of triples of points an, bn, cn in C such that

|an − cn| ≤ |an − bn| but |hn(an) − hn(cn)|/|hn(an) − hn(bn)| → ∞.
(11.1)

Consider two sequences of affine maps Sn and Tn such that

Sn(0) = an, Tn(hn(an)) = 0 and Sn(1) = bn, Tn(hn(bn)) = 1.

Then the normalized maps Hn = Tn ◦ hn ◦ Sn fix 0 and 1. By the
Compactness Theorem 2.12, they are uniformly bounded on the unit
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disk D. On the other hand, (11.1) implies that the points xn = S−1
n cn

belong to D, while Hn(xn) = Tn(hn(cn)) → ∞ - contradiction. �

In particular, if we consider a quasi-conformal map h : C → C

preserving the real line R, it restricts to a quasi-symmetric map on the
latter. Remarkably, the inverse is also true:

Theorem 2.22 (Ahlfors-Boerling Extension). Any κ-qs orientation
preserving map h : R → R extends to a K(κ)-qc map H : C → C.

Proof. �

Note that in the Ahlfors-Boerling extension is obviously affinely
equivariant (that is, commutes with the action of the complex affine
group z 7→ az + b).

It looks at first glance that the class of 1D quasi-symmetric maps is
a good analogue of the class of 2D quasi-conformal maps. However, this
impression is superficial: two-dimensional qc maps are fundamentally
better than one-dimensional qs maps. For instance, qc maps can be
glued together without any loss of dilatation (Lemma 2.10), while qs
maps cannot:

Exercise 2.14. Consider a map h : R → R equal to id on the
negative axis, and equal to x 7→ x2 on the positive one. This map is
not quasi-symmetric, though its restrictions to the both positive and
negative axes are.

Another big defficiency of one-dimensional qs maps is that they can
well be singular (and typically are in the dynamical setting - see ??),
while 2D qc maps are always absolutely continuous (Proposition 9.1).

These advantages of qc maps makes them much more efficient tool
for dynamics than one-dimensional qs maps. This is a reason why
complexification of one-dimensional dynamical systems is so powerful.

Let us now state an Extension Lemma in an annulus which will be
usefull in what follows:

Lemma 2.23 (Interpolation). Let us consider two round annuli A =
A[1, r] and Ã = A[1, r̃], with 0 < ǫ ≤ modA ≤ ǫ−1 and ǫ ≤ mod Ã ≤
ǫ−1. Then any κ-qs map h : (T,Tr) → (T̃, T̃r̃) admits a K(κ, ǫ)-qc
extension to a map H : A→ Ã.

Proof. Since A and Ã are ǫ2-qc equivalent, we can assume without
loss of generality that A = Ã. Let us cover A by the upper half-plane,

θ : H → A, θ(z) = z
− log ri

π , where the covering group generated by the

dilation T : z 7→ λz, with λ = e
2π2

log r . Let h̄ : (R, 0) → (R, 0) be the
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lift of h to R such that h̄(1) ∈ [1, λ) ≡ Iλ and h̄(1) ∈ (−λ,−1] (note
that R+ covers Tr, while R− covers T). Moreover, since deg h = 1, it
commutes with the deck transformation T .

A direct calculation shows that the dilatation of the covering map θ
on the fundamental intervals Iλ and −Iλ is comparable with (log r)−1.
Hence h̄ is C(κ, r)-qs on this interval. By equivariance it is C(κ, r)-qc
on the rays R+ and R−.

It is also quasi-symmetric near the origin. Indeed, by the equivari-
ance and normalization,

(1 + λ)−1|J | ≤ |h̄(J)| ≤ (1 + λ)|J |

for any interval J containing 0, which easily implies quasi-symmetry.
Since the Ahlfors-Börling extension is affinely equivariant, the map

h̄ extends to a K(κ, r)-qc map H̄ : H → H commuting with T . Hence
H̄ descends to a K(κ, r)-qc map H : A→ A. �

********************************************************************************
Note that the Gluing Lemma makes a difference between complex

qc and real qs maps which is crucial for the pull-back argument.
Let D be a simply connected domain conformally equivalent to the

hyperbolic plane H2. Given a family of subsets {Sk}n
k=1 in D, let us

say that a family of disjoint annuli Ak ⊂ D r ∪Si is separating if Ak

surrounds Sk but does not surround the Si, i 6= k. The following lemma
is used in the present paper uncountably many times:

Moving Lemma. • Let a, b ∈ D be two points on hyperbolic distance
ρ ≤ ρ̄. Then there is a diffeomorphism φ : (D, a) → (D, b), identical
near ∂D, with dilatation Dil(φ) = 1+O(ρ), where the constant depends
only on ρ̄.

• Let {(ak, bk)}n
k=1 be a family of pairs of points which admits a

family of separating annuli Ak with modAk ≥ µ. Then there is a
diffeomorphism φ : (D, a1, . . . an) → (D, b1, . . . , bn), identical near ∂D,
with dilatation Dil(φ) = 1 +O(e−µ).

Proof. As the statement is conformally equivalent, we can work
with the unit disk model of the hyperbolic plane, and can also assume
that a = 0, b > 0. Also, it is enough to prove the statement for
sufficiently small ρ.

There is a smooth function ψ : [0, 1] → [b, 1] such that ψ(x) ≡ b
near 0, ψ(x) ≡ 0 near 1, and ψ′(x) = O(ρ), with a constant depending
only on ρ̄.
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Let us define a smooth map φ : (D, 0) → (D, b) as z 7→ z + ψ(|z|).
Then

∂φ(z) = 1 + ψ′(|z|) z̄

2|z| = 1 +O(ρ), ∂̄φ(z) = ψ′(|z|) z

2|z| = O(ρ).
(11.2)

Thus

Jac(f) = ∂φ(z)|2 − |∂̄φ(z)|2 = 1 +O(ρ).

Hence for sufficiently small ρ > 0, f is a local orientation preserving
diffeomorphism. As f : ∂D → ∂D, f is a proper map. Hence it is a
diffeomorphism.

Finally, (11.2) yields that the Beltrami coefficient µf = O(ρ), so
that the dilatation Dil(f) = 1 +O(ρ). �

Let Q ⊂ C, h : Q → C be a homeomorphism onto its image. It is
called quasi-symmetric (qs) if for any three points a, b, c ∈ Q such that
q−1 ≤ |a−b|/|b−c| ≤ q, we have: κ(q)−1 ≤ |h(a) − h(b)|/|h(b) − h(c)| ≤
κ(q). It is called κ-quasi-symmetric if κ(1) ≤ κ. It follows from the
Compactness Lemma that any K-qc map is κ-quasi-symmetric, with a
κ depending only on K.

Let us discuss quasi-symmetric maps of the circle T = {z : |z| = 1}.
Given an interval J ⊂ T, let |J | denote its length. An orientation
preserving map h : T → T is called κ-quasi-symmetric (κ-qs) if for any
two adjacent intervals I, J ⊂ T, |hI|/|hJ | ≤ κ.

Let Tr = {z : |z| = r}, T ≡ T1. Let A(r, R) = {z : r < |z| < R}.
Similar notations are used for a closed annulus A[r, R] (or semi-closed
one).

proclaim Ahlfors-Börling Extension Theorem. Any κ-quasi-symmetric
map h : T → T extends to a K(κ)-qc map H : C → C. Vice versa:
The restriction of any K-qc map H : (A(r−1, r),T) → (U,T) (where
U ⊂ C) to the circle κ(K, r)-quasi-symmetric.

Let us note that in the upper half-plane model, the Ahlfors-Börling
extension of a qs map R → R is affinely equivariant (that is, commutes
with the action of the complex affine group z 7→ az + b).

11.1. Quasicircles. Let us start with an intrinsic geometric defi-
nition of quasicircles:

Definition 2.2. A Jordan curve γ ⊂ C is called a κ-quasicircle if
for any two points x, y ∈ γ there is an arc δ ⊂ γ bounded by these
points such that

diam δ ≤ κ|x− y|.
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A curve is called a quasicircle if it is a κ-quasicircle for some κ.
The best possible κ in the above definition is called the dilatation of
the quasicircle. A Jordan disk is called (κ-)quasidisk if it is bounded
by a (κ-)quasicircle.

Exercise 2.15. Let D be a κ-quasidisk, ∂D = γ. Show that

sup
z∈D

dist(z, γ) ≥ c diamD

for some constant c > 0 depending only on κ.

On the other hand, quasicircles can also be characterized as qc
images of the circle (which explains the importance of this class of
curves). Recall from §?? that rD,a denote the inner radius of a pointed
disk (D, a).

Theorem 2.24. Let (D, a) a pointed κ-quasidisk, and let φ : (D, 0) →
(D, a) be the normalized Riemann mapping. Assume that rD,a ≥ c diamD,
where c > 0. Then φ admits a K-qc extension to the whole complex
plane, where K depends only on κ and c.

Vice versa, let (D, a) be a Jordan disk such that there exists a K-qc
map h : (C,D, 0) → (C, D, a). Then D is a κ-quasidisk and rD,a ≥
c diamD, where the constants κ and c > 0 depend only on K.

Recall the definition of the inner and the outer radia, rD,a and RD,a

of a pointed domain (D, a). Let QDκ,r, r > 0, denote the space of
pointed κ-quasidisks (D, 0) with r ≤ rD,0 ≤ RD,0 ≤ 1/r, endowed with
the Carathéodory topology.

Proposition 2.25. The space QDκ,r is compact.

Proof. Consider a quasidisk (D, 0) ∈ QDκ,r. By Theorem 2.24,
the normalized Riemann mapping h : (D, 0) → (D, 0) admits a K-qc
extension to the whole complex plane C, where K depends only on κ
and r. Moreover, r ≤ |h(1)| ≤ 1/r. By the Compactness Theorem (see
Exercise 2.8), this family of qc maps is compact in the uniform topology
on C. Since uniform limits of κ-quasidisks are obviously κ-quasidisks,
the conclusion follows. �

A set is called “0-symmetric” if it is invariant under the reflection
with respect to the origin.

Exercise 2.16. Let γ be a 0-symmetric κ-quasicircle. Then the
eccentricity of γ around 0 is bounded by 2κ+ 1.
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12. Removability

12.1. Conformal vs quasiconformal. Similarly to the notion of
qc removability introduced in §9.3 we can define conformal removabil-
ity:

Definition 2.3. A compact subset X ⊂ C is called conformally
removable if for any open sets U ⊃ X in C, any homeomorphic em-
bedding h : U →֒ C which is conformal on U r X is conformal/qc on
U .

It is classical that isolated points and smooth Jordan curves are
conformally removable. By §9.3 of Ch. 2, they are qc removable as
well. In fact, these two properties are equivalent:

Proposition 2.26. Conformal removability is equivalent to qc re-
movability.

Thus, we can unambiguously call a set “removable”.

12.2. Removability and area. The Measurable Riemann Map-
ping Theorem yields:

Proposition 2.27. Removable sets have zero area.

Proof. Assume that m(X) > 0. Then there exists a non-trivial
Beltrami differential µ supported on X. Let h : C → C be a solution
of the corresponding Beltrami equation. Then h is conformal outside
X but is not conformal on X. �

The reverse is false:

Example 2.1.

12.3. Divergence property.

Definition 2.4. Let us say that a compact set X ⊂ C satisfies the
divergence property if for any point z ∈ X there exists a nest of annuli
An(z) around z such that

∑

An(z) = ∞.

Without loss of generality we can assume (and we will always do so)
that each annulus in this definition is bounded by two Jordan curves.

Lemma 2.28. Compact sets satisfying the divergence property are
Cantor.
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Proof. Consider any connected component X0 of X, and let z ∈
X0. Then the annuli An(z) are nested around X0. By Corollary 1.27
of the Grötzsch Inequality, X0 is a single point. �

Lemma 2.29. Let X ⊂ C be a compact set satisfying the divergence
property. Then for any neighborhood U ⊃ X, any qc embedding h :
U rX →֒ C admits a homeomorphic extension through X.

Proof. Let h : U rX →֒ C be a K-qc embedding. If X ⊂ U ′
⋐ U

then h(U ′) is bounded in C. So, without loss of generality we can
assume that h(U) is bounded in C.

For z ∈ X, let us consider the nest of annuli h(An(z)). Since h is
quasiconformal,

∑

modh(An(z)) ≥ K−1
∑

modAn(z) = ∞.

Let ∆n(z) be the bounded component of C r h(An(z)), and let

∆∞(z) =
⋂

n

Dn(z).

By Corollary 1.27 of the divergence property, ∆∞(z) is a single point
ζ = ζ(z). Let us extend h through X by letting h(z) = ζ.

This extension is continuous. Indeed, let Dn(z) be the bounded
component of C rAn(z). Then by Corollary 1.27, diamDn(z) → 0, so
that Dn(z) is a base of (closed) neighborhoods of z. But

diamh(Dn(z)) = diam ∆n(z) → 0,

which yields continuity of h at z.
Switching the roles of (U,X) and (h(U), h(X)), we conclude that

h−1 admits a continuous extension through h(X). Hence the extension
of h is homeomorphic. �

It is worthwhile to note that, in fact, general homeomorphisms ex-
tend through Cantor sets:

Exercise 2.17. (i) Let us consider two Cantor sets X and X̃ in C

and their respective neighborhoods U and Ũ . Then any homeomorphism
h : U rX → Ũ r X̃ admits a homeomorphic extension through X.

(ii) It was essential to assume that both sets X and X̃ are Cantor!
For any compact set X ⊂ C, give an example of an embedding h :
C rX →֒ C which does not admit a continuous extension through X.

Lemma 2.30. Compact sets satisfying the divergence property have
zero area.
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We will show now that sets satisfying the divergence property are
removable, and even in the following stronger sense:

Theorem 2.31. Let X ⊂ C be a compact set satisfying the diver-
gence property. Then for any neighborhood U ⊃ X, any conformal/qc
embedding h : U r X →֒ C admits a conformal/qc extension through
X.

Proof. Let h : U r X →֒ C be a K-qc embedding. By Lemma
2.29, h extends to an embedding U →֒ C, which will be still denoted
by h. Let us show that h belongs to the Sobolev class H(U).

Since X is a Cantor set, it admits a nested base of neighborhoods
Un such that each Un is the union of finitely many disjoint Jordan
diks. Take any µ > 0. By the Grẗzsch Inequality, for any n ∈ N there
is k = k(µ, l) > 0 such that mod(∂Un+k, ∂Un) ≥ µ > 0. Let χn be
the solution of the Dirichlet problem in Un rUn+k vanishing on ∂Un+k

and equal to 1 on ∂Un. By Theorem 1.30, D(χn) ≤ 1/µ.
Let us continuously extend χ to the whole plane in such a way

that it vanishes on Un+k and identically equal to 1 on C r Un. We
obtain a piecewice smooth function χ : C → [0, 1], with the jump of
the derivative on the boundary of the domains Un and Un+k.

Let hn = χn h. These are piecewise smooth functions with bounded
Dirichlet integral. Indeed,

D(hn) =

∫

(|∇χn|2|h|2+|χn|2|∇h|2)dm ≤ diam(h(U))/µ+C(K)m(h(U)),

where C(K) = (1 + k2)/(1 − k2) comes from the area estimate (area
estimate). By weak compactness of the unit ball in L2(U), we can
select a converging subsequence ∂hn → φ, ∂̄hn → ψ. But hn → h
pointwise on U r X, so that by Lemma 2.30, hn → h a.e. It follows
that φ and ψ are distributional partial derivatives of h (see (9.2)).

Finally, if h is conformal on U r X then by Weyl’s Lemma it is
conformal on U . �

Compactness in H of functions with bounded D.I. - formulate as a
lemma?



CHAPTER 3

Elements of Teichmüller theory

1. Holomorphic motions

1.1. Definition. Let (Λ, ∗) be a pointed complex manifold (can
be infinite dimensional1) and let X ⊂ C̄ be an arbitrary subset of the
Riemann sphere (can be non-measurable). A holomorphic motion h
over (Λ, ∗)2 is a family of injections hλ : C̄ → C̄, λ ∈ Λ, depending
holomorphically on λ (in a weak sense that the finctions z 7→ hλ(z)
are holomorphic in λ for all z ∈ X) and such that h∗ = id. In this
situation, we let Xλ = hλ(X∗).

3.
Holomorphic functions φz : Λ → C̄, λ 7→ hλ(z), are called orbits

of the holomorphic motion. Since the functions hλ are injective, the
orbits do not collide, or equivalently, their graphs Γz ⊂ Λ × C̄ are
disjoint. Thus, a holomorphic motion provides us with a family of
disjoint holomorphic graphs over Λ. We refer to such a family as a
(trivial) holomorphic lamination. Of course, the above reasoning can be
reversed, so that, trivial holomorphic laminations give us an equivalent
(dual) way of describing holomorphic motions.

A regularity of a holomorphic motion is the regularity of the maps
hλ on X. For instance, a holomorphic motion is called continuous, qc,
smooth or bi-holomorphic if all the maps hλ, λ ∈ Λ, have the corre-
sponding regularity on X (to make sense of it in some cases we need
extra assumptions on X, e.g., opennes).

Notice that a priori we do not impose any regularity on the maps hλ

(not even measurability!). A remarkable property of holomorphic mo-
tions is that they automatically have nice regularity properties and that
they automatically extend to motions of the whole Riemann sphere.

1We will eventually deal with infinite dimensional parameter spaces, so we
need to prepare the background in this generality. However, in the first reading
the reader can safely assume that the space Λ is a one-dimensional disk (which is
anyway the main case to consider).

2We will often make a point ∗ implicit in the notation and terminology.
3we will sometimes say briefly that “the sets Xλ move holomorphically” or “the

set X∗ moves holomorphically” without mentioning explicitly the maps hλ

93
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This set of properties are usually referred to as the λ-lemma. It will
be the subject of the rest of this section.

While dealing with a holomorphic motion of a set X, Y , etc., we
let Xλ = hλ(X), Yλ = hλ(Y ), etc. We will refer to the z-variable of a
holomorphic motion as the dynamical variable (though in general, there
is no dynamics in the z-plane). The λ-variable is naturally referred to
as the parameter.

1.2. First λ-lemma: extension to the closure and continu-
ity.

Lemma 3.1. A holomorphic motion h of any set X ⊂ C̄ extends to
a continuous holomorphic motion of its closure X̄.

Proof. If X is finite, there is nothing to prove, so assume it is
infinite (or, at least, contains more than two points).

Let us show that the family of orbits φz, z ∈ X, of our holomorphic
motion is normal. To this end, let us remove from X three points
zi ∈ X; let X ′ = Xr{zi} and let ψi be the orbits of the points zi. Since
the orbits of a holomorphic motion do not collide, the family of orbits
of points z ∈ X ′ satisfies the condition of the Refined Montel Theorem
(1.14) with exceptional functions ψi, and the normality follows.

Let Φ be the closure of the family of orbits in the space M(Λ)
of meromorphic functions on Λ. By the Hurwitz Theorem (see §4.3)
the graphs of these functions are disjoint, so they form a holomorphic
lamination representing a holomorphic motion of X̄.

Let us keep notation hλ for the extended holomorphic motion, and
notation φz, z ∈ X̄, for its orbits.

Let us show that this motion is continuous. Let λ ∈ Λ, let zn → z
be a converging sequence of points in X̄, and let φn ∈ Φ and φ ∈ Φ
be their respective orbits. We want to show that hλ(zn) → hλ(z),
or equivalently φn(λ) → φ(λ). But otherwise, the sequence φn would
have a limit point ψ ∈ M(Λ) such that ψ(∗) = φ(∗) while ψ(λ) 6= φ(λ),
which would contradict to the laminar property of the family Φ. �

1.3. Second λ-lemma: quasi-conformality. ****************************************************************8
Let X ⊂ C be a subset of the complex plane. A holomorphic motion
of X over a Banach ball (B1, 0) is a a family of injections hλ : X → C,
λ ∈ B1, with h0 = id, holomorphically depending on λ ∈ B1 (for any
given z ∈ X). The graphs of the functions λ 7→ hλ(z), z ∈ X, form a
foliation F (or rather a lamination as it is partially defined) in B1 ×C

with complex codimension 1 analytic leaves. This is a ““dual” view-
point on holomorphic motions.
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We will now state a basic fact about holomorphic motions usu-
ally referred to as “λ-lemma”. It consists of two parts: extension and
quasi-conformality which will be stated separately. The consecutively
improving versions of the Extension Lemma appeared in [?, ?, ?, ?, ?].
The final result is due to Slodkowski:

λ-lemma (Extension). A holomorphic motion hλ : X∗ → Xλ of a set
X∗ ⊂ C over a topological disc D admits an extension to a holomorphic
motion Hλ : C → C of the whole complex plane over D.

The point of the following simple lemma as compared with the pre-
vious deep one is smoothness of the extension and that the parameter
space is allowed to be infinitely dimensional.

Lemma 3.2 (Local extension). Let us consider a compact set Q ⊂ C

and a smooth holomorphic motion h of a neighborhood U of Q over a
Banach domain (Λ, 0). Then there is a smooth holomorphic motion
H of the whole complex plane C over some neighborhood Λ′ ⊂ Λ of 0
whose restriction to Q coincides with h.

Proof. We can certainly assume that clU is compact. Take a
smooth function φ : C → R supported in U and let

Hλ = φhλ + (1 − φ) id .

Clearly H is smooth in both variables, holomorphic in λ, and identi-
cal outside U . As H0 = id, Hλ : C → C is a diffeomorphism for λ
sufficiently close to 0, and we are done. �

Given two complex one-dimensional transversals S and T to the
lamination F in B1 × C, we have a holonomy S → T . We say that
this map is locally quasi-conformal if it admits local quasi-conformal
extensions near any point.

Given two points λ, µ ∈ B1, let us define the hyperbolic distance
ρ(λ, µ) in B1 as the hyperbolic distance between λ and µ in the one-
dimensional complex slice λ+ t(µ− λ) passing through these points in
B1.

λ-lemma (quasi-conformality). Holomorphic motion hλ of a set X
over a Banach ball B1 is transversally quasi-conformal. The local di-
latation K of the holonomy from p = (λ, u) ∈ S to q = (µ, v) ∈ T
depends only on the hyperbolic distance ρ between the points λ and µ
in B1. Moreover, K = 1 +O(ρ) as ρ→ 0.

Proof. If the transversals are vertical lines λ×C and µ×C then the
result follows from the classical λ-lemma [?] by restricting the motion
to the complex line joining λ and µ.
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Furthermore, the holonomy from the vertical line λ × C to the
transversal S is locally conformal at point p. To see this, let us select
a holomorphic coordinates (θ, z) near p in such a way that p = 0 and
the leaf via p becomes the parameter axis. Let z = ψ(θ) = ǫ + . . .
parametrizes a nearby leaf of the foliation, while θ = g(z) = bz + . . .
parametrizes the transversal S.

Let us do the rescaling z = ǫζ, θ = ǫν. In these new coordinates, the
above leaf is parametrized by the function Ψ(ν) = ǫ−1ψ(ǫν), |ν| < R,
where R is a fixed parameter. Then Ψ′(ν) = ψ′(ǫν) and Ψ′′(ν) =
ǫψ′′(ǫν). By the Cauchy Inequality, Ψ′′(ν) = O(ǫ). Moreover, ψ uni-
formly goes to 0 as ψ(0) → 0. Hence |Ψ′(0)| = |ψ′(0)| ≤ δ0(ǫ), where
δ0(ǫ) → 0 as ǫ → 0. Thus Ψ′(ν) = δ0(ǫ) + O(ǫ) ≤ δ(ǫ) → 0 as ǫ → 0
uniformly for all |ν| < R. It follows that Ψ(ν) = 1+O(δ(ǫ)) = 1+o(1)
as ǫ→ 0.

On the other hand, the manifold S is parametrized in the rescaled
coordinates by a function ν = bζ(1 + o(1)). Since the transverse inter-
section persists, S intersects the leaf at the point (ν0, ζ0) = (1, b)(1 +
o(1)) (so that R should be selected bigger than ‖b‖). In the old coor-
dinates the intersection point is (θ0, z0) = (ǫ, bǫ)(1 + o(1)).

Thus the holonomy from λ×C to S transforms the disc of radius |ǫ|
to an ellipse with small eccentricity, which means that this holonomy
is asymptotically conformal. As the holonomy from µ×C to T is also
asymptotically conformal, the conclusion follows. �

Quasi-conformality is apparently the best regularity of holomorphic
motions which is satisfied automatically.

2. Moduli and Teichmüller spaces of punctured spheres

2.1. Definitions. Let us consider the Riemann sphere with a tuple
of n marked points P = (z1, . . . , zn) (or, equivalently, n punctures).
The punctures are considered to be “colored”, or, in other words, the
set P is ordered. Two such spheres (C,P) and (C,P ′) are considered to
be equivalent if there is a Möbius transformation φ : (C,P) → (C,P ′)
(preserving the colors of the punctures, i.e., φ(zi) = z′i. The space of
equivalence classes is called the moduli space Mn.

If n ≤ 3 then the moduli space Mn is a single point. If n ≥ 4,
we can place the last three points to (0, 1,∞) by means of a Möbius
transformation. With this normalization (C,P) ∼ (C,P ′) if and only
if P = P ′, and we see that

Mn = {(z1, . . . , zn−3) : zi 6= 0, 1; zi 6= zj}.
This turns Mn into an (n− 3)-dimensional complex manifold.
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Let us fix some reference normalized tuple P◦ = (a1, . . . an−3, 0, 1,∞).
Then we can trivially redefine Mn as the space of normalized homeo-
morphisms h : (C,P◦) → C up to equivalence: h ∼ h′ if h(Pbase) =
h′(P◦).

Let us now refine this equivalence relation by declaring that h ≃
h′ if h is homotopic (or, equivalently, isotopic) to h′ rel P◦, and let
[h] stand for the corresponding equivalence classes. It inherits the
quotient topology from the space of homeomorphisms (endowed with
the uniform topology). This quotient space is called the Teichmüller
space Tn. Since the equivalence relation ≃ is obviously stronger than
∼ we have a natural projection π : Tn → Mn.

2.2. Spiders. The homotopy class [h] can be nicely visualised as
the punctured sphere marked with a “spider”. A spider S on the punc-
tured sphere (C,P) is a family of disjoint paths σi connecting zi to ∞,
i = 1, . . . n− 1. We let [S] be the class of isotopic spiders (rel P).

Lemma 3.3. There is a natural one-to-one correspondence between
points of Tn and classes of isotopic spiders, (C,P , [S]).

Proof. Let us fix a reference spider (C,P◦,S◦). Then to each
homeomorphism h ∈ Tn we can assossiate a spider S = h(S◦). Isotopy
ht rel P◦ induces isotopy of the corresponding spiders rel P . Hence we
obtain a map [h] 7→ [S].

Vice versa, let us have a spider (C,P ,S). Then there exists a
homeomorphism h : (C,P◦,S◦) → (C,P ,S). If (C,P ,S ′) is an isotopic
spider then the isotopy St rel P , 0 ≤ t ≤ 1, lifts to an isotopy ht rel P0.
Given any parametrizing homeomorphism h′ : S◦ → S ′, we can isotopy
h1 so that it will coincide with h′ on S◦. Since two homeomorphisms
of a topological disk coinciding on the boundary are isotopic rel the
boundary, we are done. �

2.3. Infinitesimal theory. A tangent vector to the moduli space
Mn at point z = (z1 . . . , zn−3, 0, 1,∞) can be represented as a tuple

v = (v(z1), . . . v(zn−3))

of tangent vectors to C at points zi. Since the natural projection Tn →
Mn is a covering, tangent vectors to Tn can be represented in the same
way.

Any such tuple of vectors admits an extension to a smooth vector
field v vanishing at points (0, 1,∞) (such vector field will be called
“normalized”). So, we can view the tangent space to Mn (and Tn) as
the space Vect of smooth normalized vector fields modulo equivalence
relation: v ∼ w if v(zi) = w(zi), i = i, . . . , n− 3.
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With this in mind, we can give a nice description of the cotangent
space to Mn and Tn. Let us consider the space Q = Q(C̄ rP) of inte-
grable quadratic differentials φ = φ(z)dz2 on C̄rP . Such differentials
must have at most simple poles at the punctures (at ∞ it amounts to
φ(z) = O(1/|z3|)).

Exercise 3.1. Show that this space of quadratic differentials has
complex dimension n− 3.

It turns out that it is not an accident that dimQ = dimMn.

Proposition 3.4. The space Q(C̄ r P) of quadratic differentials
is naturally identified with the cotangent space to Mn (and Tn). The
pairing between a cotangent vector φ ∈ Q and a tangent vector v ∈ Vect
is given by the formula:

< φ, v >=
1

2πi

∫ ∫

φ ∂̄v. (2.1)

Proof. Let us first note that this pairing is well defined. Indeed,
as we saw in §2, ∂̄v can be interpreted as a Beltrami differential, and
the product φ ∂̄v as an area form. Moreover, this area form is integrable
since φ is integrable and ∂v is bounded.

Let us now calculate this integral. Since φ is holomorphic, we have:

φ ∂z̄v dz ∧ dz̄ = ∂z̄(φ v) dz ∧ dz̄ = −∂̄(φ v dz) = −d(φ v dz).
Let γǫ(zi)) be the ǫ-circles centered at finite points of P , i = 1, . . . , n−1,
and let Γǫ be the ǫ−1-circle centered at 0 (where all the circles are anti-
clockwise oriented), and let Dǫ be the domain of C bounded by these
circles. Then by the Stokes formula

− 1

2πi

∫ ∫

Dǫ

d(φ vdz) =
1

2πi

∑

∫

γǫ(zi)

φ vdz − 1

2πi

∫

Γǫ

φ vdz

But near any zi ∈ C we have:

φ v =
λiv(zi)

z − zi

+O(1),

where λi = Reszi
φ. Hence

1

2πi

∫

γǫ(zi)

φ v dz → λiv(zi) as ǫ→ 0.

Note that these integrals asymptotically vanish at zn−2 = 0 and zn−1 =
1 since v vanishes at these points. The integral over Γǫ asymptotically
vanishes as well since φ(z) = O(|z|−3) while v(z) = o(|z|2) near ∞ (as
the vector field v/dz vanishes at ∞).
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Finally, we obtain:

1

2πi

∫ ∫

φ ∂z̄v dz ∧ dz̄ =
n−3
∑

i=1

λiv(zi)

So, the pairing (2.1) depends only on the values of v at the points
z1, . . . , zn−3, and hence defines a functional on tangent space TMn.
This gives an isomorphism between Q and the cotangent space T∗Mn

since (λ1, . . . , λn−3) are clobal coordinates on the both spaces (compare
Exercise 3.1).

�

2.4. General Teichmüller spaces.
2.4.1. Marked Riemann surfaces. The previous discussion admits

an extension to an arbitrary qc class QC of Riemann surfaces that we
will outline in this section. Take some base Riemann surface S0 ∈ QC
(without boundary), and let S̄0 be the ideal boundary compactification
of S0. Given another Riemann surface S ∈ QC (with compactification
S̄), a marking of S is a choice of a qc homeomorphism φ : S̄0 → S̄
(parametrization by S0) up to the following equivalence relation. Two
parametrized surfaces (S, φ) and (S ′, φ′) are equivalent if there is a
conformal isomorphism h : S → S ′ that makes the following diagram
homotopically commutative rel the ideal boundary (i.e., there is a qc

homeomorphism φ̃ : S0 → S homotopic to φ rel ∂S̄0 such that h ◦ φ̃ =
φ′). A marked Riemann surfaces is an equivalence class τ = [S, φ] of
this relation. The space of all marked Riemann surfaces is called the
Teichmüller space T (S0).

Remark 3.1. Fixing a set ∆0 of generators of π1(S0) and parametriza-
tions of the boundary components of ∂S̄0 by the standard circle T, we
naturally endow any marked Riemann surface [S, φ] with a set of gen-
erators of π1(S) (up to an inner automolrphism of π1(S)) and with a
parametrization of the components ∂S by T. Thus, we obtain a marked
surface in the sense of §1.1.4.

2.4.2. Representation variety. Let us now uniformize the base Rie-
mann surface S0 by a Fuchsian group Γ0. The (Fuchsian) representa-
tion variety Rep(Γ0) is the space of faithful4 Fuchsian representations
i : Γ0 → PSL(2,R) up to conjugacy in PSL(2,R) endowed with the
algebraic topology. In this topology in → i if after a possible replace-
ment of the in with conjugate representations, we have: in(γ) → i(γ)
for any γ ∈ Γ0.

4i.e., injective
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Lemma 3.5. There is a natural embedding e : T (S0) → Rep(S0).

Proof. Let φ : S0 → S be a qc parametrization of some Riemann
surface S ∈ QC, and let Γ be a Fuchsian group uniformizing S. Then
φ lifts to an equivariant qc homeomorphism Φ : (H,Γ0) → (H,Γ), so
there is an isomorphism i : Γ0 → Γ such that Φ ◦ γ0 = γ ◦ Φ for any
γ0 ∈ Γ0 and γ = i(γ0).

If we replace Φ with another lift T ◦Φ, where T ∈ Γ, then i will be
replaced with a conjugate representation γ0 7→ T−1 ◦ i(γ0) ◦ T .

If we replace φ with a homotopic parametrization φ̃ : S0 → S
then the induced representation Γ0 → Γ will not change. Indeed, a
homotopy φt connecting φ to φ̃ lifts to an equivariant homotopy Φt :
(H,Γ0) → (H,Γ) inducing a path of representations it : Γ0 → Γ. Then
for any γ0 ∈ Γ0, the image it(γ0) ∈ Γ moves continuously with t. Since
Γ is discrete, it(γ) cannot move at all.

If we further replace φ̃ with h ◦ φ̃, where h : S → S ′ is a conformal
isomorphism then the representation i : Γ0 → Γ will be replaced with
a conjugate by T : H → H where T ∈ PSL(2,R) is a lift of h.

Thus, we obtain a well defined map e : T (S0) → Rep(S0) that
associates to a marked surface [S, φ] the induced representation i :
Γ0 → Γ up to conjugacy in PSL(2,R).

Let us now show that e is injective. Let φ : S0 → S and φ′ : S0 → S ′

be two parametrizastions whose lifts Φ and Φ′ to H induce two repre-
sentations i and i′ of Γ0 that are conjugate by T ∈ PSL(2,R). Then Φ
and Ψ = T−1◦Φ are two equivariant homeomorphisms (H,Γ0) → (H,Γ)
that induce the same representation i : Γ0 → Γ. We need to show that
they are equivariantly homotopic.

To this end let us consider the following diagram encoding equiv-
ariance of Φ and Ψ:

Let δ(x) be the hyperbolic geodesic connecting Φ(x) to Ψ(x). Since
γ is a hyperbolic isometry, it isometrically maps δ(x) to δ(γ0x). Let t 7→
Φt(x) be a uniform motion along δ(x) from Φ(x) to Ψ(x) with such a
speed that at time t = 1 we reach the destination (in other words, Φt(x)
is the point on δ(x) on hyperbolic distance t disthyp(Φ(x),Ψ(x)) from
Φ(x)). Then γ(Φtx) = Φt(γ0x), and we obtain a desired equivariant
homotopy. �

2.4.3. Teichmüller metric. Let us endow the space T (S0) with the
following Teichmüller metric. Given two marked surfaces τ = [S, φ]
and τ ′ = [S ′, φ′], we let distT(τ, τ ′) be the infimum of dilatations of qc
maps h : S → S ′ that make diagram (??) homotopically commutative.

Lemma 3.6. distT is a metric.
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Proof. Triangle ineaquality for distT follows from submultiplica-
tivity of the dilatation under composition. So, distT is a pseudo-metric.
Let us show that it is a metric, Indeed, if distT(τ, τ ′) = 0 then there
exists a sequence hn : S → S ′ of qc maps in the right homotopy
class with Dil(hn) → 0. Let Hn : H → H be the lifts of the hn that
induce the same isomorphism between Γ and Γ′. Then the Hn is a se-
quence of qc maps with uniformly bounded dilatation whose extensions
to R = ∂H all coincide. Now Compactness Theorem 2.12 implies
that the Hn uniformly converge to an equivariant conformal isomor-
phism T : (H,Γ0) → (H,Γ). It descends to a conformal isomorphism
h : S → S ′ in the samehomotopy class as the hn. �

Exercise 3.2. Show that the embedding e : T (S0) → Rep(Γ0) is
continuous. (from the Teichmúller metric to the algebraic topology).

3. Bers Embedding

3.1. Schwarzian derivative and projective structures.
3.1.1. Definition. The fastest way to define the Schwarzian deriva-

tive Sf is by means of a mysterious formula:

Sf =
f ′′′

f ′
− 3

2

(

f ′′

f ′

)2

. (3.1)

However, there is a bit longer but much better motivated approach.
Let us try to measure how a function f at a non-critical point z de-

viates from a Möbius transformation. Möbius transformations depend
on three complex parameters. So, one expects to find a unique Möbius
transformation Az that coincides with f to the second order. Then

f(ζ) − Az(ζ) ∼
b

6
(ζ − z)3

near z, and we let Sf(z) = b/f ′(z).

Remark 3.2. Division by f ′(z) ensures scaling invariance of the
Schwarzian derivative: S(λf) = Sf . Coefficient 1/6 provides a conve-
nient normalization suggested by the Taylor formula: it makes Sf = f ′′′

for a normalized map f(ζ) = ζ +O(|ζ − z|3).
The best Möbius approximation to f is easy to write down ex-

plicitly. Let f(ζ) = a0 + a1(ζ − z) + a2(ζ − z)2 + . . . near z with
a1 = f ′(z) 6= 0. Then

Az(ζ) = a0 +
a1(ζ − z)

1 − β(ζ − z)
with β =

a2

a1

,

the 3d Taylor coefficient of f − Az is (a3 − a2
2/a1), and (3.1) follows.
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3.1.2. Chain rule.

Lemma 3.7. Let f be a holomorphic function on a domain U . Then
Sf ≡ 0 on U if and only if f is a restrictin of a Möbius map to U .

Proof. Sufficiency is obvious from the definition: If f is a Möbius
map then Az = f at any point z, and Sf(z) = 0.

Vice versa, assume Sf ≡ 0 on U . Then f is a solution of a 3d order
analytic ODE

f ′′′ =
3

2

(f ′′)2

f ′

on UrCf , where Cf is the critical set of f . Such a solution is uniquely
determined by its 2-jet5 at any point z ∈ U r Cf . Hence f = Az. �

Similarly, one can prove:

Exercise 3.3. Let f and g be two holomorphic functions on a
domain U . Then Sf ≡ Sg on U if and only if f = A ◦ g for some
Möbius map A.

Lemma 3.8 (Chain Rule).

S(f ◦ g) = (Sf ◦ g) · (g′)2 + Sg. (3.2)

Proof. Since the Schwarzian derivative is translationally invariant
on both sides (i.e., S(T1 ◦ f ◦ T2) = Sf for any translations T1 and
T2), it is sufficient to check (3.2) at the origin and to assume that
g(0) = f(0) = 0. Furthermore, by Exercise 3.3, postcomposition of f
with a Möbius transformation would not change either side of (3.2). In
this way, we can bring f to a normalized form:

f(ζ) = ζ +
Sf(0)

6
ζ3 + . . . (3.3)

and then painlessly check (3.2) by composing (3.3) with the 3-get of
g. �

In particular, for a Möbius transformation A, we have:

S(f ◦ A) = (Sf ◦ A) · (A′)2, (3.4)

which coincides with the transformation rule for quadratic differentials.
It suggests that the Schwarzian should be viewed not as a function but
rather as a quadratic differential Sf(z)dz2. This point of view is not
quite right on Riemann surfaces, but it becomes exactly correct on
projective surfaces.

5Recall that a n-jet of a function f at z is its Taylor approximant of order n at
z.
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3.1.3. Projective surfaces. A projective structure on a Riemann sur-
face S is an atlas of holomorphic local charts with Möbius transit maps.
A surface endowed with a projective structure is called a projective sur-
face. Projective morphisms are defined naturally, so that we can refer
to isomorphic projective surfaces.

Of course, the Riemann sphere C̄ has a natural projective structure,
and any domain U ⊂ C̄ inherits it. If we have a group Γ of Möbius
transformations acting properly discontinuously and freely on U then
the quotient Riemann surface V = U/Γ inherits a unique projective
structure that makes the quotient map π : U → V projective. In par-
ticular, any Riemann surface S is endowed with the Fuchsian projective
structure coming from the uniformization π : H → V .

Given a meromorphic function f on a projective surface V , the
Chain Rule (3.4) tells us that the local expressions Sf(z)dz2 determine
a global quadratic differential on V .

Exercise 3.4. Check carefully this assertion.

More generally, let us consider two projective structures f and g on
a Riemann surface V given by atlases {fα} and {gβ} respectively. Then
the Chain Rule (more specifically, Exercises 3.3 and 3.4) tell us that
the local expressions S(fα ◦ g−1

β )(z) dz2 determine a global quadratic
differential on V endowed with the g-structure. This differential is
denoted S{f, g}. It measures the distance between f and g.

In particular, given a holomorphic map f : V → W between two
projective surfaces, we obtain a quadratic differential S{f ∗(W ), V } on6

V . Writing f in projective local coordinates (ζ = f(z)), we obtain the
familiar expression, Sf(z) dz2, for this differential.

4. Appendix: Elements of infinite dimensional complex
analysis

4.1. Holomorphic maps in complex Banach spaces. Let B
and D be separable complex Banach spaces, and let U ⊂ B be an open
set in B. A map f : U → D is called holomorphic if it is continuous and
for any complex line L ⊂ B and any C-linear functional φ : D → C,
the function φ ◦ f |L is holomorphic.

Any holomorphic map is smooth.

4.2. Basic properties. Given a Banach space B, let Br(x) stand
for the ball of radius r centered at x in B, and Br ≡ Br(x).

6Here we notationally identify surfaces with their projective structures
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Cauchy Inequality. Let f : (B1, 0) → (D1, 0) be a complex analytic
map between two unit Banach balls. Then ‖Df(0)‖ ≤ 1. Moreover,
for x ∈ B1,

‖Df(x)‖ ≤ 1

1 − ‖x‖ .

Proof. Take a vector v ∈ B with ‖v‖ = 1 and a linear functional ψ
on D with ‖ψ‖ = 1. Let is consider an analytic function φ : D1 → D1,
φ(λ) = ψ(f(λv)). As |φ(λ)| < 1, the usual Cauchy Inequality yields:
|φ′(0)| = |ψ(Df(0)v)| ≤ 1. Since this holds for any normalized v and
ψ, the former estimate follows by the Hahn-Banach Theorem.

The latter one follows from the former by restricting f to the ball
B1−‖x‖(x). �

The Cauchy Inequality yields:

Schwarz Lemma. Let r < 1/2 and f : (B1, 0) → (Dr, 0) be a complex
analytic map between two Banach balls. Then the restriction of f
onto the ball Br is contracting: ‖f(x) − f(y)‖ ≤ q‖x − y‖, where
q = r/(1 − r) < 1.

Proof. By the Cauchy Inequality, ‖Df(x)‖ ≤ q for x ∈ Br. Inte-
grating this along the interval [x, y], we obtain the desired. �

Let us consider a family Φ of meromorphic functions on a Banach
neighborhood U ⊂ B. To define normality of the family, we should be
a little careful since B is not locally compact. So, let us say that the
family Φ is normal if it is locally equicontinuous.

Lemma 3.9. A normal family of meromorphic functions on a Ba-
nach neighborhood U is sequentially pre-compact.

Proof. Let φn be a sequence of functions in our family. We will
keep the same notation for all further subsequences.

Take some countable dense subset X ⊂ U . By the diagonal pro-
cedure, we can select a subsequence pointwise converging on X. Since
the family Φ is locally equicontinuous, φn converges locally uniformly
to some continuous function φ (by a standard argument). By the clas-
sical complex analysis, this function is holomorphic on every complex
line, and hence holomorphic on U . �

Montel Theorem. If a family of meromorphic functions φn : U → C̄

on a Banach neighborhood U ⊂ B does not assume three values then
it is normal.
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Proof. Since normality is a local property, we can assume that U
is the Banach ball B1. Let us endow B1 with a hypebolic distance by
letting ρ(x, y) be the hyperbolic distance between x and y in the disk
L∩B1 of the compex line L passing through x and y. By the classical
Schwarz Lemma (§??), the functions φn are contracting from ρ to the
hyperbolic metric ρ′ of the thrice punctured sphere. Since ρ restricted
to any ball Br, r < 1, is equivalent to the Banach metric, while ρ′

dominates the spherical metric, the local equicontinuity follows. �

This result implies the Refined Montel Theorem on Banach spaces
in the same way as in the one-dimensional case (§??).

4.3. Submanifolds and their intersections. A subset X ⊂ B
is called a (complex analytic) submanifold in B of dimension n (which
can be infinite) if there is a Banach space D of dimension n such that
for any x ∈ X there exist neighborhoods x ∈ U ⊂ B and 0 ∈ V ⊂ D
and a holomorphic map h : (V , 0) → (B, x) whose image is equal to
B∩X . Then the tangent space TxX is defined as the image of V under
the differential Dh(0). The codimension of X at x is the codimension
of TxX . Obviously, it is a locally constant function on X .

Let X and S be two submanifolds in the Banach space B inter-
secting at point x. Assume that codimX = dimS = 1. Let us
define the intersection multiplicity σ between X and S at x as fol-
lows. Select a local coordinate system (w, z) near x in such a way that
x = 0 and X = {z = 0}. Let us analytically parametrize S near 0:
z = z(t), w = w(t), z(0) = 0, w(0) = 0. Then by definition, σ is the
multiplicity of the root of z(t) at t = 0.

Hurwitz Theorem. Under the above circumstances, let us consider
a submanifold Y of codimension 1 obtained by a small perturbation
of X . Then S has σ intersection points with Y near x counted with
multiplicity.

Proof. Let us use the above local coordinates and parametriza-
tion. In these coordinates Y is a graph of a holomorphic function
z = φ(w) which is uniformly small at some neighborhood of 0 (this is
the meaning of Y being a small perturbation of X ). The intersection
points of Y and S are the roots of the equation z(t) = φ(w(t)). By the
classical Hurwitz Theorem, this equation has exactly σ roots near the
origin counted with multiplicities if φ is small enough. �

As usual, a foliation of some analytic Banach manifold is called ana-
lytic (smooth) if it can be locally straightened by an analytic (smooth)
change of variable.
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Intersection Lemma. Let F be a codimension one complex analytic
foliation in a domain of a Banach space. Let S be a one-dimensional
complex analytic submanifold intersecting a leaf L0 of the foliation at
a point x with multiplicity σ. Then S has σ simple intersection points
with any nearby leaf.

Proof. Let us select local coordinates (w, z) near x so that x corre-
sponds to 0, and the leaves of the foliation near 0 are given by the equa-
tions Lǫ = {z = ǫ}. Let z = z(t), w = w(t) be an analytic parametriza-
tion of S, with t = 0 corresponding to x = 0. Then z(t) = atσ(1+0(t)),
a 6= 0, has root of multiplicity σ at 0. Clearly there is an analytic lo-
cal chart τ = τ(t) in which the curve is parametrized as exact power:
z(τ) = τσ. Then for small ǫ 6= 0, the equation z(τ) = ǫ has σ simple
roots near 0: τi = ǫ1/σ. �

Corollary 3.10. Under the circumstances of the above lemma, S
is transverse to L0 at x if and only if it has a single intersection point
near x with all nearby leaves.
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CHAPTER 4

Dynamical plane

12. Glossary of topological dynamics

This glossary collects some basic notions of dynamics. Its purpose
is to fix terminology and notations and to comfort a reader who has no
experience with dynamics.

Consider a continuous endomorphism f : X → X of a topological
space X. The n-fold iterate of f is denoted by fn, n ∈ N. A topo-
logical dynamical system (with discrete positive time) is the N-action
generated by f , n 7→ fn. The orbit or trajectory of a point x ∈ K is
orb(x) = {fnx}n∈N. The subject of topological dynamics is to study
qualitative behavior of orbits of a topological dynamical system.

Here is the simplest possible behavior: a point x is called fixed if
fx = x. More generally, a point x is called periodic if it has a finite
orbit, i.e., there exists a p ∈ N such that fpx = x. The smallest p with
this property is called the period of x. The orbit of x (consisting of
p permutted points) is naturally called a periodic orbit or a cycle (of
period p).

The asymptotic behavior of an orbit can be studied in terms of its
limit set. The ω-limit set ω(x) of a point x is the set of all accumulation
points of orb(x). If X is compact then ω(x) is a non-empty compact
subset of X. We say that the orbit of x converges to a cycle (of a
periodic point α) if ω(x) = orb(α).

A point x is called recurrent if ω(x) ∋ x. Existence of non-periodic
recurrrent points is a feature of non-trivial dynamics.

Two dynamical systems f : X → X and g : Y → Y are called
topologically conjugate (or topologically equivalent) if there exists a
homeomorphism h : X → Y such that h ◦ f = g ◦ h, i.e., the following
commutative diagram holds:

X −→
f

X

h ↓ ↓ h
Y −→

g
Y

109
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Classes of topologically equivalent dynamical systems (within an a
priori specified family) are called topological classes. If X and Y are
endowed with an extra structure (smooth, conformal, quasi-conformal
etc.) respected by h, then f and g are called smoothly/conformally/quasi-
conformally conjugate (or equivalent). The corresponding equivalence
classes are called smooth/conformal/quasi-conformal classes.

Topological conjugacies respect all properties which can be formu-
lated in terms of topological dynamics: orbits go to orbits, cycles go
to cycles of the same period, ω-limit sets go to ω-limit sets, converging
orbits go to converging orbits etc.

A homeomorphism h : X → X commuting with a dynamical system
f : X → X (i.e., conjugating f to itself) is called an automorphism of
f .

A continuous map which makes the above diagram commutative is
called equivariant (with respect to the actions of f and g). A surgective
equivariant map is called a semi-conjugacy between f and g. In this
case g is also called a quotient of f .

It will be very convenient to extend the above terminology to par-
tially defined maps. Let f and g be partially defined maps on the spaces
X and Y respectively (i.e., f maps its domain Dom(f) ⊂ X to X, and
similarly does g). Let A ⊂ X. A map h : A → Y is called equivariant
(with respect to the actions of f and g) if for any x ∈ A∩Dom(f) such
that fx ∈ A we have: hx ∈ Dom(g) and h(fx) = g(hx). (Briefly speak-
ing, the equivariance equation is satisfied whenever it makes sense.)

13. Holomorphic dynamics: basic objects

Below
f ≡ fc : z 7→ z2 + c

unless otherwise is stated. Dynamical objects will be labelled by ei-
ther f or c whatever is more convenient in a particular situation (for
instance, Df (∞) ≡ Dc(∞) by default). Moreover, the label can be
skipped altogether if f is not varied.

13.1. Critical points and values. First note that fn is a branched
covering of C over itself of degree 2n. Its critical points and values have
a good dynamical meaning:

Exercise 4.1. The set of finite critical points of fn is ∪n−1
k=0f

−k(0).
We let

Cf =
∞
⋃

n=0

n−1
⋃

k=0

f−k(0)

be the set of critical points of iterated f .
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The set of critical values of fn is {fk0}n
k=1. (There are much fewer

critical values than critical points!)

Thus, fn is an unbranced covering over the complement of {fk0}n
k=1.

Corollary 4.1. Let V be a topological disk which does not con-
tain points fk0, k = 1, 2, . . . , n. Then the inverse function f−n has
2n single-values branches f−n

i which univalently map V onto pairwise
disjoint topological disks Ui, i = 1, 2, . . . , 2n.

These simple remarks explain why the forward orbit of 0 plays a
very special role. We will have many occasions to see that this one
orbit is responsible for the diversity of the global dynamics of f .

However, f has one more critical point overlooked so far:

13.2. Looking from infinity. Extend f to an endomorphism of
the Riemann sphere C̄. This extension has a critical point at ∞ fixed
under f . We will start exploring the dynamics of f from there. The
first observation is that C̄ r DR is f -invariant for a sufficiently big
R, and moreover fnz → ∞ as n → ∞ for z ∈ C̄ r DR. This can be
expressed by saying that CrDR belongs to the basin of infinity defined
as the set of all escaping points:

Df (∞) = {z : fnz → ∞, n→ ∞} =
∞
⋃

n=0

f−n(C r DR).

Proposition 4.2. The basin of infinity Df (∞) is a completely in-
variant domain containing ∞. def

Proof. The only non-obvious statement to check is connectivity
of Df (∞). To this end let us show inductively that the sets Un =
f−n(C̄ r D̄R) are connected. Indeed, assume that Un is connected
while Un+1 is not. Consider a bounded component V of Un+1. Then
the restriction f : V → Un is proper and hence surjective (see §6). In
particular f would have a pole in V - contradiction. �

Let D̄f (∞) = Df (∞) ∪ {∞}.

13.3. Basic Dichotomy for Julia sets. We can now introduce
the fundamental dynamical object, the filled Julia set K(f) = C̄ r

Df (∞). Proposition 4.2 implies that K(f) is a completely invariant
compact subset of C. Moreover, it is full, i.e., it does not separate the
plane (since Df (∞) is connected).

Exercise 4.2. (i) The filled Julia set consists of more than one
point. (ii) Each component of intK(f) is simply connected.
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The filled Julia set and the basin of infinity have a common bound-
ary, which is called the Julia set, J(f) = ∂K(f) = ∂Df (∞). Figure
.... shows several pictures of the Julia sets J(fc) for different parame-picture
ter values c. Generally, topology and geometry of the Julia set is very
complicated, and it is hard to put a hold on it. However, there is the
following rough classification:

Theorem 4.3 (Basic Dichotomy). The Julia set (and the filled Ju-
lia set) is either connected or Cantor. The latter happens if and only
if the critical point escapes to infinity: fn(0) → ∞ as n→ ∞.

Proof. As in the proof of Proposition 4.2, let us consider the in-
creasing sequence of domains Un = f−n(C̄ r D̄R) exhausting the basin
of infinity. Assume first that the critical point does not escape to ∞.
Then f : Un+1 → Un is a branched double covering with the only
branched point at ∞. By the Riemann-Hurwitz formula, if Un is sim-
ply connected then Un+1 is simply connected as well. We conclude
inductively that all the domains Un are simply connected. Hence their
union, Df (∞), is simply connected as well, and its complement, K(f),
is connected. But the boundary of a full connected compact set is
connected. Hence J(f) is connected.

Assume now that the critical point escapes to infinity. Then 0
belongs to some domain Un. Take the smallest n with this property.
Adjust the radius R in such a way that the orbit of 0 does not pass
through TR = ∂U0. Then 0 6∈ ∂Un−1, and hence ∂Un−1 is a Jordan
curve. Let us consider the complimentary Jordan disk D ≡ D0 =
C r Ūn−1. Since f(0) ∈ Un−1, f is unbranched over D. Hence f−1D =
D1

0 ∪D1
1, where the D1

i ⋐ D are disjoint topological disks conformally
mapped onto D.

Take now the f -preimages of D1
0 ∪D1

1 in D1
0. We obtain two Jordan

disks D2
00 and D2

01 with disjoint closures conformally mapped by f onto
D1

0 and D1
1 repsectively. Similar disks, D2

10 and D2
11, we find in D1

1 (see
Figure ....).picture

Iterating this procedure, we will find that f−nD is the union of
2n Jordan disks Dn

i0i1...in such that Dn
i0...in is compactly contained in

Dn−1
i0...in−1

and is conformally mapped by f onto Dn−1
i1...in

.

Since D1
0 ∪D1

1 is compactly contained in D, the branches of the in-
verse map, f−1 : D1

i → D2
ij, are uniformly contracting in the hyperbolic

metric of D (by the Schwarz-Pick Lemma). Since the domains Dn
i0i1...in

are obtained by iterating these branches, they uniformly exponentially
shrink as n→ ∞. Hence the filled Julia set K(f) = ∩f−nD is a Cantor
set. Of course, the Julia set J(f) coincides with K(f) in this case. �
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The Basic Dichotomy is the first example of how the behavior of
the critical point influences the global dynamics. In fact, at least on
the philosophical level, the dynamics is completely determined by the
behavior of this single point. We will see many confirmations of this
principle.

Exercise 4.3. (i) J(f) is connected if and only if K(f) is con-
nected. (ii) Both sets do not contain isolated points, and are always
uncountable.

13.4. Bernoulli shift. When the Julia set is Cantor, there is an
explicit symbolic model for the dynamics of f on it. Consider the space
Σ ≡ Σ+

2 of one-sided sequences (i0i1 . . . ) of zeros and ones. Supply it
with the weak topology (convergence in this topology means that all
coordinates eventually stabilize). We obtain a Cantor set. Define the
shift β on this space as the map of forgetting the first coordinate,

β : (i0i1 . . . ) 7→ (i1i2 . . . ).

It is called the (one-sided) Bernoulli shift with two states.

Exercise 4.4. Show that:

• For any open set U ⊂ Σ, there exists an n ∈ N such that
βn(U) = Σ;

• β is topologically transitive;
• Periodic points of β are dense in Σ.

Exercise 4.5. Show that the only non-trivial automorphism of the
one-sided Bernoulli shift with two states is induced by the relabeling
0 ↔ 1.

If some endomorphism f : X → X of a compact space is topo-
logically conjugate to a one-sided Bernoulli shift with two states, then
X can be partitioned into two pieces X0 and X1 corresponding to se-
quences which begin with 0 and 1 respectively. This partition is called
a Bernoulli generator for f . The statement of Exercise 4.5 is equiva-
lent to saying that a Bernoulli generator is unique. For a Cantor Julia
set J(fc), the Bernoulli generator was constructed in the course of the
proof of Theorem 4.3:

Exercise 4.6. If J(f) is a Cantor set, then the restriction of f onto
J(f) is topologically conjugate to the one-sided Bernoulli shift with two
states.

13.5. Real dichotomy. In the case of real parameter values c,
the Bernoulli coding of J(fc) becomes particularly nice:
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Exercise 4.7. Consider a quadratic polynomial fc : z 7→ z2 + c
with a real c. Let J ≡ J(fc).

• If c < −2 then J is a Cantor set on the real line. In this case
the Bernoulli generator for fc consists of

J0 = J ∩ {z : ℜz < 0} and J1 = J ∩ {z : ℜz > 0}.
picture

• If c > 1/4 then J is a Cantor set disjoint from the real line.
In this case the Bernoulli generator for fc consists of

J0 = J ∩ {z : Im z > 0} and J1 = J ∩ {z : Im z < 0}.
The boundary parameter values c = 1/4 and c = −2 play a special

role in one-dimensional dynamics (both real and complex).
The former map (c = 1/4) is specified by the property that it has a

multiple fixed point α = β = 1/2, i.e., fc(α) = α, f ′
c(α) = 1. The Julia

set of this map is a Jordan curve depicted on Figure ... (see §?? for an
explanation of some features of this picture). It is called cauliflower,
and the map fc : z 7→ z2 +1/4 itself is sometimes called the cauliflower
map.

The latter map (c = −2) is specified by the property that the second
iterate of the critical point is fixed under fc: 0 7→ −2 7→ 2 7→ 2 (see
Figure ...). This map is called Chebyshev or Ulam-Neumann. The Julia
set of this map is unusually simple:

Exercise 4.8 (Chebyshev map). Let f ≡ f−2 : z 7→ z2 − 2.

• The interval I = [−2, 2] is completely invariant under f , i.e.,
f−1I = I.

• J(f) = I. (To show that all points in C r I escape to ∞, use
Montel’s Theorem.)

• Consider the the sawlike map

g : [−1, 1] → [−1, 1], g : x 7→ 2|x| − 1.

Show that the map h : x 7→ 2 sin π
2
x conjugates g to f |I.

• The map f |I is nicely semi-conjugate to the one-sided Bernoulli
shift σ : Σ → Σ. Namely, there exists a natural semi-conjugacy
h : Σ → I such that card f−1x = 1 for all x ∈ I except count-
able many points (preimages of the fixed point β = 2 under
iterates of f). For these special points, card f−1(x) = 2.

Let us finish with a statement which will complete our discussion
of the Basic Dichotomy for real parameter values:

Exercise 4.9. (i) For c ∈ (−∞, 1/4), the map fc has two
real fixed points αc < βc. (We have already observed that these
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two points collide at 1/2 when c = 1/4.) Point βc is always
repelling.

(ii) For c ∈ [−2, 1/4], the interval Ic = [−βc, βc] is invariant under
fc, and it is the maximal fc-invariant interval on the real line.

(iii) For c ∈ [−2, 1/4], the critical point is non-escaping and hence
the Julia set J(fc) is connected.

The above fixed points, αc and βc, will be called α- and β-fixed
points respectively. As one can see from the second item of the above
Exercise, they play quite a different dynamical role. In §?? a similar
classification of the fixed points will be given for any quadratic poly-
nomial with connected Julia set.

Let us summarize Exercises 4.7 and 4.9:

Proposition 4.4. For real c, the Julia set J(fc) is connected if
and only if c ∈ [−2, 1/4].

13.6. Fatou set. The Fatou set is defined as the complement of
the Julia set:

F (f) = C̄ r J(f) = Df (∞) ∪ intK(f).

Since K(f) is full, all components of intK(f) are simply connected.
Only one of them can contain the critical point. Such a component (if
exists) is called critical.

Let U be one of the components of intK. Since intK is invariant,
it is mapped by f to some other component V . Moreover, f(∂U) ⊂ ∂V
since the Julia set is also invariant. Hence f : U → V is proper, and
thus surjective. Moreover, since V is simply connected, f : U → V
is either a conformal isomorphism (if U is not critical), or is a double
branched covering (if U is critical).

The Fatou set can be also characterized as the set of normality (and
was actually classically defined in this way):

Proposition 4.5. The Fatou set F (f) is the maximal set on which
the family of iterates fn is normal.

Proof. On Df (∞), the iterates of f locally uniformly converge to
∞, while on intK(f) they are uniformly bounded. Hence they form a
normal family on F (f). On the other hand, if z ∈ J(f), then the orbit
of z is bounded while there are nearby points escaping to ∞. Hence
the family of iterates is not normal near z. �

13.7. Postcritical set. Let Of = cl{fn(0)}∞n=1 stand for the post-
critical set of f . It is forward invariant and contains the critical value c
of f . The map f is tremendously contracting near the critical point 0,
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and under iteration this contraction propagates through the postcriti-
cal set. The following lemma is the first indication that otherwise, the
map f tends to be expanding:

Lemma 4.6. Let c 6= 0. Then the complement CrOf is hyperbolic1.
Let Ω be a component of C r Of that intersects f−1(Of ) r Of . Then
f on Ω is strictly expanding with respect to this hyperbolic metric, i.e,
for any z ∈ Ω r f−1(Of ), ‖Df(z)‖hyp > 1.

Proof. If C r Of is not hyperbolic, then Of consists of a single
point, c. But then f(c) = c and hence c = 0.

Let ρ and ρ′ be the hyprebolic metrics on C rOf and C r f−1(Of )
respectively. Since the map f : C r f−1Of → C rOf is a covering, it
is a local isometry from ρ′ to ρ.

Let Ω′ be the component of C r f−1(Of ) containing z. Since Of

is forward invariant, Ω′ ⊂ Ω, and by the assumption of the lemma,
Ω′ is strictly smaller than Ω. By the Schwarz Lemma, the natural
emebdding i : Ω′ → Ω is strictly contracting from ρ′ to ρ. Thus, the
inverse map i−1|Ω′ is strictly expanding from ρ to ρ′, and we conclude
that the composition f ◦ i−1 : Ω′ → C r Of is strictly expanding with
respect to ρ. �

13.8. Higher degree polynomials. The above basic definitions
and results admit a straightforward extension to higher degree polyno-
mials

f : z 7→ a0z
d + a1z

d−1 + · · · + ad, d ≥ 2, a0 6= 1.

The following point should be kept in mind though: the Basic Di-
chotomy is not valid any more in the higher degree case. Instead, there
is the following partial description of the topology of the Julia set:

• The Julia set J(f) (and the filled Julia set K(f)) is connected if
and only all the critical points ci are non-escaping to ∞, i.e., ci ∈ K(f).

• If all the critical points escape to ∞, then J(f) is a Cantor set.

Exercise 4.10. Work out the basic dynamical definitions and re-
sults in the case of higher degree polynomials.

However, the Basic Dichotomy is still valid in the case of unicritical
polynomials, that is, the ones that have a single critical point. (Note
that any such polynomial is affinely conjugate to z 7→ zd + c.)

In the theory of quadratic maps fc, higher degree polynomials still
appear as the iterates of fc. It is useful to know that they have the
same Julia set:

1Meaning that each component of C r Of is hyperbolic.
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Exercise 4.11. Show that K(fn) = K(f) for any polynomial f .

14. Periodic motions

Poincaré said that ...

14.1. Rough classification of periodic points by the mul-
tiplier. Consider a periodic point α of period p. The local dynam-
ics near its cycle α = {fnα}p−1

n=0 depends first of all on its multiplier
σ = (fp)′(z). The point (and its cycle)2 is called attracting if |σ| < 1,
A particular case of an attracting point is a superattracting one when
σ = 0. In this case, the critical point 0 belongs to the cycle α. (When
we want to emphasize that an attracting periodic point is not superat-
tracting, we call it simply attracting.)

A periodic point is called repelling if |σ| > 1, and neutral if σ = e2πiθ,
θ ∈ R/Z. In latter case, θ is called the rotation number of α. Local
dynamics near a neutral cycle depends delicately on the arithmetic of
the rotation number. A neutral point is called parabolic if the rotation
number is rational, θ = r/q, and is called irrational othewise. An
irrational periodic point can be of Siegel and Cremer type, to be defined
below.

Let us consider these case one by one.

14.2. Attracting cycles. Let α be an attracting cycle. The or-
bits of all nearby points uniformly converge to α and, in particular,
are bounded. It follows that attracting cycles belong to F (f). The
rate of convergence is exponential in the simply attracting case and
superexponential in the superattracting case.

For a simply attracting periodic point α, we say that a smooth
(open) disk P ∋ α is a petal of α if f |P is univalent and f(P ) ⋐ P .
(For instance, one can take a small round disk D(α, ǫ) as a petal.) Then
the annulus A = P̄ r fp(P ) is called a fundamental annulus of α.

In the superattracting case, a petal is a smooth disk P ∋ α such
that fp : P → fp(P ) is a branched covering of degree d (with a single
critical point at α), and f(P ) ⋐ P . (For instance, one can let P
be the component of f−p(D(α, ǫ)) containing α.) The corresponding
fundamental annulus is P̄ r fp(P ).

The basin of attraction of an attracting cycle α is the set of all
points whose orbits converge to α:

D(α) = Df (α) = {z : fnz → α as n→ ∞.}
2All the terminology introduced for periodic points applies to their cycles, and

vice versa.
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Exercise 4.12. Show that the basin D(α) is a completely invariant
union of components of intK(f).

The union of components of D(α) containing the points of α is
called the immediate basin of attraction of the cycle α. We will denote
it by D0 = D0

f (α). The component of D0(α) containing α will be

denoted D0(α) = D0
f (α).

Exercise 4.13. (i) The immediate basin of an attracting cycle con-
sists of exactly p components, where p is the period of α.

(ii) Show that it can be constructed as follows. Let P0 be a petal of α and
let Pn be defined inductively as the component of f−p(Pn) containing
α. Then P0 ⊂ P1 ⊂ P2 ⊂ . . . , and

D0(α) =
∞
⋃

n=0

Pn.

We will now state one of the most important facts of the classical
holomorphic dynamics:

Theorem 4.7. The immediate basin of attraction D0
f (α) of an at-

tracting cycle α contains the critical point 0. Moreover, if α is simply
attracting then the critical orbit orb(0) crosses any fundamental annu-
lus A.

Remark 4.1. Of cource, the assertion is trivial when α is superat-
tracting as 0 ∈ α in this case.

Proof. Otherwise fp would conformally map each component D
of the immediate basin onto itsef. Hence it would be a hyperbolic
isometry of D, despite the fact that |f ′(α)| < 1.

To prove the second assertion (which would also give another proof
of the first one), let us consider a petal P0 containing some point α
of α, and let us define Pn inductively as the component of f−p(Pn−1)
containing α. (compare with Exercise 4.13 above). Then P0 ⊂ P1 ⊂
P2 ⊂ . . . . If non of these domains contains a critical point of f p, then
the all the maps fp : Pn → Pn−1 are isomorphisms and all the Pn all
be topological disks. Hence their union, P∞, is a topological disk as
well, and fp : P∞ → P∞ is an automorphism. Hence it is a hyperbolic
isometry contradicting the fact that α is attracting.

Hence some Pn contains a critical point of fp. Take the first such
n (obviously, n ≥ 1). Then Pn−1 r Pn contains a critical value of fp,
which is contained in orb(0). Applying further iterates of fp, we will
bring it to the fundamental annulus. �



14. PERIODIC MOTIONS 119

Corollary 4.8. A quadratic polynomial can have at most one at-
tracting cycle. If it has one, all other cycles are repelling.

Proof. The first assertion is immediate. For the second one, notice
that under the circumstances, the postcritical set Of is a discrete set
accumulating on the attracting cycle α. Hence it does not divide the
complex plane, and 0 ∈ C r Of . Applying Lemma 4.6, we conclude
that |σ(β)| = ‖Df q(β)‖hyp > 1 for any other periodic point β of period
q. �

Of course, the period of this cycle can be arbitrary big. A quadratic
polynomial is called hyperbolic if it either has an attracting cycle, or if
its Julia set is Cantor. (The unifying property is that for hyperbolic
maps, orb(0) coverges to an attracting cycle in the Riemann sphere.)
For instance, polynomials z 7→ z2, z 7→ z2 − 1,... (see Figure ...) are
hyperbolic. Though dynamically non-trivial, it is a well understood
class of quadratic polynomials (see §??).

14.3. Parabolic cycles.
14.3.1. Leau-Fatou Flower. Let us consider a parabolic germ

f : z 7→ e2πr/qz + az2 + . . .

with rotation number r/q near the origin.

Exercise 4.14. The first non-vanishing term of the expansion f q(z) =
z + bkz

k + . . . has order k = ql + 1 for some l ∈ N.

In the case l = 1, the parabolic germ f is called non-degenerate.

An open Jordan disk P is called an attracting petal for f if:

• 0 ∈ ∂P ;
• f q(P ) ⊂ P and f q|P is univalent;
• 0 is the only point where ∂P and ∂(f qP ) touch;
• If z ∈ P then f qnz → 0 as n→ ∞3.

Given such a petal, the set P̄rf(P ) is called an attracting fundamental
crescent.

We say that a petal P has wedge γ at 0 if both local branches of
the boundary ∂P r {α} have tangent lines at 0 that meet at angle γ.

Two attracting petals are called equivalent if they overlap4.

3It is convenient to impose this condition, though in fact it can be derived from
the the other properties.

4At the moment, it is not evident that this is an equivalence relation, but the
following theorem shows that it is.
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Theorem 4.9. There is a choice of disjoint lq petals Pi (one in each
class) with wedge 2π/ql at 0 such that the flower Φ =

⋃

Pi is invariant
under rotation by 2π/ql and under f . The orbits is z ∈ Φ converge
to 0 locally uniformly. Vice versa, if some orbit orb(z) converges to 0
without direct landing at 0 then eventually it lands in the flower Φ.

Proof. The proof will be split in several cases. The main analysis
happens in the following one:

The germ f is non-degenerate with zero rotation number. Thus
f : z 7→ z+ az2 + . . . , a 6= 0. Conjugating f by complex scaling ζ = az
we make a = 1.

Let us move the fixed point to ∞ by inversion Z = −1

z
. It brings

f to the form

F : Z 7→ Z + 1 +O(
1

Z
) (14.1)

near ∞. It is obvious from this asymptotical expression that any right
half-plane

Qt = {Z : ℜZ > t}
with t > 0 sufficiently big is invariant under F , and in fact

F (Qt) ⊂ Qt+1−ǫ, (14.2)

where ǫ = ǫ(t) → 0 as t → ∞. So, such a half-plane provides us with
a petal with wedge π at ∞. Moreover,

ℜ(F nZ) ≥ ℜZ + (1 − ǫ)n, (14.3)

so the orbits in Qt converge to ∞ locally uniformly.
Vice versa, if F nZ → ∞ without direct landing at it, then due

to asymptotical expression (14.1) we eventually have ℜ(F n+1Z) ≥
ℜ(F nZ) + 1 − ǫ. Hence ℜ(F nZ) → +∞ and orb z eventually lands
in the halh-plane Qt.

Now we would like to enlarge Qt to a petal P with wedge 2π at ∞.
To this end let us consider two logarithmic curves

Γ± = {Y = ±C log(t−X + 1) +R)}, X ≤ t, where Z = X + iY.

If R is big enough then Γ± lie in the domain where the asymptotics
(14.1) applies. If C is big enough then the half-slope of these curves
is bigger (in absolute value) than the slope of F (Z) − Z. It follows
that F moves the curves Γ± to the right, and the region P bounded by
these curves and the segment of the vertical line ℜZ = t in between is
mapped univalently into itself. This is the desired petal.
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Let f be a general parabolic germ has zero rotation number. Thus
f : z 7→ z + bzk+1 + . . . with k ≥ 1, b 6= 0. Again, conjugating f by a
complex scaling ζ = λz, where λk = b, we make b = 1.

Let us now use a non-invertible change of variable ζ = zk. A
formal calculation shows that it conjugates f to a multi-valued germ
g : ζ 7→ ζ + ζ2 + O(|ζ|2+1/k), where the residual term is given by a
power series in ζ1/k. Making now a change of variable Z = −1/z we
come up with a multi-valued germ G : Z 7→ Z + 1 + O(1/Z1/k) near
∞. Let us take any single-valued branch of this germ in the slit plane
C r R0. Then the same considerations as in the non-degenerate case
show that G has a petal P with wedge 2π at ∞. Lifting this petal to
the z-plane, gives us k petals of f with wedge 2π/k. �

Let us now consider a parabolic periodic point α with period p and
rotation number r/q. As the following exercise implies, α ∈ J(f):

Exercise 4.15. Show that (fpqn)′(α) → ∞.

The basin of attraction of a parabolic cycle α is defined as follows:

Df (α) = {z : fnz → α as n→ ∞ but fnz 6∈ α for any n ∈ N∗.}
It turns out that with this definition, Df (α) is a completely invariant
union of components of intK. Moreover, among these components
there are pl components cyclically permuted by f , while all others are
preimages of these. The union of these pl components is called the the
immediate basin of attraction of α. It will also be denoted as D0

f (α).
As in the attracting case, the immediate basin of a parabolic cycle

also must contain the critical point.
As in the hyperbolic case, we now conclude:

Corollary 4.10. A quadratic polynomial can have at most one
parabolic cycle. If it has one, all other cycles are repelling.

Such a quadratic polynomial is naturally called parabolic.

14.4. Repelling cycles. Let us now consider a repelling cycle
α = {fkα}p−1

k=0. Nearby points escape (exponentially fast) from a small
neighborhood of α, which implies that the family of iterates fn is not
normal near α. Hence repelling periodic points belong to the Julia set.
In fact, as we are about to demonstrate, they are dense in the Julia set,
so that the Julia can be alternatively defined as the closure of repelling
cycles. It gives us a view of the Julia set “from inside”.

But first, let us now show that almost all cycles are repelling:

Lemma 4.11. A quadratic polynomial may have at most two non-
repelling cycles.
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Proof. Let α◦ be a neutral periodic point of period p with multi-
plier σ◦ of a quadratic polynomial f◦ : z 7→ z2+c◦. Due to Lemma 4.10,
we can assume that σ◦ 6= 1. Then by the Implicit Function Theorem,
the equation fp(z) = z has a local holomorphic solution z = αc assum-
ing value α◦ at c◦. The multiplier of this periodic point, σc = (fp)′(αc)
is also a local holomorphic function of c. In fact, it is a global algebraic
function. So, if it was locally constant then it would be globally con-
stant, and the map f0 : z 7→ z2 would have a neutral cycle. Since this
is not the case, the multiplier is not constant, and hence near c◦ it as-
sumes all values in some neighborhood of σ◦. In particular, it assumes
values |σ| < 1. Moreover, if near c◦

σ(c) = σ0 + a(c− c◦)
k + . . . , a 6= 0,

then the set {c : |σ(c)| < 1} is the union of k sectors that asymptoti-
cally occupy 1/2 of the area of a small disk D(c◦, ǫ). It follows that if
we take three of such multiplier functions, then two of them must have
overlapping sectors, so that the corresponding two cycles can be made
simultaneously attracting, contradincting Theorem 4.7. �

Theorem 4.12. The Julia set is the closure of repelling cycles.

Proof. Let us first show that any point of the Julia set can be
approximated by a periodic point. Let z ∈ J(f) be a point we want to
approximate. Since the Julia set does not have isolated points, we can
assume that z is not the critical value. Then in a small neighborhood
U ∋ z, there exist two branches of the inverse function, φ1 = f−1

1 and
φ2 = f−1

2 . Since the family of iterates is not normal in U , one of the
equations, fnz = z, fnz = φ1(z), or fnz = φ2(z), has a solution in U
for some n ≥ 1 (by the Refined Montel Theorem (1.14)). If it is an
equation of the first series, we find in U a periodic point of period n.
Otherwise, we find a periodic point of period n+ 1.

Since by Lemma 4.11, almost all periodic points are repelling, we
come to the desired conclusion. �

14.5. Siegel cycles. Irrational periodic points may or may not
belong to the Julia set (depending primarily on the Diophantine prop-
erties of its rotaion number). Irrational periodic points lying in the
Fatou set are called Siegel, and those lying in the Julia set are called
Cremer. The component of F (f) containing a Siegel point is called a
Siegel disk. Local dynamics on a Siegel disk is quite simple:

Proposition 4.13. Let U be a Siegel disk of period p containing
a periodic point α with rotation number θ. Then fp|U is conformally
conjugate to the rotation of D by θ.
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Proof. Consider the Riemann map φ : (U, α) → (D, 0). Then
g = φ ◦ fp ◦ φ−1 is a holomorphic endomorphism of the unit disk fixing
0, with |g′(0)| = |λ| = 1. By the Schwarz Lemma, g(z) = λz. �

We will see later on that a quadratic polynomial can have at most
one non-repelling cycle ( see theorem 4.29). If it has one, it can be non-
contradictory classified as either hyperbolic, or parabolic, or Siegel, or
Cremer.

14.6. Periodic components. The notions of a periodic compo-
nent of F (f) and its cycle are self-explanatory. It is classically known
that such a component is always associated with a non-repelling peri-
odic point:

Theorem 4.14. Let U = {Ui}p
i=1 be a cycle of periodic components

of intK(f). Then one of the following three possibilities can happen:

• U is the immediate basin of an attracting cycle;
• U is the immediate basin of a parabolic cycle α ⊂ ∂U of some

period q|p;
• U is the cycle of Siegel disks.

Proof Take a component U of the cycle U, and let g = f p. By the
Schwarz-Pick Lemma, g|U is either a conformal automorphism of U ,
or it strictly contracts the hyperbolic metric disth on U . In the former
case, it is either elliptic, or otherwise. If g is elliptic then U is a Siegel
disk. Otherwise the orbits of g converge to the boundary of U .

Let us show that if an orbit {zn = gnz}, z ∈ U , converges to ∂U ,
then it converges to a g-fixed point β ∈ ∂U . Join z and g(z) with a
smooth arc γ, and let γn = fnγ. By the Schwarz-Pick Lemma, the
hyperbolic length of the arcs γn stays bounded. Hence they uniformly
escape to the boundary of U . Moreover, by the relation between the
hyperbolic and Euclidean metrics (Lemma 1.19), the Euclidean length
of the γn shrinks to 0. In particular,

|g(zn) − zn| = |zn+1 − zn| → 0 (14.4)

as n → ∞. By continuity, all limit points of the orbit {zn} are fixed
under g. But g being a polynomial has only finitely many fixed points.
On the other hand, (14.4) implies the ω-limit set of the orbit {zn} is
connected. Hence it consists of a single fixed point β.

Moreover, the orbit {ζn} of any other point ζ ∈ U must converge
to the same fixed point β. Indeed, the hyperbolic distance between zn

and ζn stays bounded and hence the Euclidean distance between these
points shrink to 0.
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Thus either U is a Siegel disk, or the g-orbits in U converge to a
g-fixed point β, or the map g : U → U strictly contracts the hyperbolic
metric and its orbits do not escape to the boundary ∂U . Let us show
that in the latter case, g has an attracting fixed point α in U .

Take a g-orbit {zn}, and let dn = disth(z0, zn). Since g is strictly
contracting,

disth(zn+1, zn) ≤ ρ(dn) disth(zn, zn−1),

where the contraction factor ρ(dn) < 1 depends only on disth(zn, z0).
Since the orbit {zn} does not escape to ∂U , this contraction factor
is bounded away from 1 for infinitely many moments n, and hence
disth(zn+1, zn) → 0. It follows that any ω-limit point of this orbit in U
is fixed under g.

By strict contraction, g can have only one fixed point in U , and
hence any orbit must converge to this point. Strict contraction also
implies that this point is attracting.

We still need to prove the most delicate property: in the case when
the orbits escape to the boundary point β ∈ ∂U , this point is parabolic.
In fact, we will show that g′(β) = 1. Of course, this point cannot be
either repelling (since it attracts some orbits) or attracting (since it lies
on the Julia set). So it is a neutral point with some rotation number
θ ∈ [0, 1). The following lemma will complete the proof.

Lemma 4.15 (Necklace Lemma). Let f : z 7→ λz + a2z
2 + . . . be a

holomorphic map near the origin, and let |λ| = 1. Assume that there
exists a domain Ω ⊂ C∗ such that all iterates fn are well-defined on Ω,
f(Ω) ∩ Ω 6= ∅, and fn(Ω) → 0 as n→ ∞. Then λ = 1.

Proof. Consider a chain of domains Ωn = fnΩ convergin to 0.
Without loss of generality we can assume that all the domains lie in a
small neighborhood of 0 and hence the iterates fn|Ω are univalent. Fix
a base point a ∈ Ω such that f(a) ∈ Ω, and let

φn(z) =
fn(z)

fn(a)
.

These functions are univalent, normalized by φn(a) = 1, and do not
have zeros. By the Koebe Distortion Theorem (the version given in
Exercise 1.28,b), they form a normal family. Moreover, any limit
function φ of this family is non-constant since φ(fa) = λ 6= 1 = φ(a).
Hence the derivatives φ′

n|Ω are bounded away from 0 and dist(1, ∂Ωn) ≥
ǫ > 0 for all n ∈ N. It follows that

dist(fna, ∂Ωn) ≥ ǫ rn, n ∈ N,
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where rn = |fna|. On the other hand, f acts almost as the rotation by
θ near 0, where θ = arg λ ∈ (0, 1). Since this rotation is recurrent and
θ 6= 0, there exists an l > 0 such that

dist(fn+la, fna) = o(rn) as n→ ∞
The last two estimates imply that Ωn+l ∩Ωn 6= ∅ for alll sufficiently big
n.

Hence the chain of domains Ωn, . . . ,Ωn+l closes up, and their union
form a “necklace” around 0. Take a Jordan curve γ in this necklace,
and let D be the disk bounded by γ. Then fn(γ) → 0 as n → ∞.
By the Maximum Principle, fN(D) ⋐ D for some N . By the Schwarz
Lemma, |λ| < 1 – contradiction. �

15. Quasi-conformal deformations

15.1. Idea of the method.
15.1.1. Pullbacks. Consider a K-quasi-regular branched covering

f : S → S ′ between Riemann surfaces (see §7.4). Then any confor-
mal structure µ on S ′ can be pulled back to a structure ν = f∗(µ) on
S. Indeed, quasi-regular maps are differentiable a.e. on S with non-
degenerate derivative so that we can let ν(z) = (Df(z)−1)∗(µ) for a.e.
z ∈ S. This structure has a bounded dilatation:

‖ν‖∞ + 1

‖ν‖∞ − 1
≤ K

‖µ‖∞ + 1

‖µ‖∞ − 1
.

If f is holomorphic then in any conformal local charts near z and f(z)
we have:

f ∗µ(z) =
f ′(z)

f ′(z)
µ(fz)

(since the critical points of f are isolated, this expression makes sence
a.e.). An obvious (either from this formula or geometrically) but crucial
remark is that holomorphic pull-backs preserve dilatation of conformal
structures.

15.1.2. Qc surgeries and deformations. Consider now a qr map
f : C → C preserving some conformal structure µ on C̄. By the
Measurable Riemann Mapping Theorem, there is a qc homeomorphism
hµ : C → C such that (hµ)∗(µ) = σ. Then fµ = hµ ◦ f ◦ h−1

µ is

a quasi-regular map preserving the standard structure σ on C̄. By
Weil’s Lemma, fµ is holomorphic outside its critical points. Since the
isolated singularities are removable, fµ is holomorphic everywhere, so
that it is a rational endormorphism of the Riemann sphere. Of course,
deg(fµ) = deg(f). Since hµ is unique up to post-composition with a
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Möbius map, f = fµ is uniquely determined by µ up to conjugacy by a
Möbius map.

Thus, a qc invariant view of a rational map of the Riemann sphere
is a quasi-regular endomorphism f : (S2, µ) → (S2, µ) of a qc sphere
S2 which preserves some conformal structure µ. This provides us with
a powerful tool of holomorphic dynamics: the method of qc surgery.
The recepie is to cook by hands a quasi-regular endomorphism of a
qc sphere with desired dynamical properties. If it admits an invariant
conformal structure, then it can be realized as a rational endomorphism
of the Riemann sphere.

It may happen that f itself is a rational map preserving a non-
trivial conformal structure µ. Then fµ is called a qc deformation of f .
If f is polynomial, then let us normalize hµ so that it fixes ∞. Then
f−1

µ (∞) = ∞ and hence the deformation fµ is polynomial as well. If

f : z 7→ z2 +c is quadratic then let us additionally make hµ fix 0. Then
0 is a critical point of fµ, so that

fµ(z) = t(µ)z2 + b(µ), t ∈ C∗. (15.1)

Composing hµ with complex scaling z 7→ t(µ)z, we turn this quadratic
polynomial to the normal form z 7→ z2 + c(µ).

Assume now that µ = µλ depends holomorphically on parameter
λ. By Theorem 2.18, the map hλ ≡ hµ(λ) is also holomorphic in λ.
However, the inverse map h−1

λ is not necessarilly holomorphic in λ.

Exercise 4.16. Give an example.

It is a miracle that despite it, the deformation fλ ≡ fµ(λ) is still
holomorphic in λ!

Lemma 4.16. Let fλ = hλ◦f ◦h−1
λ , where f and fλ are holomorphic

functions and hλ is a holomorphic motion (of an appropriate domain).
Then fλ holomorphically depends on λ.

Proof. Taking ∂λ̄-derivative of the expression fλ ◦ hλ = hλ ◦ f0,
we obtain:

0 = ∂λ̄hλ ◦ f0 = f ′
λ ◦ ∂λ̄hλ + ∂λ̄fλ ◦ hλ = ∂λ̄fλ ◦ hλ.

�

Corollary 4.17. Consider a quadratic map f : z 7→ z2 + c0. Let
µλ be a holomorphic family of f -invariant Beltrami differentials on
C. Normalize the solution hλ : C → C of the corresponding Beltrami
equiation so that the qc deformation fλ = hλ◦f ◦h−1

λ has a normal form
fλ : z 7→ z2 + c(λ). Then the parameter c(λ) depends holomorphically
on λ.
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Proof. Consider first the solution Hλ : C → C of the Beltrami
equation which fixes 0 and 1. It conjugates f to a quadratic polynomial
of form (15.1). By Lemma 4.16, its coefficients t(λ) and b(λ) depend
holomorphically on λ. The complex rescaling Tλ : z 7→ t(λ)z reduces
this polynomial to the normal form with c(λ) = t(λ)b(λ), and we see
that c(λ) depends holomorphically on λ as well. �

15.2. Sullivan’s No Wandering Domains Theorem.

16. Remarkable functional equations

Study of certain functional equations was one of the main motiva-
tions for the classical work in holomorphic dynamics. By means of these
equations the local dynamics near periodic points of different types can
be reduced to the simplest normal form. But it turns out that the role
of the equations goes far beyond local issues: global solutions of the
equations play a crucial role in understanding the dynamics.

We will start with the local analysis and then globalize it (though
sometimes one can go the other way around). For the local analysis we
put the fixed point at the origin and consider a holomorphic map

f : z 7→ σz + a2z
2 + . . . (16.1)

near the origin.

16.1. Attracting points and linearizing coordinates. Let us
start with the simplest case of an attracting fixed point. In turns out
that such a map can always be linearized near the origin:

Theorem 4.18. Consider a holomorphic map (16.1) near the ori-
gin. Assume 0 < |σ| < 1. Then there exists an f -invariant Jordan disk
V ∋ 0, an r > 0, and a conformal map φ : (V, 0) → Dr with φ′(0) = 1
satisfying the equation:

φ(fz) = σφ(z) (16.2)

The above properties determine uniquely the germ of φ at the origin.

The above function φ is called the linearizing coordinate for f near 0
or the Königs function. The linearizing equation 16.2 is also called the
Schroeder equation. It locally conjugates f to its linear part z 7→ σz.

Proof. The linearizer φ can be given by the following explicit for-
mula:

φ(z) = lim
n→∞

σ−nfnz. (16.3)
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To see that the limit exists (uniformly near the origin), let zn = fnz,
z0 ≡ z, notice that zn = O(|zσ|n) uniformly near the origin, and take
the ratio of the two consecutive terms in (16.3):

σ−n−1zn+1

σ−nzn

= σ−1σzn(1 +O(|zn|))
zn

= 1 +O(|zσn|).

Hence

φ(z) = z
∞
∏

n=0

σ−n−1zn+1

σ−nzn

= 1 +O(|z|)

uniformly near the origin, and the conclusion follows.
Obviously, φ is a linearizer. Its uniqueness follows from the exercise

below. �

Exercise 4.17. Show that if a holomorphic germ f near the origin
commutes with the linear germ z 7→ σz, 0 < |σ| < 1, then f is itself
linear.

Remark 4.2. We see that the conjugacy φ is constructed by going
forward by the iterates of f and then returning back by the iterates of
the corresponding linear map. This method of constructing a conjugacy
between two maps will be used on several other occassions, see (16.7)
and (??).

16.2. Global leaf of a repelling point. Taking the local inverse
of f , we conclude that repelling maps are also locally linearizable:

Corollary 4.19. Consider a holomorphic map (16.1) near the
origin. Assume |σ| > 1. Then there exist Jordan disks V ⋑ V ′ ∋ 0
such that f(V ′) = V , an r > 0, and a conformal map φ : (V, 0) → Dr

with φ′(0) = 1 satisfying the equation:

φ(fz) = σφ(z), z ∈ V ′. (16.4)

The above properties determine uniquely the germ of φ at the origin.

Assume now that f : C̄ → C̄ is a polynomial with a repelling fixed
point a. Let us consider the inverse linearizing function ψ : (Dr, 0) →
(V, a), ψ = φ−1. It satisfies the functional equation

ψ(σz) = f(ψ(z)), z ∈ V ′. (16.5)

It allows us to extend ψ holomorphically to the disk D|σ|r by letting
ψ(ζ) = f(ψ(ζ/λ)) for ζ ∈ D|σ|r. Repeating this procedure, we can
consecutively extend f to the disks D|σ|nr, n = 1, 2, . . . , so that in the
end f we obtain an entire function ψ : C → C satisfying (16.5).

We will now construct in a dynamical way the Riemann surface of
the inverse (multivalued) function φ = ψ−1. The construction below is
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a special case of a general natural extension or inverse limit construc-
tion. Let us consider the space of inverse orbits of f converging to the
fixed point 0:

L = {ẑ = (z−n)∞n=0 : f(z−n−1) = z−n, z−n → 0}.
Define π−n : L → C as the natural projections ẑ 7→ z−n. Let z ≡ z0

and π ≡ π0 : ẑ 7→ z. The map f lifts to an invertible map f̂ : L →
L, f̂(ẑ) = (fz−n)∞n=0 such that f̂−1(ẑ) = (z−n)∞n=1. Moreover, the

projection π is equivariant: π ◦ f̂ = f ◦ π.
For a neighborhood U of z let Û = Û(ẑ) = (U−n)∞n=0, where U−n−1

is defined inductively as the component of f−1(U−n) containing z−n−1.

We call Û the pullback of U along ẑ. Let us call a pullback Û regular
if the maps f : U−n → U−n−1 are eventually univalent. Since z−n → 0,
z−n ∈ V for all n ≥ N . Selecting U so small that U−N ⊂ V , we see
that U−n ⊂ V for all n ≥ N , and hence all the maps f : U−n−1 → U−n

are univalent for n ≥ N . Thus, Û is regular for a sufficiently small U .
We define topology on L by letting all the regular pullbacks Û(ẑ) be

the basis of neighborhoods of ẑ ∈ L. Moreover, if f : U−n−1 → U−n are
univalent for n ≥ N , the projection π−N : Û → U−N is homeomorphic,
and we take it as a local chart on L̂. Transition maps between such
local charts are given by iterates of f , so that, they turn L into a
Riemann surface.

Exercise 4.18. Show that the projections π−n : L → C are holo-
morphic. Show that the critical points of π are the orbits ẑ = (z−n)∞n=0

passing through a critical point of f (such orbits are called critical).
Find the degree of branching of π at ẑ.

Let â = (a a . . . ) ∈ L be the fixed point lift of a. The following

statement shows that L̂ is the indeed the Riemann surface for φ:

Proposition 4.20. The maps ψ and φ lift to mutually inverse
conformal isomorphisms ψ̂ : (C, 0) → (L, â) and φ̂ : L → C conjugating

z 7→ σz to f̂ and such that π ◦ ψ̂ = ψ.

Proof. For u ∈ C, we let ψ̂(u) = (ψ(u/σn)∞n=0.
Vice versa, if ẑ = (z−n)∞n=0 then eventually z−n ∈ V , so that the

local linearizer φ is well defined on all z−n, n ≥ N . Let now ψ̂(ẑ) =
σnψ(z−n) for any n ≥ N . It does not depend on the choice of n since
φ|V conjugates f to z → σz.

We leave to the reader to check all the properties of these maps. �

Lemma 4.21. Let Cf = π−1(C̄f ). Then the map L r Cf → L r C̄f

is a covering.
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Proof. Let z ∈ Cr C̄f and let U ⊂ Cr C̄f be a little disk around
z. Then

π−1(U) =
⋃

ẑ∈π−1z

Û(ẑ),

and each Û projects univalently onto U . �

Let K̂(f) = π−1(K(f)).

Corollary 4.22. Assume K(f) is connected. Let U be a compo-

nent of Lr K̂(f). Then U is simply connected, so that, the projection
π : U → Df (∞) is a universal covering.

Proof. Since K(f) is connected, C̄f ⊂ K(f). By Lemma 4.21,
U → Df (∞) is a covering map. Since Df (∞) is conformally equivalent
to D∗, U is either conformally equivalent to D∗ or is simply connected.
But in the former case U would be a neighborhood of ∞ in L ≈ C,
so that, K̂(f) would be bounded. It is impossible since K̂(f) is f̂ -

invariant, where by Proposition 4.20 f̂ is conjugate to z 7→ σz with
|σ| > 1. �

16.3. Superattractng points and Böttcher coordinates.

Theorem 4.23. Let f : z 7→ zd + ad+1z
d+1 + . . . be a holomorphic

map near the origin, d ≥ 2. Then there exists an f -invariant Jordan
disk V ∋ 0, r ∈ (0, 1), and a conformal map φ : (V, 0) → (Dr, 0)
satisfying the equation:

φ(fz) = φ(z)d. (16.6)

The above properties determine uniquely the germ of φ at the origin,
up to postcomposition with rotation z 7→ e2πi/(d−1)z (so, it is unique
in the quadratic case d = 2). Moreover, it can be normalized so that
φ′(0) = 1.

The map φ is called the Böttcher function, or the Böttcher coordi-
nate near 0. Equation (16.6) is called the Böttcher equation. In the
Böttcher coordinate the map f assumes the normal form z 7→ zd.

Proof. The Böttcher function can be given by the following ex-
plicit formula:

φ(z) = lim
n→∞

dn
√

fnz, (16.7)

where the value of the dnth root is selected so that it is tangent to
the id at ∞. Obviously, this finction, if exists, satisfied the Böttcher
equation. So, we only need to check that the limit exists.
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Let zn = fnz, where z0 ≡ z. Then

dn+1√zn+1

2n√zn

=
dn+1

√

z2
n(1 +O(zn))

dn√zn

= dn+1
√

(1 +O(zn) = 1 +O
( zn

dn+1

)

.

Hence

φ(z) = lim
n→∞

dn√
zn = z

∞
∏

n=0

dn+1√zn+1

2n√zn

= z
∞
∏

n=0

(

1 +O
( zn

dn+1

))

= z(1+O(z)),

where the last product is convergant uniformly at a superexponential
rate.

Finally, uniqueness of the Böttcher function follows from the exer-
cise below. �

Exercise 4.19. Let d ≥ 2. Show that there are no holomorphic
germs commuting with g : z 7→ zd near the origin, except except rota-
tions z 7→ e2πi/(d−1)z.

16.4. Böttcher vs Riemann. Let us now consider a quadratic
polynomial fc near ∞. Since ∞ is a superattracting fixed point of
f of degree 2, the map fc near ∞ can be reduced in the Böttcher
coordinate to the map z 7→ z2 (Theorem 4.23). Thus, there is a Jordan
disk V = Vc ⊂ C whose complement CrV is fc–invariant, some R > 1,
and a conformal map φc : C r V → C r DR satisfying the Böttcher
equation:

φc(fcz) = φc(z)
2. (16.8)

Moreover, φc(z) ∼ z as z → ∞.
We will now globalize the Böttcher function.
16.4.1. Connected case.

Theorem 4.24. Let fc : z 7→ z2 + c be a quadratic polynomial with
connected Julia set. Then the Böttcher function admits an analytic
extension to the whole basin of ∞. Moreover, it conformally maps
Dc(∞) onto the complement of the unit disk.

Proof. We will skip label c from the notations. Let, as usual,
f0(z) = z2.

Let Un = C̄ r f−nV̄ . Then U0 ⊂ U1 ⊂ U2 ⊂ . . . and ∪Un =
Df (∞). Since the filled Julia set K(f) is connected, the domains Un

are topological disks and the maps f : Un+1 → Un are double coverings
branched point at ∞ (recall the proof of Theorem 4.3).

Let ∆n = C̄ r D̄R1/2n . By Lemma 1.23, the Böttcher function
φ : U0 → ∆0 admits a lift Φ : U1 → ∆1 such that f0 ◦ Φ = φ ◦ f .
But the Böttcher equation tells us that φ : U0 → ∆0 is a lift of its
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restriction φ : f(U0) → f0(∆
0). If we select Φ so that Φ(z) = φ(z)

at some finite point z ∈ U0, then these two lifts must coincide on U0:
Φ|U0 = φ. Thus, Φ is the analytic extension of φ to U1. Obviously, it
satisfies the Böttcher equation as well.

In the same way, the Böttcher function can be consecutively ex-
tended to all the domains Un and hence to their union, Df (∞). �

Thus, the Böttcher function gives the uniformization of C r K(f)
by the unit disk. Given the intricate fractal structure of the Julia set,
this is quite remarkable that its complement can be uniformized in this
explixit way!

One can also go the other way around and costruct the Böttcher
function by means of uniformization:

Exercise 4.20. Let f = fc be a quadratic polynomial with con-
nected Julia set. Then the basin of infinity D̄f (∞) is a conformal
disk. Uniformize it by the complement of the unit disk; ψ : (D,∞) →
(Df (∞),∞), normalized at ∞ so that ψ(z) ∼ λz with λ > 0. Prove
(without using the Böttcher theorem) that ψ conjugates f0 : z 7→ z2 on
C r D to f on the basin of ∞ (and that λ = 1).

Exercise 4.21. Prove that Dc(∞) is the maximal domain of ana-
lyticity of the Böttcher function.

Let us finish with a curious consequence of Theorem 4.24. The
capacity of a connected compact set K ⊂ C rel ∞ is defined as 1/R,
where R is the radius of the disk DR such that the domain C rK(fc)
can be conformaly mapped onto C r D̄R by a map tangent to the id at
∞.

Corollary 4.25. Let fc : z 7→ z2 + c. Then the capacity of the
filled Julia set K(fc) is equal to 1.

16.4.2. Cantor case. In the disconnected case the Böttcher function
φc cannot be any more extended to the whole basin of ∞, as it branches
at the critical point 0. However, φc can still be extended to a big
invariant region Ωc containing 0 on its boundary.

Theorem 4.26. Let fc : z 7→ z2 + c be a quadratic polynomial
with disconnected Julia set. Then the Böttcher function φc admits the
analytic extension to a domain Ωc bounded by a “figure eight” curve
branched at the critical point 0. Moreover, φc maps Ωc conformally
onto the complement of some disk D̄R with R > 1.

Proof. Again, we skip the label c.



16. REMARKABLE FUNCTIONAL EQUATIONS 133

Since 0 ∈ Df (∞), the orb(0) lands at the domain V of the Böttcher
function near ∞. By shrinking V , we can make fn0 ∈ ∂V for some
n > 0. Then there are no obstructions for consecutive extensions of φ
to the domains Uk = C̄ r f−kV̄ , k = 0, 1, . . . , n (in the same way as
in the connectef case). All these domains are bounded by real analytic
curves except the last one, Un, which is bounded by a figure eight curve
branched at 0. This is the desired domain Ω. �

For c ∈M , we let Ωc ≡ Dc(∞).
16.4.3. Böttcher position of the critical value. Since the critical

value c ∈ ∂Un−1 belongs to the domain of φc, the expression φc(c)
is well-defined (provided the Julia set J(fc) is disconnected). It gives
the Böttcher position of the critical value as a function of the parameter
c. This function will play a crucial role in what follows.

16.5. External rays and equipotentials. The map f0 : z 7→ z2

on C r D̄ has two invariant foliations: foliation by the straight rays
going to ∞ and foliation by round circles centered at the origin. (Note
that the first foliation is dynamically defined: see the hint to Exercise
4.19.) We will label the rays by their angles θ ∈ R/2πZ and the
circles by their “heights” t = log r ∈ R+. Note that f(Rθ) = R2θ and
f(E t) = E2t.

By means of the Böttcher function, these two foliations can be
transferred to the domain Ωc ⊂ Dc(∞), supplying us with the foliation
by external rays and equipotentials. They are naturally labeled by the
external angles and equipotential heights respectively. Let Rθ stand for
the external ray of angle θ and E t stand for the equipotential of height
t. (We will use notation Rθ(t) for the point on the ray Rθ whose
equipotential level is equal to t.)

If K(fc) is connected then Ωc = Dc(∞), so that the whole basin of
infinity is foliated by the external rays and equipotentials.

In the disconnectedf case, we can pull the two foliations in Ωc back
by the iterates of f to obtain to singular foliations on the whole basin
of ∞. They have singularities at the critical points of iterated f , i.e.,
at 0 and all its preimages under the iterates of f .

In this context external rays will be understood as the non-singular
leaves of these foliaitons that go to ∞ (i.e., the maximal non-singular
extensions of the rays in Ωc). Countably many rays land at the preim-
ages of 0. All other rays are properly embedded into the basin; they
will be called proper rays. Two (improper) rays landing at the criti-
cal point 0 will be called the critical rays. The particularly important
ray going through the critical value will be called the principal ray (its
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external angle will be also called principal). Of cource, it contains the
(coinciding) images of the critical rays.

The figure-eight that bounds Ωc will be called the critical equipo-
tential.

16.6. Green function. The Green function of a quadratic poly-
nomial f = fc is defined as follows:

Gc(z) = log |φc(z)|, (16.9)

where φc is the Böttcher function of fc. The Green function is harmonic
wherever the Böttcher function is defined (since the Böttcher function
never vanishes) and has a logarithmic singularity at ∞:

G(z) = log |z| + o(1).

In the connected case, (16.9) defines the Green function in the whole
basinD(∞). In the disconnected case definition (16.9) can be used only
in the domain Ω. However, in either case the Green function satisfies
the equation:

G(fz) = 2G(z). (16.10)

This equation can be obviously used in order to extend the Green
function harmonically to the whole basin of ∞. Let us summarize
simple properties of this extension:

Exercise 4.22. a) In the connected case the Green function does
not have critical points. In the disconnected case, its critical points
coincide with the critical points of iterated f .

b) Equipotentials are the level sets of the Green function, while external
rays (and their preimages) are its gradient curves.

c) The Brolin formula holds:

G(z) = lim
n→∞

1

2n
log |fnz|, z ∈ D(∞). (16.11)

d) Extention of the Green function by 0 through the filled Julia set
K(f), gives a continuous subharmonic function on the whole complex
plane.

From the physical point of view, one should imagine that the filled
Julia set K is a conductor of electric charge put in the electric field of
the unit charge at ∞. Let the charges in K settle down in the equi-
librium state (according to the “harmonic distribution” on the Julia
set). Then the Green function is the electric potential in the space R2

created jointly by these charges on K and the charge at ∞. (That is
why the name “equipotentials”).
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Exercise 4.23. Assume that the Julia set J(f) is connected. En-
dow its basin D(∞) with the hyprbolci metric ρ. Then for any external
ray Rθ we have:

ρ(z, ζ) =

∣

∣

∣

∣

log
G(z)

G(ζ)

∣

∣

∣

∣

, z, ζ ∈ Rθ .

16.7. Parabolic points and Écale-Voronin cylinders.

17. Quadratic-like maps

17.1. The concept.
17.1.1. Definition and first properties. The notion of a quadratic-

like map is a fruitful generalization of the notion of a quadratic poly-
nomial.

Definition 4.1. A quadratic-like map f : U → U ′ is a holomorphic
double branched covering between two conformal disks U and U ′ such define
that U ⋐ U ′. The annulus A = U ′ r Ū is called the fundamental
annulus of f .

By the Riemann-Hurwitz Theorem, any quadratic-like map has a
single critical point, which is of course non-degenerate. We normalize f
so that the critical point sits at 0 (unless otherwise is explicitly stated).
Note that any quadratic polynomial f = fc restricts to a quadratic-like need?
map f : f−1(DR) → DR whose range is a round disk with sufficiently
big radius R.

Technical Conventions: In what follows we will consider only even
quadratic-like maps, i.e, such that f(z) = f(−z) for all z ∈ U , with
0-symmetric domains U and U ′. Moreover, we will assume that both
domains are bounded by piecewice smooth Jordan curves.

The notion of a quadratic-like map does not fit to a canonical dy-
namical framework, where the phase space is assumed to be invariant
under the dynamics. In the quadratic- like case, some orbits escape
through the fundamental annulus (i.e., fnz ∈ A for some n ∈ N), and
we cannot iterate them any further. However, there are still a plenty of
non-escaping points, which form a dynamically significant object. The
set of all non-escaping points is called the filled Julia set of f and is
denoted in the same way as for polynomials:

K(f) = {z : fnz ∈ U, n = 0, 1, . . . .}
By definition, the Julia set of f is the boundary of the filled Julia set:
J(f) = ∂K(f). Dynamical features of quadratic-like maps are very
similar to those of quadratic maps (in §17.3 we will see a good reason
for it):
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Exercise 4.24. Check that all dynamical properties of quadratic
polynomials established in in §§13 - 14 are still valid for quadratic-like
maps. In particular,

(i) The filled Julia set K(f) is a completely invariant full compact
subset of U .

(ii) Basic dichotomy: J(f) and K(f) are either connected or Can-
tor; the former holds if and only if the critical point is non-escaping:
0 ∈ K(f).

(iii) Any periodic component of intK(f) is either in the immediate
basin of an attracting/parabolic cycle, or is a Siegel disk.

(iv) f can have at most one attracting cycle.

17.1.2. Adjustments. In fact, the notion of a quadratic-like map
with the fixed domain is too rigid. We want to allow some adjustment
of the domains which does not effect the essential dynamics of the map.
Let us say that a quadratic-like map g : V → V ′ is an adjustment of
another quadratic-like map f : U → U ′ if V ⊂ U , g = f |V , and
∂V ′ ⊂ Ū ′ rU . (In particular, we can restrict f to V = f−1U , provided
f(0) ∈ U .)

Exercise 4.25. (i) Show that adjustments do not change the Julia
set.

(ii) Consider a topological disk V ′ ⊂ U ′ containing the critical value
f(0) and such that ∂V ′ ⊂ Ū ′r Ū . Let V = f−1V ′. Then the restriction
f : V → V ′ is a quadratic-like map.

An appropriate adjustment allows one to improve the geometry of
a quadratic-like map:

Lemma 4.27. Consider a quadratic-like map f : U → U ′ with

mod(U ′ r Ū) ≥ µ > 0 (17.1)

and f(0) ∈ U . Then there is an adjustment g : V → V ′ such that:

(i) The new domains V and V ′ are bounded by real analytic κ-
quasicircles γ and γ′ with κ depending only on µ. Moreover, these
curves have a bounded (in terms of µ) eccentricity around the origin.

(ii) mod(V ′ r V̄ ) ≥ µ/2 > 0.

(iii) g admits a decomposition

g = h ◦ f0, (17.2)

where f0(z) = z2 and h is a univalent function on W = f0(V ) with
distortion bounded by some constant C(µ).
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Proof. Let us uniformize the fundamental annulus A of f by a
round annulus, φ : A(1/r, r) → A, where r ≥ eµ/2 ≡ r0. Then γ′ =
φ(T) is the equator of A. Consider the disk V ′ bounded by γ′, and let
V = f−1V ′. Since f(0) ∈ V ′, V is a conformal disk and the restriction
f : V → V ′ is a quadratic-like adjsutment of f (see Exerecise 4.25).

Restrict φ to the annulus A(1/r0, r0). Take an arc α = [a, b] on T

of length at most δ = (1 − 1/r0)/2. By the Koebe Distortion and 1/4
Theorems in the disk D2δ(u),

|φ(b) − φ(a)| ≥ δ

2
|f ′(a)|; l(φ(α)) ≤ K(r0) |f ′(a)|,

where l stands for the arc length. Hence γ′ = φ(T) is a quasi-circle
with the dilatation depending only on r0.

Applying the same argument to the uniformization of f−1A, we con-
clude that its equator γ = ∂V is a quasicircle with bounded dilatation
as well.

Since γ and γ′ are 0-symmetric κ-quasicircle, the eccentricity of
these curves around 0 is bounded by some constant C(κ) (see Exercise
2.16). This proves (i).

Property (ii) is obvious since mod(V ′ r V̄ ) ≥ mod A(1, r0) = log r0.

Since g is assumed to be even, it admits decomposition (17.2).
Moreover, h admits a univalent extension to the disk W̃ = f0(U),
and

mod(W̃ rW ) = 2 mod(U r V ) ≥ µ/2.

The Koebe Distortion Theorem (in the invariant form 1.17) completes
the proof. �

If some map g admits decomposition (17.2), we say that “it is a
quadratic map up to bounded distortion”.

17.1.3. Quadratic-like germs. Let us say that two quadratic-like
maps f and f̃ represent the same quadratic-like germ if there is a se-
quence of quadratic-like maps f = f0, f1, . . . , fn = f̃ , such that fi+1 is
obtained by an ajustment of fi or the other way around. We will not
make notational differences between maps and germs.

According to Exercise 4.25, a quadratic-like germ f have a well-
defined Julia set J(f) (the notations for the dynamical objects of the
germs will be the same as for the maps).

We will usually consider quadratic-like maps/germs up to affine
conjugacy or rescaling. Thus, we allow ourselves to replace f(z) by
λ−1f(λz) with some λ ∈ C∗. This allows us to normalize f in different
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convenient ways. For example, we can select the normal form

f(z) = c+ z2 + . . . (17.3)

with the second order Taylor coefficient at the origin equal to 1.

Let us refine Lemma 4.27 a bit:

Lemma 4.28. Let f : U → U ′ be a quadratic-like map with con-
nected Julia set satisfying (17.1). Then the germ of f can be repre-
sented with a quadratic-like map g : V → V ′ satisfying the following
properties:

(i) The same as in Lemma 4.27;

(ii) min(µ/2, 1/4) ≤ mod(V ′ r V ) ≤ 1;

(iii) If f is normalized by (17.3) then

ρ ≤ rV ≤ RV ′ ≤ 1/ρ

for some constant ρ ∈ (0, 1) depending only on µ.

Proof. Let Un = f−nU ′ and let An = Un−1 r Un. Since the Julia
set is connected, the restrictions f : Un → Un−1 are quadratic-like
maps obtained by consecutive adjustments of f : U → U ′. Hence they
represent the same germ. Since modAn = modA1/2n−1, we can select
n in such a way that µ̃ ≡ min(µ, 1/2) ≤ modAn ≤ 1. Let us now
adjust f |Un once more as in Lemma 4.27. We obtain a quadratic-like
map g : V → V ′ representing the same germ and satisfying properties
(i)-(ii). Moreover, both domains have eccentricity bounded by some
e = eµ).

Assume now that f is normalized by (17.3), so is g. Then in repre-
sentation (17.2), g = h ◦ f0, the univalent map h : (W, 0) → (V ′, c) is
also normalized: h′(0) = 1. Since W = f0(V ),

0 < C−1rW ≤ rV ′,c ≤ RV ′c ≤ CRW

for some constant C = C(µ) depending only on µ. Hence

C−1r2
V ≤ rV ′,c ≤ RV ′,c ≤ CR2

V . (17.4)

But since V ′ ⊃ V , we have: RV ′,c ≥ RV /2. By the right-hand side
of (17.4), RV ≥ 1/2C. Since V has a bounded eccentricity, the inner
radius rV is also bounded away from 0: rV ≥ 1/2Ce.

On the other hand, if rV = L >> 1 then the left-hand side of
(17.4) (and bounded eccentricity of V ) implies that the annulus V ′ rV
contains the round annulus whose inner radius is of order L and the
outer radius is of order L2, so that mod(V ′ r V ) ≥ γ logL, where
γ = γ(µ) > 0. Since the modulus of V ′ r V is bounded, we conclude
that L is bounded as well. �
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17.2. Uniqueness of a non-repelling cycle. We will now give
the first illustration of how useful the notion of a quadratic-like map
is. It exploits the flexibility of this class of maps: small perturbations
of a quadratic-like map are still quadratic-like (on a slightly adjusted
domain):

Exercise 4.26. Let f : U → U ′ be a quadratic-like map with the
fundamental annulus A. Take a Jordan curve γ′ ⊂ A generating π1(A),
and let V ′ be the domain bounded by γ′. Let φ be a bounded holomorphic
function on U with ‖φ‖∞ < dist(γ, ∂U ′). Let g = f+φ and V = g−1V ′.
Then g : V → V ′ is a quadratic-like map. (Hint: Take a Jordan curve
Γ close to ∂U with winding number 1 around the origin and, look at
the curve g : Γ → C, and apply the Argument Principle.)

Theorem 4.29. Any quadratic-like map (in particular, any qua-
dratic polynomial) has at most one non-repelling cycle.

Proof. Assume that a quadratic-like map f : U → U ′ has two
non-repelling cycles α = {αk}p

k=0 and β = {βk}q
k=0. Let µ and ν be

their multipliers. Take two numbers a and b to be specified below.
Using the Interpolation formulas, find a polynomial φ (of degree

2p + 2q − 1) vanishing at points αk and βk, such that φ′(α0) = a,
φ′(β0) = b, while the derivatives at all other points αk and βk (k > 0)
vanish.

Let g = f + ǫφ, where ǫ > 0. Then α and β are periodic cycles for
g with multipliers

λ′ = λ+ aǫ
∏

k>0

f ′(αk) and µ′ = µ+ bǫ
∏

k>0

f ′(βk)

respectively. Since |λ| ≤ 1 and |µ ≤ 1, parameters a and b can be
obviously selected in such a way that |λ′| < 1 and |µ′| < 1 for all
sufficiently small ǫ > 0. Thus the cycles α and β become attracting
under g. But for a sufficiently small ǫ, g is a quadratic-like map on a
slightly adjusted domain containing both cycles (see Exercise 4.26). As
such, it is allowed to have at most one attracting cycle (Exercise 4.24)
- contradiction. �

This result together with Theorem 4.14 immediately yields:

Corollary 4.30. A quadratic polynomial can have at most one
cycle of components of intK(f).

17.3. Straightening Theorem. If the reader tried to extend the
basic dynamical theory from quadratic polynomials to quadratic-like
maps, quite likely he was stuck with the No Wandering Domains The-
orem. The only known proof of this theorem crucially uses the fact that
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a polynomial of a given degree depends on finitely many parameters.
The flexibility offered by the infinitely dimensional space of quadratic-
like maps looks at this moment like a big disadvantage. It turns out,
however, that the theorem is still valid for quadratic-like maps, and
actually there is no need to prove it independently (as well as to re-
peat any other pieces of the topological theory). In fact, quadratic-like
maps do not exibit any new features of topological dynamics, since
all of them are topologically equivalent to polynomials (restricted to
appropriate domains)!

The proof of this theorem was historically the first application of
the so called quasi-conformal surgery technique. The idea of this tech-
nique is to cook by hands a quasi-regular map with desired dynamical
properties which topologically looks like a polynomial. If you then
manage to find an invariant conformal structure for this map, then by
the Measurable Riemann Mapping Theorem it can be realised as a true
polynomial.

To state the result precisely, we need a few definitions. Two quadratic-
like maps f and g are called topologically conjugate if they become
such after some adjustments of their domains. Thus there exist ad-
justments f : U → U ′ and g : V → V ′ and a homeomorphism
h : (U ′, U) → (V ′, V ) such that the following diagram is commuta-
tive:

U −→
f

U ′

h ↓ ↓ h
V −→

g
V ′

In case when one of the maps is a global polynomial, we allow to take
any quadratic-like restriction of it.

If the homeomorphism h in the above definition can be selected
quasi-conformal (respectively conformal or affine) then the maps f
and g are called quasi-conformally (respectively conformally or affinely)
conjugate. Two quadratic-like maps are called hybrid equivalent if they
are qc conjugate by a map h with ∂̄h = 0 a.e. on the filled Julia set
K(f).

Remark. The last condition implies that h is conformal on the
intK(f). On the Julia set J(f) it gives an extra restriction only if
J(f) has positive measure (and so far there are no examples of Julia
sets of positive measure).

The equivalence classes of topologically (respectively qc, hybrid
etc.) conjugate quadratic-like maps are called topological (respectively
qc, hybrid etc.) classes.
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Theorem 4.31. Any quadratic-like map g is hybrid conjugate to a
quadratic polynomial fc. If J(f) is connected then the corresponding
polynomial fc is unique.

This polynomial fc is called the straightening of g.

Corollary 4.32. If g is a quadratic-like map, then:

(i) There are no wandering components of intK(g);
(ii) Repelling periodic points are dense in J(g);
(iii) If all periodic points of g are repelling then K(g) is nowhere

dense.

Remark. If J(g) is a Cantor set, then the straightening is not
unique. Indeed, by ??, all quadratic polynomials fc, c ∈ C r M ,
are qc equivalent. Since their filled Julia sets have zero measure, they
are actually hybrid equivalent. Hence all of them are going to be the
“straightenings” of g. We will see however that sometimes there is a
preferred choice (see §??).

Existence of the straightening will be proven in the next section,
while uniqueness will be postponed until the end of §18.

17.4. Construction of the straightening. The idea is to “mate”
g near K(g) with f0 : z 7→ z2 near ∞.

First let us adjust g : U → U ′ by Lemma 4.27 so that U and U ′

are bounded by real analytic curves. Take some r > 1. Consider two
closed disks: the disk Ū ′ endowed with the map g : Ū → Ū ′ and the
disk C̄ r Dr endowed with the map f0 : C̄ r Dr → C̄ r Dr2 . Think of
them as two hemi-spheres S2

+ ≡ U ′ and S2
− ≡ C̄ r D̄r (see Fugure ...)

and glue them together by an orientation preserving diffeomorphism
h : Ū ′rU → A[r, r2] between the closed fundamental annnuli respecting
the boundary dynamical relation, i.e., such that

h(gz) = f0(hz) for z ∈ ∂U. (17.5)

Exercise 4.27. Construct such a diffeomorphism. To this end first
consider any diffeomorphism h1 : ∂U ′ → Tr2, then lift it to a diffeo-
morphism h2 : ∂U → Tr satisfying (17.5), and finally interpolate in
between h1 and h2.

In this way we obtain a smooth oriented sphere

S2 = S̄2
+ ⊔h S̄

2
− ≡ Ū ′ ⊔h (C r Dr)

with the atlas of two local charts given by the identical maps φ+ :
S2

+ → U ′ and φ− : S2
− → C̄ r D̄r. Moreover, the hemi-shperes S2

+ and
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S2
− are bounded by smooth Jordan curves. For instance,

γ ≡ ∂S2
− = φ−1

+ h−1(T2) = φ−1
+ ∂U.

Define now a map F : S2 → S2 by letting

F (z) =

{

φ−1
+ ◦ g ◦ φ+(z) for z ∈ φ−1

+ Ū

φ−1
− ◦ f0 ◦ φ−(z) for z ∈ S̄2

−

(It is certainly quite a puritan way of writing since the maps φ− and
φ+ are un fact identical.) By (17.5), these two formulas match on
γ ≡ ∂S2

− = φ−1
+ ∂U . Hence F is a continuous endomorphism of S2.

Moreover, it is a double branched covering of the sphere onto itself
(with two simple branched points at “0”≡ φ−1

− (0) and “∞”≡ φ−1
+ (∞)).

Exercise 4.28. Check the last statement.

Since F is holomorphic in the local charts φ±, it is a smooth quasi-
regular map on S2 r γ. By Lemma 2.10, F is quasi-regular on the
whole sphere.

Exercise 4.29. Show that the gluing diffeomorphism h can be cho-
sen in such a way that the map F is smooth.

use t for h; include a proof of this exercise with bounds for the
extension

We will now construct an F -invariant conformal structure µ on
S2 (with a bounded dilatation with respect to the qc structure of the
smooth sphere S2). Start in a neighborhood of ∞: µ|S2

− = (φ−)∗σ.
Since σ is f0-invariant, µ|S2

− is F -invariant. Since φ− admits a smooth
extension to γ = ∂S2

−, it has a bounded dilatation. Hence µ|S2
− has a

bounded dilatation as well.
Next, pull-back this structure from the fundamental annulus A =

S2
+ ∩S2

− to its preimages An = F−nA, µ|An = (F n)∗(µ|A). (We do not
bother to define the structure on the union of smooth curves, ∪∂An,
since it is a set of measure zero.) Since F is holomorphic in the lo-
cal chart φ+ (namely, equal to g), all these structures have the same
dilatation as µ|A. Hence they form a single F -invariant measurable
conformal structure with bounded dilatation on S2 r φ−1

+ K(g).
Finally, let µ = (φ+)∗σ on φ−1

+ K(g). We obtain an F -invariant
measurable conformal structure µ with bounded dilatation on the whole
sphere S2. By the Measurable Riemann Mapping Theorem, there exists
a qc map H : (S2, µ) → C normalised so that H(0) = 0, H(∞) = ∞
and Hφ−1

− (z) ∼ z as z → ∞. Then the map f = H ◦ F ◦ H−1 is a
quadratic polynomial (see §??) with the critical point at the origin and
asymptotic to z2 at ∞. Hence f = fc : z 7→ z2 + c for some c.
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Exercise 4.30. Show that K(f) = H(φ−1
+ K(g)).

The qc map H ◦ φ−1
+ conjugates g : U → U ′ to a quadratic-like

restriction of f . Moreover, restricting it to K(g), we see that

(H ◦ φ−1
+ )∗σ = H∗µ = σ,

so that H is a hybrid conjugacy between g and a restriction of f . Thus
f is a straightening of g.

17.4.1. Comments on the straightening construction. Note first that
the map B ≡ φ− ◦H−1 in the above construction is the Böttcher coor-
dinate for f on Ω ≡ H(S2

−). Indeed:

• B is conformal on Ω since both φ− and H transfer the confor-
mal structure µ|S2

− to σ, and
• B conjugates f0 : z 7→ z2 to f .

Since B(∂Ω) = Tr, ∂Ω = Er is the equipotential of radius r for f . Thus
we have conjugated f : U → U ′ to f : Dr → Dr2 where Dr is the disk
bounded by the equipotential Er of radius r.

extend the tubing up to the critical point and improve correspond-
ingly the above statement

Second, note that the above construction of f was uniquely deter-
mined by the choice of the gluing diffeomorphism h : Ū ′ rU → A[r, r2]
satisfying (17.5). Such a diffeomorphism will be called tubing. Thus
tubing determines the straightening uniquely. In fact, in the case of
connected Julia set, the straightening is independent even of the choice
of tubing (see the next section).

Finally, let us dwell on an important issue of a bound on the di-
latation of the qc homeomorphism conjugating g to f .

Lemma 4.33. Let g : U → U ′ be a quadratic-like map with mod(U ′r

U) ≥ δ > 0. Then g is hybrid conjugate to a straightening fc by a K-qc
map, where the dilatation K depends only on δ.

Proof. Let us first adjust g according to Lemma 4.27 (keeping the
same notations for the domains U and U ′).

Let us now follow the proof of the Straightening Theorem. Look at
the conformal structure µ = (φ−)∗σ on the fundamental annulus A in
the local chart φ+, i.e., consider

ν = (φ+)∗(µ|A) = h∗σ.

Its dilatation is equal to the dilatation of h. The pull-backs of ν by
the iterates of g (corresponding to the pull-backs of µ by the iterates
F ) do not change its dilatation. The final extension to the filled Julia
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set K(g) has zero dilatation. Thus the dilatation of ν|U ′ = φ+(µ|S2
+)

is equal to the dilatation of the tubing diffeomorphism h.
The qc map H ◦ φ−1

+ conjugating g : U → U ′ to fc : Dr → Dr2

transfers ν|U ′ to σ. Hence its dilatation is also equal to Dil(h). Thus
we only need to argue that h can be selected so that its dilatation
depends only on δ.

Let us conformally uniformize the fundamental annulus R = U ′rŪ ,
Φ : A(1, ρ) → R. Since the boundary curves of R are κ(δ)-quasi-
circles, Φ admits a κ1(δ)-quasi-symmetric extension to the boundary
(??). Let us select the map h : ∂U ′ → Tr2 on the outer boundary of
R in such a way that h ◦Φ is the homothety of Tρ onto Tr2 . Following
the strategy of Exercise 4.27, lift h to the inner boundary ∂U via the
covering map g : ∂U → ∂U ′. Since by Lemma 4.27 this covering
is κ(δ)-quasi-symmetric, h : ∂U → Tr is κ2(δ)-quasi-symmetric and
hence h ◦ Φ : T1 → Tr is κ3(δ)-quasi-symmetric.

By Lemma ??, h◦Φ admits a qc extension to R with the dilatation
depending only on κ3(δ) and mod(R)/ log r. Selecting r in such a way
that the latter ratio is bounded (for instance, take log r = modR),
we obtain a map h ◦ Φ with dilatation depending only on δ. Since
Dil(h) = Dil(h ◦ Φ), we are done. �

18. Expanding circle maps

Before passing to the uniquenss part of the Straightening Theorem,
let us dwell on an important relation between quadratic-like and circle
maps.

18.1. Definition. Recall that T ⊂ C stands for the unit circle
(endowed with the induced real analytic structure and Riemannian
metric). Symmetry with respect to T is understood in the sense of the
anti-holomorphic reflection τ : z 7→ 1/z̄.

Let us say that g : T → T is an expanding circle map of class E if
it satisfies the following properties:

(i) g is an orientation preserving double covering of the circle over
itself;

(ii) g is real analytic;
(iii) g is expanding, i.e, there exist constants C > 0 and λ > 1 such

that for any z ∈ T,

‖Dgn(z)‖ ≥ Cλn, n = 0, 1, . . . . (18.1)

The simplest example is provided by the quadratic circle map f0 :
z 7→ z2. A little more generally, we have the Blyaschke circle maps:
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Exercise 4.31. Let g : D → D be a holomorphic double covering of
the unit disk over itself which has a fixed point in D. By Exercise ??,
g admits a continuous extension to the unit circle T . Show that this
extension is an expanding circle map of class E.

Hint: By Exercise ??, g actually extends to the whole sphere. To
show that it is expanding on T, use the hyperbolic metric in C̄r(orb(a)∪
orb(1/ā), where a ∈ D is the critical point of g.

To state some results in adequately general form, we will also con-
sider a bigger class E1 of C1-smooth expanding circle maps and a class
E1+α of C1-smooth maps whose derivative satisfies the Hölder condition
with exponent α ∈ (0, 1). (However, for applications to holomorphic
dynamics we will only need real analytic maps, so that the reader can
always assume it.)

Exercise 4.32. (i) For any g ∈ E1, there exists a smooth Riemann-
ian metric ρ on T such that

‖Dg(z)‖ρ ≥ λ > 1 for all z ∈ T.

This metric is called Lyapunov. Hint: Consider ρ = ...

Exercise 4.33. Show that any expanding circle map g ∈ E1 has a
unique fixed point β ≡ βg ∈ T.

Hint: Lifting g to the universal covering, you obtain an orienta-
tion preserving diffeomorphism G : R → R satisfying the properties:
a)G(x+1) = G(x)+2; b) all fixed points of G is repelling. Or, use the
Lefschetz formula instead.

18.2. Symbolic model. Let us consider a symbolic sequence k̄ =
(k0, k1, . . . ) ∈ Σ of zeros and ones. Each such a sequence represents
some number

θ(k̄) =
∞

∑

n=0

kn

2n+1
∈ [0, 1]

in its diadic expansion. As everybody learns in the school (in the
context of decimal expansions), all numbers except those of the form
m/2n admit a unique diadic expansion. The numbers of the form m/2n

with odd m admit exactly two diadic expansions:

k0

2
+ · · · + kn−2

2n−1
+

1

2n
=
k0

2
+ · · · + kn−2

2n−1
+

∞
∑

m=n+1

1

2m
.

Thus the corresponding symbolic sequences viewed as representations
of numbers should be identified. If we consider the numbers mod 1,
then we should also identify the sequence 0 of all zeros to the sequence
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1 of all ones. Let us call these identifications on Σ “arithmetic” and
the space Σ modulo these identifications arithmetic quotient of Σ. Of
course, this quotient is in a natural one-to-one correspondence with the
unit interval with identified endpoints, i.e., with the circle.

Exercise 4.34. Show that the projection

π0 : Σ → T, k̄ 7→ exp(2πi θ(k̄))

(continuously) semi-conjugates the Bernoulli shift σ : Σ → Σ (see
§13.4) to the circle endomorphism f0 : z 7→ z2. Thus f0 : T → T is
topologically conjugate to the arithmetic quotient of the Bernoulli shift.

It turns out that the same is true for all expanding circle maps
g ∈ E1:

Lemma 4.34. Any circle expanding map f ∈ E1 is topologically
conjugate to the arithmetic quotient of the Bernoulli shift.

Proof. Let g ∈ E1. Consider its fixed point β. It has a single
perimage β1 different from β ≡ β0. These two points, β and β0, divide
the circle into two (open) intervals intervals, I1

0 and I1
1 (counting anti-

clockwise starting from β). Moreover, g homeomorphically maps each
I1
k onto T r β. Hence each I1

k contains a preimage β2
k of β1. This

point divides I1
k into two open intervals, I2

k0 and I2
k1 (counting anti-

clockwise). We obtain four intervals, I2
kj, k, j ∈ {0, 1} such that g

homeomorphically maps each I2
kj onto I1

k .
Continuing inductively, we see that

T r g−nβ =
⋃

ks∈{0,1}

In
k0 k1 ...kn−1

,

where:
(i) the anti-clockwise order of the intervals In

k̄
(starting from β)

corresponds to the lexicographic order on the symbolic strings k̄ =
(k0 k1 . . . kn−1);

(ii) the map g homeomorphically maps In
k̄

onto In−1
σ(k̄

), where the

strimg σ(k̄) = (k1 . . . kn−1) is obtained from k̄ by erasing the first
symbol.

(iii) any interval In
k̄

contains a point βn+1
k̄

∈ g−(n+1)β which divides

it into two intervals In+1
k̄ 0

and In+1
k̄ 1

of the next level.
Thus gn homeomorphically maps each interval In

k̄
onto the punc-

tured circle Tr{β}. Since g is expanding, the lengths of these intervals
shrink exponentially fast:

|In
k̄ | ≤

2π

C
λ−n,



18. EXPANDING CIRCLE MAPS 147

where C > 0 and λ > 1 are constants from (18.1). It follows that for
any infinite sequence k̄ = (k0k1 . . . ) ∈ Σ of zeros and ones, the closed
intervals Īn

k0...kn−1
form a nest shrinking to a single point z = π(k̄).

Thus we obtain a map π : Σ → T.
Under this map, the cylinders of rank n are mapped to the intervals

of rank n. Since the latter shrink, π is continuous.
The above property (ii) implies that π is equivariant. Thus g is a

quotient of the Bernoulli shift.
We only need to describe the fibers of π. If z is not an iterated

preimage of β, then it belongs to a single interval of any rank. Hence
card(π−1(z)) = 1. Obviously the fiber π−1(β) consists of two extremal
sequences, (0) and 1. Otherwise z = βn+1

k0...kn−1
∈ g−(n+1)β for some

n ≥ 0 (except that for n = 0, the point β1 does not have subsripts).
Then it is a boundary point for exactly two intervals of each order
m ≥ n + 1. For m = n + 1, the corresponding symbolic sequences
differ by the last symbol only: (k0 . . . kn−1 0) and (k0 . . . kn−1 1). For all
further levels, we should add symbol 1 to the first sequence and symbol
0 to the second one. Thus:

π(k0 . . . kn−1 0 1 1 1 . . . ) = z = π(k0 . . . kn−1 1 0 0 0 . . . ),

which are exactly the arithmetic identifications on Σ. �

Thus all expanding circle maps of class E1 are topologically the
same:

Proposition 4.35. Any two expanding circle maps of class E1 are
topologically conjugate by a unique orientation preserving circle home-
omorphism. In particular, expanding circle maps do not admit non-
trivial orientation preserving automorphisms.

Proof. Lemma 4.34 gives the same standard model for any ex-
panding circle map of class E1. In this model, the anti-clockwise order
on Tr{β} corresponds to the lexicographic order on Σ. Hence the cor-
responding conjugacy h between two circle maps, g and g̃, is orientation
preserving.

Such a conjugacy is unique. Indeed, it must carry the points of
g−n(β) to g̃−1(β̃) preserving their anti-clockwise order starting from the

corresponding fixed points, β and β̃. Hence h is uniquely determined on
the iterated preimages of β. Since these preimages are dense in T (by
the previous lemma), h is uniquely determined on the whole circle. �

Remarks. 1. Expanding circle maps have one orientation reversing
automorphism. In the case of z 7→ z2 it is just z 7→ z̄ (compare with
Exercise 4.5).
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2. The above discussion can be generalized in a straightforward
way to expanding circle maps of degree d > 2. There is one difference
though: if d > 2 then the group of orientation preserving automor-
phisms of g is not trivial any more but rather the cyclic group of order
d− 1 (consider z 7→ zd).

18.3. Equivariant liftings. Let us describe a lifting construction
which will find numerous applications in what follows.

Consider two open conformal annuli Ω ⊂ Ω′ ⊂ C with a common
inner boundary. Assume that A = Ω′ r Ω is a (closed) annulus whose
boundary components are smooth Jordan curves. Let g : Ω → Ω′ be a
holomorphic double covering map. A point z ∈ Ω is called escaping if
fnz ∈ A for some n ∈ N.

Consider also another map g̃ : Ω̃ → Ω̃′ with the same properties
(all corresponding objects for g̃ will be marked with “tilde”).

Lemma 4.36. Under the circumstances just described, assume that
all points of Ω and Ω′ are escaping. Then any equivariant home-
omorphism H : A → Ã admits a unique homeomorphic extension
h : Ω′ → Ω̃′ conjugating g to g̃. If H is quasi-conformal then so is
h, and Dil(h) = Dil(H). Moreover, the Beltrami differential µh = h∗σ
is obtained by pulling back the Beltrami differential µH = H∗σ by the
iterates of g: µh|An = (gn)∗µH .

Proof. Let An = g−nA, and let Γn be the outer boundary of An

(coinciding for n ≥ 1 with the inner boundary of An−1). Consider
an equivariant homeomorphism H : A → Ã. This map admits a lift
H1 : A1 → Ã1 such that g̃ ◦ H1 = H ◦ g|A1. In fact, there are exacly
two such lifts determined by a value of H1 at a single point.

The restriction of H1 to the outer boundary Γ1 is a lift of H : Γ0 →
Γ̃0. But since H is equivariant on ∂A, its restriction to Γ1 is also a
lift of H : Γ0 → Γ̃0. Hence the lift H1 can be chosen in such a way
that H1|Γ1 = H|Γ1. With this choice, H and H1 glue together to an
equivarinat homeomorphism h1 : A ∪ A1 → Ã ∪ Ã1. Now equivariance
means that g̃◦h1|A1 = h1 ◦g|A1. In particular, h1 is equivariant on the
boundary of A1, so that we can apply to it the above construction. It
provides us with an equivariant extension h2 : A∪A1∪A2 → Ã∪Ã1∪Ã2

of h1.
Proceeding in this way we will obtain a sequence of equivariant

liftings Hn : An → Ãn which glue together to equivariant homeomor-
phisms

hn :
n

⋃

k=0

Ak →
n

⋃

k=0

Ãk
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extending one another. Since all the points in Ω escape, the annuli Ak

exhaust Ω′, and similarly for Ω̃′. Hence the direct limit of equivariant
extensions hn is a homeomeorhism h : Ω′ → Ω̃′ conjugating g to g̃.

It shows existence of a conjugacy h for any given H. Uniqueness is
obvious: h|A consecutively determines the lifts h|An by requirements
of equivarience and continuous matching.

Finally, assume that H is quasi-conformal with dilatation K. Since
g and g̃ are conformal, all the consecutive lifts of H to the annuli An

are qc maps with the same dilatation K. By Proposition 2.10, their
gluings (maps hn) are K-qc maps as well. The direct limit h of K-qc
extensions hn is obviously K-qc as well.

The last statement is obvious due to the natural behavior of the
Beltrami differentials under conformal liftings: µHn = (g◦n)∗µH since
g̃◦n ◦Hn = H ◦ g◦n where g◦n and g̃◦n are conformal. �

Remark. We do not need to assume that the annuli Ω and Ω′ are
embedded to C.

Problem 4.35. Is the assumption that all points in Ω escape auto-
matically satisfied if mod(Ω) <∞?

18.4. Complex extensions of circle maps. In this section we
will take a closer look at the holomorphic extensions of expanding cicle
maps of class E .

Exercise 4.36. (i) For any g ∈ E, there exist two T-symmetric
topological annuli V ⋐ V ′ (bounded by smooth Jordan curves) such
that g admits a holomorphic extension to V and maps it onto V ′ as a
double covering.

Hint: Extend the Lyapunov metric from Exercise 4.32 to a neigh-
borhood of T.

(ii) Show that vice versa, property (i) imlies that g ∈ E. Hint: Use
the hyperbolic metric in V ′.

(iii) Show that all points z ∈ V r T escape, i.e., gnz ∈ V ′ r V for
some n ∈ N.

Hints should go to an Appendix.
Thus property (i) can be used as a definition of an expanding circle

map of class E . In fact, only exterior part of the above extension is
needed to reconstruct the circle map (it will be useful in what follows):

Lemma 4.37. Let Ω ⊂ Ω′ ⊂ C be two open conformal annnuli
whose inner boundaries coincide with the unit circle T. Let g : Ω →
Ω′ be a holomorphic double covering. Then g admits an extension to
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a holomorphic double covering G : V → V ′, where V ⋐ V ′ are T-
symmetric annuli such that Ω = V r D̄ and Ω′ = V ′ r D̄. If the outer
boundary of Ω is contained in Ω′, then V ⋐ V ′ and the restriction G|T
is an expanding cicle map of class E.

Proof. First show that g continuously extends to T (apply bound-
ary properties of confomal maps to inverse branches of g ??). Then
use the Schwarz Reflection Principle. �

Consider a holomorphic extension g : V → V ′ of a map g ∈ E given
by Exercise ??. Thus V ⋐ V ′ are two T-symmetric annuli neighbor-
hoods of the circle. Let A = (V̄ ′ r V ) r D be the “outer” fundamental
annulus for g.

Given another map g̃ : Ṽ → Ṽ ′ as above, we will mark the corre-
sponding objects with “tilde”.

Proposition 4.38. Any two expanding circle maps g : V → V ′ and
g̃ : Ṽ → Ṽ ′ are conjugate by a qc map h : (V ′, V,T) → (Ṽ ′, Ṽ ,T) com-
muting with the reflection τ about the circle. In fact, any equivariant
qc map H : A → Ã between the fundamental annuli admits a unique
extension to a qc conjugacy h as above. Moreover Dil(h) = Dil(H).

Proof. Consider an equivariant qc map H as above with dilata-
tion K. By Lemma 4.36 it can be uniquely lifted to an equivariant
K-qc homeomorphism h : V ′ r D̄ → Ṽ ′ r D̄. By ??, h admits a con-
tinuous extension to the unit circle. Reflecting it to the interior of the
circle (and then exploiting Proposition 2.10) we obtain a desired K-qc
conjugacy h : V ′ → Ṽ ′. �

Let us endow the exterior CrD̄ of the unit disk, with the hyperbolic
metric ρ ≡ ρCrD̄. The hyperbolic length of a curve γ will be denoted
by lρ(γ), while it Euclidean length will be denoted by |γ|.

Lemma 4.39. Let g : V → V ′ be an expanding circle map of class E.
Let Ω and Ω′ be two (open) annuli whose inner boundary is the circle
T. Let h : Ω → Ω′ be a homeomorphism commuting with g. Then h
admits a continuous extension to a map Ω ∪ T → Ω̃ ∪ T identical on
the circle.

************************************ unedited

Proof. Given a set X ⊂ A, let X̃ denote its image by ω. Let
us take a configuration consisting of a round annulus L0 = A[r, r2]
contained in A, and an interval I0 = [r, r2]. Let Ln = P−n

0 L0, and In
k

denote the components of P−n
0 I0, k = 0, 1, . . . , 2n − 1. The intervals In

k

subdivide the annulus Ln into 2n ”Carleson boxes” Qn
k .
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Since the (multi-valued) square root map P−1
0 is infinitesimally con-

tracting in the hyperbolic metric, the hyperbolic diameters of the boxes
Q̃n

k are uniformly bounded by a constant C.
Let us now show that ω is a hyperbolic quasi-isometry near the

circle, that is, there exist ǫ > 0 and A,B > 0 such that

A−1ρ(z, ζ) −B ≤ ρ(z̃, ζ̃) ≤ Aρ(z, ζ) +B, (18.2)

provided z, ζ ∈ A(1, 1 + ǫ), |z − ζ| < ǫ.
Let γ be the arc of the hyperbolic geodesic joining z and ζ. Clearly

it is contained in the annulus A(1, r), provided ǫ is sufficiently small.
Let t > 1 be the radius of the circle Tt centered at 0 and tangent to
γ. Let us replace γ with a combinatorial geodesic Γ going radially up
from z to the intersection with Tt, then going along this circle, and
then radially down to ζ. Let N be the number of the Carleson boxes
intersected by Γ. Then one can easily see that

ρ(z, ζ) = lρ(γ) ≍ lρ(Γ) ≍ N,

provided ρ(z, ζ) ≥ 10 log(1/r) (here log(1/r) is the hyperbolic size of
the boxes Qn

k).
On the other hand

ρ(z̃, ζ̃) ≤ lρ(Γ̃) ≤ CN,

so that ρ(z̃, ζ̃) ≤ C1ρ(z, ζ), and (18.2) follows.
But quasi-isometries of the hyperbolic plane admit continuous ex-

tensions to T (see, e.g., [Th]). Finally, it is an easy exercise to show
that the only homeomorphism of the circle commuting with P0 is iden-
tical. �

********************************************************8
We will show next that “outer automorphisms” of circle maps move

points bounded hyperbolic distance:

Lemma 4.40. Let g : V → V ′ be a map of class E. Let Ω and Ω′ be
two open annuli in V rD̄ with inner boundary T, and let h : Ω → Ω′ be
an automorphism of g. Then for any δ > 0 there exists an R = R(δ) >
0 such that ρ(z, hz) ≤ R for all points z ∈ Ω whose distance from the
outer boundary of Ω is at least δ.

Proof. By Proposition 4.38, g is qc conjugate to the quadratic
circle map f0 : z 7→ z2. Of course, this conjugacy can be extended to a
global qc homeomorphism of C̄ (e.g., by ??). Since qc homeomorphisms
of CrD̄ are hyperbolic quasi-isometries (??), it is enough to prove the
assertion for f0. So, let us assume from now on that g = f0.
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Of course, the assertion is true for any compact subset of Ω. Hence
we need to check it only near to the unit circle.

By 4.39, h admits a continuous extension to the unit circle. Of
course, it still commutes with g on the circle. By Proposition 4.35,
h|T = id. Hence for any ǫ > 0 there exists an r > 1 such that A(1, r] ⋐

Ω and
|z − hz| < ǫ for z ∈ A(1, r].

Consider a fundamental annulus A of g compactly contained in A(1, r].
By compactness, there exists an R > 0 such that

ρ(z, hz) ≤ R for z ∈ A.

Let An = g−nA. Take some z ∈ A1. Since |z − hz| < ǫ, these
points are obtained by applying the same local branch of the square
root map g−1 to the points gz and g(hz) = h(gz). Since the local
branches of g−1 preserve the hyperbolic distance on C r D̄, we have:
ρ(z, hz) = ρ(gz, h(gz)) ≤ R.

Replacing A by A1, we obtain the same bound for any z ∈ A2, etc.
The conclusion follows. �

18.5. External map (the connected case). To any quadratic-
like map f : U → U ′ one can naturally associate an expanding circle
map g of class E which captures dynamics outside the Julia set. For
this reason g is called the external map of f .

The construction is very simple if the Julia set J(f) is connected.
In this case the basin of infinity Df (∞) = CrK(f) is simply connected
and can be conformally mapped onto the complement of the unit disk:

R : C rK(f) → C r D̄.

Let Ω = R(V r K(f)), Ω′ = R(V ′ r K(f)). These are two conformal
annuli with smooth boundary. Moreover, the have a common inner
boundary, the unit circle T, while the outer boundary of Ω is contained
in Ω′. Conjugating f by R we obtain a holomorphic double covering

g : Ω → Ω′, g(z) = R ◦ f ◦R−1(z) for z ∈ Ω.

By Lemma 4.37, g can be extended to an expanding circle map of class
E .

In fact, this map is not uniquely defined since the Riemann map R
is defined up to post-composition with rotation z 7→ e2πiθz, 0 ≤ θ < 2π.
A natural way to normalize g is to put its fixed point β to 1 ∈ T.

Note also that if f is replaced by an affinely conjugate map A−1 ◦
f ◦A, where A : z 7→ λz, λ ∈ C∗, then the Riemann map R is replaced
by R ◦ A, and the external map g remains the same. Thus, to any
quadratic-like map f (with connected Julia set) prescribed up to an
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affine conjugacy corresponds an expanding circle map g well-defined
up to rotation conjugacy.

We will consider the case of disconnected Julia set in §??.

18.6. Uniqueness of the straightening. Let us first show that
“external automorphisms” of quadratic-like maps admit a continuous
extension to the Julia set by identity (compare with Lemma 4.39).

Lemma 4.41. Let f : U → U ′ be a quadratic-like map with con-
nected Julia set. Let W ⊂ U and W ′ ⊂ U be two (open) annuli
whose inner boundary is J(f). Let h : W → W ′ be a homeomorphism
commuting with f . Then h admits a continuous extension to a map
W ∪ J(f) → W ′ ∪ J(f) identical on the Julia set.

Proof. Consider the Riemann mapping R : C r K(f) → C r D̄

and the external circle map g : V → V ′, g|V r D̄ = R ◦ f ◦ R−1.
Transfer the annuli W and W ′ to the g-plane. We obtain two annuli
Ω = R(W ) and Ω′ = R(W ′) in V r D̄ attached to the unit circle T. Of
course, the homeomorphism k : Ω → Ω′, k = R ◦ h ◦ R−1, commutes
with g.

By Lemma 4.40, k moves points near T bounded hyperbolic dis-
tance: ρCrD̄(k(z), z) ≤ R. Since the Riemann mapping R : C r D̄ →
C rK(f) is a hyperbolic isometry, the same is true for h:

ρCrK(f)(z, h(z) ≤ R

for z ∈W near J(f) . By ??, the Euclidean distance |z−hz| goes to 0
as z → J(f), z ∈W . It follows that the extension of h by the identity
on the Julia set is continuous. �

Corollary 4.42. Let f and f̃ be two quadratic-like maps, and let
a homeomorphism h conjugates f to f̃ in some neighborhoods of the
filled Julia sets. Then h is uniquely determined on J(f).

Problem 4.37. Assume that quadratic polynomials f and f̃ are
conjugate on the Julia sets only. Is the conjugacy unique?

Let us now summarize the above results:

Theorem 4.43. Let us consider two quadratic-like maps f : U →
U ′ and f̃ : Ũ → Ũ ′ with connected Julia sets. Assume that they are
topologically conjugate near their Julia sets by a homeomorphism ψ :
V → Ṽ . Assume also that we are given an equivariant homeomorphism
H : A→ Ã between the (closed) fundamental annuli of f and f̃ .

Then there exists a unique homeomorphism h : U ′ → Ũ ′ conjugating
f to f̃ , coinciding with ψ on the Julia set J(f), and coinciding with H
on A.
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If H is qc, then h|U rK(f) is also qc with the same dilatation. If
both H and ψ are qc, then h is qc, and

Dil(h) = max(DilH, Dil(ψ|K(f)).

In particular, if f and g are hybrid equivalent by means of ψ, then
Dil(h) = Dil(H).

Proof. By the Lifting Construction of §18.3, H admits a unique
equivariant extension to a homeomorphism h : U rK(f) → Ũ rK(f̃).
This extension continuously matches with ψ on the filled Julia set.
Indeed, ψ−1 ◦ h commutes with f on some exterior neighborhood of
K(f). By Lemma 4.41, this map continuously extends to the filled
Julia set as identity. Hence h continuous extends to the filled Julia set
as ψ.

If H is qc then h|UrK(f) is qc with the same dilatation by Lemma
4.36. All the rest follows from the Bers Lemma 2.11. �

Of course, we can always construct an equivariant qc map H be-
tween the fundamental annuli. Hence if two quadratic-like maps are
topologically equivalent, then the conjugacy can be selected quasi-
conformal outside the filled Julia set. If they are hybrid equivalent,
then the dilatation of the conjugacy is completely controlled by the
dilatation of H, which is in turn controlled by the geometry of the
fundamental annuli (see ??). In the case of global polynomials we can
do even better:

Corollary 4.44. Consider two quadratic polynomials f : z 7→
z2 + c and f̃ : z 7→ z2 + c̃ with connected Julia sets. If they are
topologically conjugate near their filled Julia sets, then there is a global
conjugacy h : C → C which is conformal on the basin of ∞. If f and
f̃ are hybrid conjugate near their filled Julia sets, then f = f̃ .

Proof. By §??, the Riemann-Bötcher map Bf : Df (∞) → C r D̄

conjugates f to z 7→ z2. Hence the composition

R : B−1

f̃
◦Bf : Df (∞) → Df̃ (∞) (18.3)

conformally conjugates f to f̃ on their basins of ∞. By the previous
theorem, this conjugacy matches with the topological conjugacy on the
filled Julia set giving us a desired global conjugacy h.

Moreover, If f and f̃ are hybrid equivalent, then Dil(h) = 0 a.e. By
Weil’s Lemma ??, h is conformal and hence affine. But if two quadratic
polynomials in the normal form z2 +c are affinely equivalent, then they
are equal. �
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The last statement of the above Corollary gives the uniqueness part
of the Straightening Theorem.

18.6.1. Picture.

19. Harmonic measure on J(f)





CHAPTER 5

Parameter plane (the Mandelbrot set)

20. Definition and first properties

20.1. Notational convention. We will label the objects corre-
sponding to a map fc by c, e.g., Jc = J(fc), Per(fc) = Perc. We often
use notation c◦ ≡ base for a base parameter, so that f◦ = fc◦

, J◦ = Jc◦
,

etc.

20.2. Connectedness locus and polynomials c 7→ fn
c (0). The

Mandelbrot set presents at one glance the whole dynamical diversity
of the complex quadratic family fc : z 7→ z2 + c. Figure ... shows this
set and its blow-ups in several places. It is remarkable that all this
intricate structure is hidden behind the following one-line definition.

Recall the Basic Dichotomy for the quadratic maps: the Julia set
J(fc) is either connected or Cantor (Theorem 4.3). By definition, the
Mandelbrot set M consists of those parameter values c ∈ C for which
the Julia set Jc is connected. It is equivalent to saying that the orbit
of the critical point

0 7→ c 7→ c2 + c 7→ (c2 + c)2 + c 7→ . . . (20.1)

is not escaping to ∞. Let us denote the n th polynomial in (20.1) by
υn(c), so that υ0(c) ≡ 0, υ1(c) ≡ c, and recursively

υn+1(c) = υn(c)2 + c. (20.2)

Note that deg φn = 2n−1.
Though the polynomials υn are not iterates of a single polynomial,

they behave in many respects similarly to the iterated polynomials:

Exercise 5.1 (Simplest properties ofM). Prove the following prop-
erties:

(i) If |υn(c)| > 2 for some n ∈ N then υn(c) → ∞ as n → ∞. In
particular, M ⊂ D̄2.

(ii) υn(c) → ∞ locally uniformly on CrM . Hence M is compact.
(iii) C r M is connected. Hence M is full and all components of

intM are simply connected.

157
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(iv) The set of normality of the sequence {υn} coincides with C r

∂M .

One can see a similarity between the Mandelbrot set (representing
the whole quadratic family) and a fillied Julia set of a particular qua-
dratic map. It is just the first indication of a deep relation between
dynamical and parameter objects.

Note that Proposition 4.4 describes the real slice of the Mandelbrot
set:

M ∩ R = [−2, 1/4].

20.3. Dependence of periodic points on c. What immediately
catches the eye in the Mandelbrot set is the main cardioid C with a
cusp at c = 1/4. The cardioid bounds a domain of parameter values c
such that fc has an attracting fixed point.

Exercise 5.2. Show that the main cardioid is given by the equation

c =
1

2
e2πiθ − 1

4
e4πiθ, 0 ≤ θ < 2π,

where σ = e2πiθ is the multiplier of the neutral fixed point of fc.

Let us now take a look at how periodic points move with parameter:

Lemma 5.1. Let f∗ has a cycle {αk}p−1
k=0 of period p with multiplier

σ0 6= 1. Then for nearby c, the maps fc have a cycle {αk(c)}p−1
k=0 holo-

morphically depending on c. Its multiplier
mult(c) holomorphically depends on c as well.

Proof. Consider an algebraic equation fp
c (z) = z. For c = c◦ it

has roots z = αk, k = 0, . . . , p− 1 (and maybe others). Since

∂(fp
c (z) − z)

dz

∣

∣

∣

∣

c=c◦ , z=αk

= σ0 − 1 6= 0,

the Implicit Function Theorem yields the first assertion. The second
assertion follows from the formula for the multiplier:

σ(c) = 2p

p−1
∏

k=0

αk(c).

�

Thus periodic points of fc as functions of the parameter are alge-
braic functions branched at parabolic points only.
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20.4. Hyperbolic components. A parameter value c ∈ C is
called hyperbolic/parabolic/Siegel etc. if the corresponding quadratic
polynomial fc is such.

Proposition 5.2 (Hyperbolic components). The set H of hyper-
bolic parameter values is contained in intM . If H is a component of
intM intersecting H then H ⊂ H.

Proof. Lemma 5.1 implies that the set of hyperbolic parameter
values is open. Since parameters in CrM are not hyperbolic (according
to our terminology: see §??), the boundary parameter values c ∈ ∂M !!!
cannot be hyperbolic either. Thus H ⊂ intM .

Take some some hyperbolic parameter value c◦ ∈ H0. The corre-
sponding map f◦ has an attracting cycle of some period p. By Theorem
4.7, this cycle contains a point α0 such that

υpn(c0) ≡ fpn
◦

(0) → α0 as n→ ∞.

It is easy to see (Exercise!) that for nearby c ∈ H we have:

υpn(c) ≡ fpn
◦

(0) → α0(c) as n→ ∞,

where α0(c) is the holomorphically moving attracting periodic point of
fc (Lemma ??). But the sequence of polynomials υpn(c), n = 0, 1, . . . ,
is normal in H (Exercise 5.1, (iv)). Hence it must converge in the
whole domain H to some holomorphic function α̃(c) coinciding with
α0(c) near c0. By analytic continuation, α̃(c) is a a periodic point of fc

with period dividing p.
Moreover, the cycle of this point attracts the critical orbit persis-

tently inH. It is impossible if this cycle is repelling somewhere. Indeed,
a repelling cycles can only attract an orbit which eventually lands at
it. This property is not locally persistent since otherwise it would hold
for all c ∈ C (while it is violated, say, for c = 1).

If α̃(c) were parabolic for some c ∈ H, then it could be made
repelling for a nearby parameter value. Thus α̃(c) is attracting for all
c ∈ H, so that H ⊂ H. �

Corollary 5.3. Neutral parameters lie on the boundary of M .

Proof. Let c0 be a neutral parameter, i.e., the map f◦ has a neu-
tral cycle. This parameter can be perturbed to make the cycle at-
tracting. If c0 belonged to intM then by Proposition 5.2 it would be
hyperbolic itself – contradiction. �

Exercise 5.3. (i) Any parameter c ∈ ∂M can be approximated by
superattracting parameters;
(ii) Misiurewicz parameters form a countable dense subset of ∂M .
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A component Λ of intM is called hyperbolic if it consists of hyper-
bolic parameter values. Otherwise Λ is called queer. The reason for the
last term is that it is generally believed that there are no queer compo-
nents. In fact, it is a central conjecture in contemporary holomorphic
dynamics:

Conjecture 5.4 (Density of hyperbolicity). There are no queer
components. Hyperbolic parameters are dense in C.

Because of Exersice 5.3 (i), the second part of the conjecture would
follow from the first one. It is sometimes referred to as Fatou’s Con-
jecture.

20.5. Primitive and satellite hyperbolic components.

Proposition 5.5. Let H be a hyperbolic component of period n of
M , let p/q 6= 0 mod 1, and let rp/q ∈ ∂H be a parabolic parameter
with rotation number p/q. Then there is a hyperbolic component H ′ of
period np attached to H at rp/q.

A hyperbolic component H ′ that was born from another hyperbolic
component by the period increasing bifurcation described in Proposi-
tion is called satellite. All other hyperbolic components of M are called
primitive. They appear as a result of a saddle-node bifurcation.

Parabolic points on ∂H with multiplier 1 are called the roots of H.
(We will see below (Theorem 5.9) that any hyperbolic component has
a single root.) In particular, the bifucation point rp/q is the root of the
satellite component H ′.

The type of the component can be easily recognized geometrically:

Proposition 5.6. Satellite components are bounded by smooth curves,
while primitive components have cusps at their roots.

21. Connectivity of M

21.1. Uniformization of C r M . In this section we will prove
the first non-trivial result about the Mandelbrot set established by
Douady and Hubbard in early 1980’s. The strategy of the proof is
quite remarkable: it is based on the explicit uniformization of the com-
plement C rM by C r D̄. Recall from §16.4.2 that for c ∈ C rM , we
have a well-defined function

a = ΦM(c) = φc(c), (21.1)

where φc is the Böttcher function for fc extended to the domain Ωc

bounded by the critical figure-eight equipotential.
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Theorem 5.7. The Mandelbrot set M is connected. The function
ΦM conformally maps C r M onto C r D̄. Moreover, it is tangent to
the identity at ∞: ΦM(c) ∼ c as c→ ∞.

We immediately obtain the parameter analogue of Corollary 4.25:

Corollary 5.8. The Mandelbrot set has capacity 1.

We will give two proofs of Theorem 5.7. The first proof is short and
elementary (it was the original proof given by Douady and Hubbard).
The second proof, though longer and more demanding, illuminates the
meaning of formula (21.1) and the ideas of qc deformations.

21.2. An elementary proof. It is based upon the explicit for-
mula (16.7) for the Böttcher coordinate near ∞,

φc(z) = lim
n→∞

(fn
c (z))1/2n

, (21.2)

where the root in the right-hand side is selected in such a way that it
is tangent to the identity at ∞. The sratedy is to show that RM is a
holomorphic branched covering of degree 1.

Step 1: analyticity. Let us consider a set Ω = {(c, z) ∈ C2 :
z ∈ Ωc}, where we the Ωc ⊂ C r K(fc) is the maximal equipotential
saturated domains of analyticity of the Böttcher function φc (see §16.4).
It is easy to see that this set is open. Indeed, for any c0, there exist
an R > 0 and ǫ > 0 such that |fc(z)| > 2|z| for all c ∈ D(c0, ǫ) and
|z| > R. Hence C r D̄R ⊂ C rK(fc) for all (c, z) as above.

Now, if ζ0 ∈ C r K(f◦) then fn
◦
(ζ0) ∈ C r D̄R for some n. By

continuity, fn
c (ζ) ∈ Cr D̄0 for all (c, ζ) sufficiently close to (c0, ζ0), and

the openness follows.
We also see that the orbits of fc, c ∈ Ω, escape to ∞ at a locally

uniform rate, which implies that convergence in the Brolin formula
(16.11),

Gc(z) = lim
n→∞

1

2n
log |fn

c z|,
is locally uniform on Ω. Hence (c, z) 7→ Gc(z) is a continuos function
on Ω,1 so that, the set Ω′ = {(c, z) ∈ Ω : Gc(z) > Gc(0)} is also open.

But for the same reason, convergence in the Böttcher formula (21.2)
is locally uniformly on Ω′. Hence the Böttcher function (c, z) 7→ φc(z)
is holomorphic on Ω′. We conclude that the function RM : C rM →
C r D̄, RM(c) = φc(c), is holomorphic on C rM .

1It also follows that this function is pluriharmonic on Ω, i.e., its slices to one-
dimensional holomorphic curves in Ω are harmonic.
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Step 2: behavior at ∞. Let cn = fn
c (c). Then |cn+1| = |c2n + cn| ≥

1

2
c2n,

provided |cn| is big enough. It follows that |Rm(c)| ≥ 1

2
|c| → ∞ as

c → ∞. Hence RM exdends holomorphically to ∞ and RM(∞) = ∞.
Moreover, since

2n
√

fn
c (c) = 2n

√

c2n(1 +O(c)) ∼ c as c → ∞,

RM(c) ∼ c near ∞ as well.

Step 3: properness. Let us show that the map ΦM : CrM → CrD

is proper:

|ΦM(c)| → 1 as c→ ∂M.

Let us define n(c) ∈ N ∪ {0} ∪ {∞} as the last moment n such that
fn

c (c) ∈ D̄2. By Exercise 5.1(i), n(c) = ∞ iff c ∈M . Moreover, n(c) →
∞ as c → M . Otherwise there would exist N ∈ N and a sequence
ck → c ∈M such that fN

ck
(c) ∈ C r D̄3, implying that fn

c (c) ∈ C r D̄3,
which is not the case.

Since the Green function is continuous on Ω,

K = sup
Gc(z): (c,z)∈D̄3×T2

<∞.

Since z 7→ Gc(z) is subharmonic on the whole plane C for any c,
Gc(z) ≤ K for (c, z) ∈ D̄3 × D̄2. Hence

Gc(c) =
1

n(c)
Gc(f

n(c)
c (c) ≤ 1

n(c)
K → 0 as c → M.

It follows that |φc(c)| = eGc(c) → 1 as c → M , c ∈ C r M , as was
asserted.

Conclusion. Thus, the map RM is a branched covering, so that, it
has a well-defined degree. But R−1

M (∞) = {∞}, and by Step 2, ∞ is a
simple preimage of itself. Hence degRM = 1, and we are done.

21.3. Second proof.
21.3.1. Step 1: Qc deformation. The idea is to deform the map

by moving around the Böttcher position of its critical value. To this
end let us consider a two parameter family of diffeomorphisms ψω,q :
C r D → C r D written in the polar coordinates as follows:

ψ = ψω,q(r, θ) = (rω, θ + q log r), ω > 0, q ∈ R.

In terms of complex variabe a = reiθ ∈ C r D and complex parameter
λ = ω + iq, ℜλ > 0, this family can be expressed in the following
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concise form:

ψλ(a) = |a|λ−1a. (21.3)

This family commutes with f0 : a 7→ a2: ψ(a2) = ψ(a)2, and acts
transitively on C r D, i.e., for any a⋆ and a in C r D, there exists a λ,
such that ψλ(a⋆) = a. (Note also that ψλ are automorphisms of C r D

viewed as a multiplicative semigroup.)
Take now a quadratic polynomial f⋆ ≡ fc⋆ with c⋆ ∈ CrM . Let us

consider its Böttcher function φ⋆ : Ω⋆ → CrD⋆, where Ω∗ ≡ Ωc⋆ is the
complement of the figure eight equipotenial (see §16.4.2) and D⋆ ≡ DR⋆

is the corresponding round disk, R⋆ > 1. Take the standard conformal
structure σ on C r D and pull it back by the composition ψλ ◦ φ⋆. We
obtain a conformal structure µ = µλ in Ω⋆. Since ψλ commute with
f0 while the Böttcher function conjugates f⋆ to f0, the structure µ is
invariant under f⋆.

Let us pull this structure back to the preimages of Ω⋆:

µn |Ωn = (fn
⋆ )∗(µ),

where Ωn
⋆ = f−n

⋆ Ω⋆. Since µ is invariant on Ω⋆, the structures µn+1

and µn coincide on Ωn
⋆ , so that they are organized in a single conformal

structure on ∪Ωn
⋆ = C r J(f⋆). Extend it to the Julia set J(f⋆) as the

standard conformal structure.
We will keep notation µ ≡ µλ for the conformal structure on C we

have just constructed. By construction, it is invariant under f⋆. More-
over, it has a bounded dilatation since holomorphic pullbacks preserve
dilatation: ‖µλ‖∞ = ‖(ψλ)

∗(σ)‖∞ < 1.
By the Measurable Riemann Mapping Theorem, there is a qc map

hλ : (C, 0) → (C, 0) such that (hλ)⋆(µλ) = σ. By Corollary ??, hla
can be normalized so that it conjugates fλ to a quadratic map fc ≡
fc(λ) : z 7→ z2 + c(λ). Of course, the Julia set fc is also Cantor, so that
c ∈ C rM .

This family of quadratic polynomials is the desired qc deformation
of f⋆.

21.3.2. Step 2: Analyticity. We have to check three propertices of
the map ΦM : CrM → CrD: analyticity, surjectivity, and injectivity.
Let us take them one by one.

It is obvious from formula (21.3) that the Beltrami differential

νλ = (ψλ)
∗(σ) = ∂̄ψλ/∂ψλ

depends holomorphically on λ. Hence the Beltrami differential (f⋆)
∗(νλ)

on Ω⋆ also depends holomorphically on λ (see Exercise 2.12). Pulling
it back by the iterates of f⋆ and extending it in the standard way to
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J(f), we obtain by Lemma 2.20 a holomorphic family of Beltrami dif-
ferentials µλ on C. By Corollary 4.16, c(λ) is holomorphic on λ as
well.

21.3.3. Step 3: Surjectivity. Note that the map ψλ◦φ⋆◦h−1
λ confor-

mally conjugates the polynomial fc ≡ fc(λ) near ∞ to f0 : z 7→ z2. By
Theorem 4.23, these properties determine uniquely the Böttcher map
φc of fc, so that φc = ψλ ◦ φ⋆ ◦ h−1

λ with c = c(λ). Since hλ conjugates
f⋆ to fc, we have: hλ(c∗) = c and hence

ΦM(c) = φc(c) = ψλ ◦ φ⋆(c⋆) = ψλ(a⋆),

where a⋆ is the Böttcher position of the critical value of f⋆. Since the
family {ψλ} acts transitively on C r D, any point a ∈ C r D can be
relasized as ΦM(c) for some c = c(λ).

21.3.4. Step 4: Injectivity. We have to check that if

φc(c) = a = φc̃(c̃) (21.4)

for two parameter valus c and c̃ in C r M , then c = c̃. We let f ≡
fc, φ ≡ φc, f̃ ≡ fc̃, φ̃ ≡ φc̃. Similarly, we will mark with “tilde”
the dynamical objects associated with f̃ that naturally correspond to
dynamical objects associated with f .

Let R =
√

|a|. Then the maps φ−1 and φ̃−1 map C r D̄R onto the

domains Ω ≡ Ωc and Ω̃ ≡ Ωc̃ respectively. Moreover, they extend con-
tinuously to the boundary circle mapping it onto the boundary figures
eight Γ = ∂Ω and Γ̃ = ∂Ω̃, and this extension if one-to-one except that

φ−1(±√
a) = 0 = φ̃−1(±√

a).

Hence the conformal map h = φ̃−1◦φ : Ω → Ω̃ admits a homeomorphic
extension to the closure of its domain:

h : (cl(Ω), 0) → (cl(Ω̃), 0).

Consider a domain Ω0 = f(Ω) (exterior of the equipotential passing
through c) and the complementary Jordan disk ∆0 = C r Ω0. We will
describe a hierarchical decomposition of ∆0 into topological annuli An

i ,
n = 1, . . . , i = 1, 2, . . . , 2n. Let Ωn = f−nΩ0 (so that Ω ≡ Ω1).
The boundary ∂Ωn consists of 2n−1 disjoint figures eight. The loops
of these figures eight bound 2n (closed) Jordan disks ∆n

i . The map f
conformally maps ∆n

i onto some ∆n−1
j , n ≥ 1. Let An

i = ∆n
i ∩cl(Ωn+1).

These are closed topological annuli each of which is bounded by a
Jordan curve and a figure eight. They tile ∆0 r J(f). The map f
conformally maps An

i onto some An−1
j , n ≥ 1.
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Let us lift h ≡ h1 to conformal maps Hi : A1
i → Ã1

i :

Hi |A1
i = (f̃ |Ã1

i )
−1 ◦ h ◦ (f |A1

i ). (21.5)

Since h is equivariant on the boundary of Ω1 r Ω0, it matches with
the Hi on ∂∆1

i . Putting these maps together, we obtain an equivariant
homeomorphism h2 : cl(Ω2) → cl(Ω̃2) conformal in the complement of
the figure eight Γ:

h2(z) =

{

h(z), z ∈ Ω1,

Hi(z), z ∈ A1
i .

Since smooth curves are removable (recall §12), h2 is conformal in Ω2 r

{0}. Since isolated points are removable, h2 is conformal in Ω2. Thus
h admits an equivariant conformal extension to Ω2.

In the same way, h2 can be lifted to four annuli A2
i . This gives an

equivariant conformal extension of h to Ω3. Proceeding in this way, we
will consecutively obtain an equivariant conformal extension of h to all
the domains Ωn and hence to their union ∪Ωn = C r J(f).

Since the Julia set J(f) is removable (Theorem 2.31), this map

admits a conformal extension through J(f). Thus, f and f̃ are confor-
mally equivalent, and hence c = c̃.

This completes the second proof of Theorem 5.7.

22. The Multiplier Theorem

22.1. Statement. Let us pick a favorite hyperbolic component H
of the Mandelbrot set M . For c ∈ H, the polynomial fc has a unique
attracting cycle αc = {αk(c)}p−1

k=0 of period p. By Lemma 5.1, the
multiplier λ(c) of this cycle holomorphically depends on c, so that we
obtain a holomorphic map λ : H → D. It is remarkable that this map
gives an explicit uniformization of H by the unit disk:

Theorem 5.9. The multiplier map λ : H → D is a conformal
isomorphism.

This theorem is in many respects analogous to Theorem 5.7 on con-
nectivity of the Mandelbrot set. The latter gives an explicit dynamical
uniformization of C r M ; the former gives the one for the hyperbolic
component. The ideas of the proofs are also similar.

We already know that λ is holomorphic, so we need to verify that
it is surjective and injective. The first statement is easy:

Exercise 5.4. The multiplier map λ : H → D is proper and hence
surjective. In particular, H contains a superattracting parameter value.
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22.2. Qc deformation. Let Z ⊂ H be the set of superattracting
parameter values in H. Take some point c0 ∈ HrZ, and let λ0 ∈ D∗ be
the multiplier of the corresponding attracting cycle. We will produce
a qc deformation of f∗ ≡ fc0 by deforming the associated fundamental
torus.

22.2.1. Fundamental torus. Take a little topological diskD = D(a0, ǫ)
around the attracting periodic point a0 of f∗. It is invariant under
g0 ≡ fp

∗ and the quotient of D under the action of f∗ is a conformal
torus T0. Its fundamental group has one marked generater correspond-
ing to a little Jordan curve around α0.

By the Linearization Theorem (??), the action of g0 on D is con-
formally equivalent to the linear action of ζ 7→ λ0ζ on D∗. Hence the
partially marked torus T0 is conformally equivalent to T2

λ0
, so that λ0

is the modulus of T0 (see §1.4.2).
Let us select a family of deformations ψλ : T2

λ0
→ T2

λ of Tλ0 to
nearby tori. For instance, ψλ can be chosen to be linear in the loga-
rithmic coordinates (x, y) = log ζ, τ = log λ:

x+ yτ0 7→ x+ yτ ; x ∈ R, y ≥ 0.

This gives us a complex one-parameter family of Beltrami differentials
νλ = ψ∗

λ(σ) on T0 ≈ T2
λ0

(in what follows we identify T0 with T2
λ0

).

Exercise 5.5. Calculate νλ explicitly (for the linear deformation).

22.2.2. Qc deformation of f∗. We can lift νλ to the disk D and then
pull it back by iterates of f∗. This gives us a family of f∗-invariant Bel-
trami differentials µλ on the attracting basin of α. These Beltrami
differentials have a bounded dilatation since the pull-backs under holo-
morphic maps preserve dilatation. Extend the µλ by 0 outside the
attracting basin (keeping the notation). We obtain a family of mea-
surable f∗-invariant conformal structures µλ on the Riemann sphere.
Solving the Beltrami equation (hλ)∗(µλ) = σ (with an appropriately
normalization) we obtain a qc deformation of f∗ (see Corollary 4.17):

fc(λ) = hλ ◦ f∗ ◦ h−1
λ : z 7→ z2 + c(λ). (22.1)

Moreover, note that this deformation is conformal on the basin of ∞.
Let us show that the multiplier of the attracting fixed point of fc(λ)

is equal to λ. Consider the torus Tλ associated with the attracting
cycle of fc(λ). Then hλ descends to a homeomorphism Hλ : T0 → Tλ

such that (Hλ)∗(νλ) = σ. Since (ψλ)∗(ν) = σ as well, the map

ψλ ◦H−1
λ : Tλ → T2

λ
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is conformal. Hence the partially marked torus Tλ has the same mod-
ulus as T2

λ, which is λ. But as we know, this modulus is equal to the
multiplier of the corresponding attracting cycle.

This deformation immediately leads to the following important con-
clusion:

Lemma 5.10. All maps fc, c ∈ H r Z, are qc equivalent (and the
conjugacy is conformal on the basin of ∞). Moreover, cardZ = 1.

Proof. Take some c0 ∈ H r Z. By Proposition 2.16, the defor-
mation parameter c(λ) in (22.1) depends continuously on λ. Hence
c : λ 7→ c(λ) is the local right inverse to the multiplier function. But
holomorphic functions do not have continuous right inverses near their
critical points. Consequently, c0 is not a critical point of the multiplier
function λ and, moreover, c is the local inverse to λ. It follows that
any c near c0 can be represented as c(λ), and hence fc is qc equivalent
to fc0 .

Let us decompose the domain H r Z into the union of disjoint qc
classes (with conformal conjugacy on the basin of ∞). We have just
shown that each qc class in this decomposition is open. Since H r Z
is connected, it consists of a single qc class.

Furthermore, we have shown that λ does not have critical points
in H r Z. Hence λ : H r Z → D∗ is an unbranched covering. By
the Riemann-Hurwitz formula (for the trivial case of unbranched cov-
erings), the Euler characteristic of HrZ is equal to 0, i.e., 1−cardZ =
0. �

Thus, every hyperbolic component H contains a unique superat-
tracting parameter value cH . It is called the center of H. We let
H∗ = H r {cH}.

22.3. Injectivity. The following lemma will complete the proof
of the Multiplier Theorem:

Lemma 5.11. Consider two parameter values c and c̃ in H r Z. If
λ(c) = λ(c̃) then the quadratic maps fc and fc̃ are conformally equiva-
lent on C.

The idea is to turn the qc conjugacy from Lemma 5.10 into a con-
formal conjugacy. To this end we need to modify the conjugacy on the
basin of the attracting cycle. Let us start with the component D0 of
the basin containing 0.

22.4. Internal angles. For c ∈ H̄, arg λ(c) is called the internal
angle of c.



168 5. PARAMETER PLANE (THE MANDELBROT SET)

23. Structural stability

23.1. Statement of the result. A map f◦ : z 7→ z2 +c◦ (and the
corresponding parameter c◦ ∈ C) is called structurally stable if for any
c ∈ C sufficiently close to c◦, the map fc is topologically conjugate to f◦,
and moreover, the conjugacy hc : C → C can be selected continuously
in c (in the uniform topology). By definition, the set of structurally
stable parameters is open. In this section we will prove that it is dense:

Theorem 5.12. The set of structurally unstable parameters is equal
to the boundary of the Mandelbrot set together with the centers of hy-
perbolic components. Hence the set of structurally stable parameters
is dense in C. Moreover, any structurally stable map f◦ is quasi-
conformally conjugate to all nearby maps fc.

Notice that parameters cbase ∈ ∂M are obviously unstable since
the Julia set J◦ is connected, while the Julia sets Jc for nearby c ∈
CrM are disconnected. The centers of hyperbolic components are also
unstable since the topological dynamics near a superattracting cycle is
different from the topological dynamics near an attracting cycle (the
grand orbits on the basin of attraction are discrete in the latter case
and are not in the former).

The proof of stability of other parameters will occupy §23.2 – §23.5.
The desired conjugacies will be constructed as equivariant holomorphic
motions.

A holomorphic motion hc : X◦ → Xc of a set X ⊂ C is called
equivariant if

hc(f◦(z)) = fc(hc(z)) (23.1)

whenever both points z and f◦(z) belong to X◦. If the Xc are fc-
invariant, this just means that the maps hc conjugate f◦|X◦ to fc|Xc.
(Of course, we can apply this terminology not only to the quadratic
family).

Notice that the equivariance property (23.1) means that the asso-
ciated lamination (see §1.1) is invariant under the map

f : (λ, z) 7→ (λ, fλ(z)). (23.2)

Since by the Second λ-lemma, holomorphic motions are automat-
ically quasi-conformal in the dynamical variable, the last assertion of
Theorem 5.12 will follow automatically.

23.2. J-stability. Let us first show that the Julia set Jc moves
holomorpically outside the boundary of M . (Strictly speaking, this
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step is not needed for the proof of Theorem 5.12 given below, but it
gives a good illustration of the method.)

A map f◦ : z 7→ z2 + c◦ (and the corresponding parameter c◦ ∈ C)
is called J-stable if for any c ∈ C sufficiently close to c◦, the map
fc|Jc is topologically conjugate to f◦| J◦, and moreover the conjugacy
hc : J◦ → Jc depends continuously on c.

Theorem 5.13. The set of J-stable parameters is equal to Cr∂M
and hence is dense in C. Moreover, the corresponding conjugacies hc :
J◦ → Jc form a holomorphic motion of the Julia set over the component
of C r ∂M containing ◦.

Proof. Let C be the component of intM containing c◦. By Corol-
lary 5.3, C does not contain neutral parameters, and hence all periodic
points are persistently hyperbolic over C, either repelling or attract-
ing. Hence they depend holomorphically on c ∈ C. Since C is simply
connected (Exercise 5.1 (iii)), these holomorphic functions c 7→ α(c)
are single valued. Moreover, they cannot collide since collisions could
occur only at parabolic parameters. Thus, they provide us with a holo-
morphic motion hc : Per◦ → Perc of the set of periodic points.

This holomorphic motion is equivariant. Indeed, if

c 7→ α(c) = hc(α)

is a holomorphically moving periodic point then c 7→ fc(α(c)) is also
a holomorphically moving periodic point. Hence fc(α(c)) = hc(f◦(α))
and we obtain:

fc(hc(α)) = fc(α(c)) = hc(f◦(α)).

By the First λ-lemma (3.1), this holomorphic motion extends to a
continuous equivariant holomorphic motion of the closure of periodic
points, which contains the Julia set. Moreover, this motion is automat-
ically continuous in both variables (λ, z), and hence provides us with
a family of topological conjugacies between J◦ and Jc continuously de-
pending on c. �

Exercise 5.6. An equivariant holomorphic motion of the Julia set
is unique.

23.3. Böttcher motion: connected case. In this section, we
will show that the basin of infinity, Dc(∞), moves bi-holomorphically
over any component of intM .

Proposition 5.14. Let C be a component of intM with a base
point ◦. Then there exists an equivariant bi-holomorphic motion hc :
D◦(∞) → Dc(∞) of the basin of infinity over C.
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Proof. Let φc : Dc(∞) → C r D̄ be the Böttcher-Riemann uni-
formization of the basin of infinity (see Theorem 4.24). It is a holo-
morphic function in two variables on the domain {(c, z) : c ∈ C, z ∈
Dc(∞)} (see Step 1 of §21.2). It follows that hc = φ−1

c ◦ φ◦ is a bi-
holomorphic motion of Dc over C. Since the φc conjugate fc to z 7→ z2,
this motion is equivariant. �

Exercise 5.7. Show that an equivariant bi-holomorphic motion of
the basin of ∞ over C is unique.

Now the first λ-lemma implies:

Corollary 5.15. For any component C of intM , there is a unique
equivariant holomorphic motion hc : D̄c(∞) → D̄c(∞) over C which is
bi-holomorphic on Dc(∞).

If Q is a queer componenet then C = D̄c(∞) for any c ∈ Q, and so,
we obtain the Structural Stability Theorem in this case:

Corollary 5.16. For a queer component Q of intM , there is a
unique equivariant holomorphic motion hc : C → C over Q which is
bi-holomorphic on Dc(∞). Hence all parameters c ∈ H are structurally
stable.

23.4. Motion of an attracting basin. For a hyperbolic parame-
ter c, let αc stand for the corresponding attracting cycle, and let D(αc)
be its basin.

Proposition 5.17. Let H be a hyperbolic component of intM , and
let c◦ ∈ H∗. Then there is an equivariant smooth holomorphic motion
of the attracting basin D(αc) over some neighborhood of c◦.

To prove this assertion, we need three simple lemmas. The first one
is concerned with local extension of smooth motions.

Lemma 5.18. Let us consider a compact set Q ⊂ C and a smooth
holomorphic motion hλ of a neighborhood U of Q over a parameter
domain (Λ,◦). Then there is a smooth holomorphic motion Hλ of the
whole complex plane C over some neighborhood Λ′ of ◦ whose restric-
tion to Q coincides with hλ.

Proof. We can certainly assume that Ū is compact. Take a smooth
cut-off function η : C → R supported in U such that η|Q ≡ 1, and let

Hλ = η hλ + (1 − η) id .

Clearly H is smooth in both variables, holomorphic in λ, coinsides with
h on Q and with the identity outside U . As H0 = id, Hλ : C → C is a
diffeomorphism for λ sufficiently close to ◦, and we are done. �
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The second lemma is concerned with lifts of holomorphic motions.

Lemma 5.19. Let hλ : V◦ → Vλ be a holomorphic motion of a
domain V◦ ⊂ C over a simply connected parameter domain Λ. Let
fλ : Uλ → Vλ be a holomorphic family of proper maps with critical
points ckλ such that the critical values vk

λ = fλ(c
k
λ) form orbits of hλ.

2

Then hλ uniquely lifts to a holomorphic motion Hλ : U◦ → Uλ such
that

fλ ◦Hλ = hλ ◦ f◦. (23.3)

Proof. Notice that (23.3) means that the lamination associated
with the motion H is the pullback of the lamination associated with
the motion h under the map f (23.2). Clearly, such a pullback unique
if exists.

Let us take any regular value ζ◦ = f◦(z◦) ∈ V◦, and let φ(λ) =
hλ(ζ◦) be its orbit. We would like to lift this orbit to a desired orbit
of z◦, so we are looking for a holomorphic solution z = ψ(λ) of an
equation

fλ(z) = φ(λ) (23.4)

with ψ(z◦) = ζ◦. Since φ(λ) is a regular point of fλ for any λ ∈ Λ,
the Implicit Function Theorem implies that near any point (λ′, z′) sat-
isfying (23.4), it admits a unique local analytic solution z = ψ(λ).
Since the maps fλ are proper, this continuation along any path com-
pactly contained in Λ cannot escape the domain Uλ. Since Λ is simply
connected, ψ(λ) extends to the whole domain Λ as a single valued
holomorphic function.

Two different orbits λ 7→ ψ(λ) obtained in this way do not collide,
for (23.4) would have two different solutions near the collision point.
Hence they form a holomorphic motion of V◦ r {vk

◦
} over Λ. By the

First λ-lemma, this motion extends to the whole domain V◦.
Finally,

fλ(Hλ(z◦)) = fλ(ψ(λ)) = φ(λ) = hλ(ζ◦) = hλ(f◦(z◦))

holds for any point z◦ ∈ U◦ except perhaps finitely many exceptions
(preimages of the critical values of f◦). By continuity, it holds for all
z◦ ∈ U◦. �

The last lemma is concerned with dependence of the linearizing
coordinate (the Königs function) on parameters

2In particular, any holomorphic family of univalent maps fλ : Uλ → Vλ is
allowed.
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Lemma 5.20. Let fλ be a holomorphic family of germs near the ori-
gin over a parameter domain Λ such that 0 is a simply attracting point.
Then the normalized linearizing coordinate φλ depends holomorphically
on λ.

Proof. The linearizing coordinate φλ is given by an explicit Königs
formula (16.3):

φλ(z) = lim
n→∞

σ−n
λ fn

λ , where σλ = f ′
λ(0). (23.5)

Since analyticity is a local property, we need to verify the assertion near
an arbitrary parameter λ◦ ∈ Λ. There exist ǫ > 0 and ρ < 1 such that
f◦(Dǫ) ⋐ Dρǫ. Then the same is true for λ in some neighborhood Λ′

of λ◦. By the Schwarz Lemma, the orbits {fn
λ (z)}∞n=0 of points z ∈ Dǫ

converge to 0 at a uniformly exponential rate: |fn
λ (z)| ≤ ρn for λ ∈ Λ′.

This implies (by examining the proof of (16.3)) that convergence in
(23.5) is uniform on Λ′×Dǫ. Hence φλ(z) is holomorphic on Λ′×Dǫ. �

Proof of Proposition 5.17. Let αc = {fk
c (α)}p−1

k=0 be the attracting
cycle of fc, and let us consider the maps fp

c near their fixed points αc.
Lemma 5.20 implies that there is a neighborhood H ′ ⊂ H∗ of c◦ and
an ǫ > 0 such that the inverse linearizing coordinate φ−1

c (z) for fp
c is

holomorphic on Λ′ × Dǫ. Let Vc = φ−1
c (Dǫ) ∋ αc, and let us consider a

fundamental annulus Ac = cl(Vc r fc(Vc)).
By Theorem 4.7, the critical orbit orbc(0) must cross Ac. By ad-

justing ǫ and shrinking H ′ if needed, we can ensure that it does not
cross ∂Ac. Then it crosses Ac at a single point υn(c) = fn

c (0) ∈ intAc,
where n ∈ N is independent of c. Its position in the linearizing coor-
dinate, ac = φc(υn(c)) ∈ A(ǫ, σcǫ) ≡ Ac, depends holomorphically on c
(here σc is the multiplier of αc).

Let Qc = ∂Ac ∪ {ac}. Let us define a smooth equivariant holomor-
phic motion h of a small neighborhood ofQc overH ′ as follows: hc = id
near the outer boundary of Ac, hc : z 7→ σcz/σ◦ near the inner bound-
ary of Ac, and hc : z 7→ acz/a◦ near ac. By Lemma 5.18, this motion
extends to a smooth motion of the whole plane over some neighborhood
of c◦ (we will keep the same notation H ′ for this neighborhood). Let us
restrict the motion to the fundamental annulus Ac (keeping the same
notation hc for it). By Lemma 5.19 (in the simple case when there are
no critical points), this motion can be first extended to the forward
orbit of Ac, (providing us with an equivariant holomorphic motion of
Dǫ). Then we can transfer it using the linearizing coordinates to a
holomorphic motion of Vc, then extend it to an invariant neighborhood
Vc =

⋃p−1
k=0 f

k
c (Vc) of α, and finally we can use Lemma 5.19 to pull this

motion back to all preimages of Vc (the assumption of Lemma 5.19
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on the critical values is secured by the property that ac is an orbit of
the motion h). It provides us with the desired equivariant holomorphic
motion of the basin D(αc). ⊔⊓

Corollary 5.21. Let H be a hyperbolic component of intM , and
let c◦ ∈ H∗. Then there is an equivariant holomorphic motion of the
whole plane C over some neighborhood of c◦. Hence all parameters
c ∈ H∗ are structurally stable.

Proof. Since for C = cl(Dc(∞) ∪D(αc)) for c ∈ H, Propositions
5.14 and 5.17, together with the First λ-lemma yield the desired. �

23.5. Böttcher motion: Cantor case. Let us finally deal with
the complement of M .

Proposition 5.22. Let c◦ ∈ C r M . Then there is an equivari-
ant smooth holomomrphic motion of the basin of infinity, Dc(∞), over
some neighborhood of c◦.

The proof is similar to the one given in the attracting case, us-
ing the Böttcher coordinate in place of the linearizing coordinate. To
implement it, we need a rotationally equivariant Extension Lemma:

Lemma 5.23. Let R > r > 1 and let z ∈ A(r, R). Let φ be a
holomorphic function on a domain (Λ,◦) with φ(◦) = z. Then there
is a smooth holomorphic motion Hλ of the whole complex plane C over
some neighborhood Λ′ of ◦ such that

(i) Hλ(z) = φ(λ);
(ii) Hλ = id on C r A(r, R) = id;
(iii) The Hλ commute with the rotation group ζ 7→ eiθζ.

Proof. Let τ(λ) = φ(λ)/z, and let hλ(ζ) = τ(λ)ζ. This motion
satisfies requirements (i) and (iii). To make it satisfy (ii) as well, we
will use a smooth cut-off function φ : R → R supported on a small
neighborhood of |z|. Then the motion

Hλ(ζ) = φ(|ζ|)hλ(ζ) + (1 − φ(|ζ|))ζ
satisfies all the requirements. �

Proof of Proposition 5.22. Let us consider the Böttcher coordinate
φc of fc near ∞. Since it depends holomorphically on c, there is a
neighborhood U ⊂ C r M of c◦ and an R > 1 such that the function
(c, z) 7→ φ−1

c (z) is holomorphic on U × (C r D̄R).
Let Vc = φ−1

c (C r D̄R). By adjusting R and U if necessary, we can
ensure that the orbc(0) does not cross the boundary of the fundamental
annulus Ac = Vc r fc(Vc). Then there is a unique n such that υn(c) =
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fn
c (0) ∈ intAc. Let us mark the corresponding point ac = φc(υn(c)) in

the annulus A = A(R,R2).
Applying lemma 5.23, we find a rotationally equivariant holomor-

phic motion Hc : A → A such that Hc(a◦) = ac and Hc = id on ∂A.
Let us show that

Exercise 5.8. Show that this holomorphic motion extends to a
holomorphic motion Hc : C r DR → C r DR commuting with z 7→ z2.

Let us now transfer Hc by means of the Böttcher coordinate to a
holomorphic motion hc : Vc → Vc, hc = φ−1

c ◦ Hc ◦ φ◦. This motion
is equivarinat, φc ◦ f◦ = fc ◦ φc, and has vn(c) as one of its orbits.
By Lemma 5.19, it can be lifted to a holomorphic motion of f−1

c (Vc)
that has υn−1(c) as its orbit. Moreover, by the uniqueness of the lift,
it coincides on V◦ with the original motion hc, which implies that it is
equivariant. Then we can lift it further to f−2(Vc), and so on: in this
way we will exhaust the whole basin of ∞. ⊔⊓

Since C = D̄c(∞) for c ∈ C r M , Proposition 5.22 (together with
the First λ-lemma) yields:

Corollary 5.24. Let c◦ ∈ C r M . Then there is an equivariant
holomorphic motion of the whole plane C over some neighborhood of
c◦. Hence all parameters c ∈ H∗ are structurally stable.

Corollaries 5.16, 5.21 and 5.24 cover all types of components of
C r ∂M , and together prove the Structural Stability Theorem (5.12).

23.6. Invariant line fields and queer components.
23.6.1. Definition. Informally speaking, a line field on C is a family

of tangent lines l(z) ∈ TzC depending measurably on z ∈ C.
Here is a precise definition. Any line l ∈ C passing through the

origin is uniquely represented by a pair of centrally symmetric points
e±2πiθ ∈ T in the unit circle, or by a single number

ν = e4πiθ ∈ T, θ ∈ R/(Z/2). (23.6)

The space of these lines form, by definition, the one-dimensional pro-
jective line PR1, and (23.6) provides us with its parametrization by the
angular coordinate (and shows that PR1 ≈ T).

Let us now consider the projective tangent bundle over C,

PT(C) = C × PR1

parametrized by C × (R/(Z/2)). A line field on C is a measurable
section of PT(C) defined on some set X ⊂ C of positive area called its
(measurable) support. In terms of the angular coordinate, we obtain
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a measurable function X → R/(Z/2), z 7→ θ(z).3 In the circular
coordinate ν, we obtain a measurable functionX → T. In what follows,
we will always extend ν by 0 to the whole plane.

Exercise 5.9. Show that a line field on a Riemann surface S is

given by a Beltrami differential ν(z)
dz̄

dz
with |ν(z)| ∈ {0, 1}.

A line field on a set J ⊂ C is a line field on C whose support is
contained in J . If such a line field exists (with a non-empty support)
then area J > 0.

A line field is called invariant (under a holomorphic map f) if
it is invariant under the natural action of f on the projective line
bundle: l(fz) = Df(z)l(z), or in the angular coordinate, θ(fz) =
θ(z) + arg f ′(z), or in the Beltrami coordinate, f ∗ν = ν (where the
pullback is understood in the sense of Beltrami differentials).

If an invariant line field l is supported on a set X then we can pull
it back by the dynamics to obtain an invariant line field supported on

the set X̃ =
∞
⋃

n=0

f−n(X).4 Hence we can assume in the first place that

l is supported on a completely invariant set: this will be our standing
assumption.

23.6.2. Existence criterion.

Proposition 5.25. Let Q be a queer component of intM . Then
any map fc, c ∈ Q, has an invariant line field on its Julia set. In
particular, area J(fc) > 0.

Vice versa, if fc has an invariant line field on its Julia set then c
belongs to a queer component of intM .

Proof. Take some c◦ ∈ Q. By Corollary 5.16, there is an equi-
variant holomorphic motion hc over (Q, c◦) which is bi-holomorphic
on Dc(∞). Let us consider the corresponding Belrtami differentials
µc = ∂̄hc/∂hc, c ∈ Q. Each µc vanishes on D◦(∞), however µc 6= 0 for
c 6= c◦ (for otherwise, by Weyl’s Lemma the map hc would be affine,
contrary to the fact the quadratic maps fc and f◦ are not affinely con-
jugate). Hence area(suppµc) > 0 for any c 6= c◦, and all the more,
area J◦ > 0. Moreover, since µc is f◦-invariant, the normalized Bel-
trami differential νc = µc/|µc| (where we let νc = 0 outside suppµc) is

3As always, a measurable function is considered up to an arbitrary change on
null-sets.

4The pullback would fail at the critical points but we can always remove their
grand orbits (as any other completely invariant null-set) from X̃.
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also f◦-invariant, and hence determines an invariant line field on the
Julia set J◦.

Vice versa, assume f◦ has an invariant line field on J◦ given by
an invariant Beltrami differential ν◦. For any λ ∈ D, the Beltrami
differential λν◦ is also f -invariant. Let hλ : (C, 0) → (C, 0) be the
solution of the corresponding Beltrami equation tangent to the identity
at infinity. Then the map hλ ◦f◦ ◦h−1

λ is a quadratic polynomial fσ(λ) :
z 7→ z2 + σ(λ) (see §15.1.2). By Corollary 4.17, the map σ : D → C

is holomorphic. Since the line field is non-trivial, it is not identically
constant. Hence its image covers a neighborhood of c◦ contained in
intM . So, it is contained in some component of intM . By ??, this
component cannot be hyperbolic, so it must be queer. �

Thus, Fatou’s Conjecture (5.4) is equivalent to the following one:

Conjecture 5.26 (No Invariant Line Fields). No quadratic poly-
nomial has an invariant line field on its Julia set.

23.6.3. Uniqueness and ergodicity. If a line field l(z) is rotated by
angle 2πα with α ∈ R/(Z/2), the corresponding Beltrami differential
is then multiplied by λ = e4πiα ∈ T. Of course, if the original line field
was f -invariant then so is the rotated one.

Lemma 5.27. A quadratic polynomial can have at most one, up to
rotation, invariant line field on its Julia set.

This will follow from the ergodicity of the action of f on the support
of any invariant line field. Recall that a map f : X → X of a measure
space is called ergodic if X cannot be decomposed into a disjoint unnion
of two invariant (and hence completely invariant) subsets of positive
measure. Equivalently, there are no non-constant measurable functions
φ : X → R invariant under f , i.e., such that φ ◦ f = φ.

Lemma 5.28. Let f be a quadratic polynomial, and let l(z) be an
invariant line field on J(f). Then the action of f on supp l is ergodic.

Proof. Assume that supp l admits a disjoint decomposition X1 ⊔
X2 into two measurable invariant subsets of positive measure. Then
the restriction of l to these sets gives us two invariant line fields li with
disjoint supports. Let νi be the corresponding Beltrami differentials.
Then we can consider a complex two-parameter family of Beltrami
differentials νλ = λ1ν1 +λ2ν2, where λ = (λ1, λ2) ∈ D2. Since ‖νλ‖∞ <
1 for each λ, we can solve the corresponding Beltrami equations and
obtain a two parameter family of qc maps hλ : (C, 0) → (C, 0) tangent
to the identity at infinity. Then the maps hλ ◦ f◦ ◦ h−1

λ form a family
of quadratic polynomials fσ(λ) : z 7→ z2 + σ(λ) (see §15.1.2).
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By Proposition 2.16, the map σ : D2 → C we have obtained this
way is continuous (in fact, by Corollary 4.17, it is holomorphic). Hence
it cannot be injective: there exist λ 6= κ in D2 such that σ(λ) =
σ(κ). Then the map φ = h−1

κ ◦ hλ commutes with f◦. But the only
conformal automorphism of D◦(∞) commuting with f◦ is the identity
(see Exercise 4.19). Hence hλ = hκ implying that λ = κ – contradiction.

�

Proof of Lemma 5.27. Assume we have two invariant line fields
given by Beltrami differentials νi. Let Xi = supp νi. Notice that
due to our convention, both differences, X1 r X2 and X2 r X1, are
completely invariant sets. If area(X2 rX1) > 0 then an invariant Bel-
trami differential ν which is equal to ν1 on X1 and is equal to ν2 on
X2 rX1 has a non-ergodic support, contradicting Lemma 5.28. Hence
area(X2 rX1) = 0, and for the same reason area(X1 rX2) = 0, so that
the set Y = X1 ∩ X2 can be taken as a measurable support of both
differentials.

By Lemma 5.28, f acts ergodically on Y . But the ratio ν2/ν1 is an
invariant function on Y . By ergodicity, it is equal to const a.e. on Y ,
and we are done. ⊔⊓

23.6.4. Uniformization of queer components. We can now construct
a dynamical uniformization of any queer component Q by a Beltrami
disk. (Compare with the uniformizations of hyperbolic components
of C r ∂M given by Theorems 5.7 and 5.9.)

For a base map f◦, let us select an invariant line field on J◦ given
by an f -invariant Beltrami differential ν◦. Then the Beltrami disk
{λν◦}λ∈D generates a holomorphic family of quadratic polynomials
fσ(λ) : z 7→ z2 + σ(λ) (see the proof of the second part of Lemma
5.25). This is the desired uniformization:

Proposition 5.29. The map σ : (D, 0) → (Q,◦) is the Riemann
mapping.

Proof. The map σ is a holomorphic embedding for the same rea-
son as the map considered in the proof of Lemma 5.28. Let us show
that it is surjective. Let c ∈ Q. By Corollary 5.16, the map fc is
conjugate to f◦ by a qc homeomorphism hc which is conformal out-
side J◦. Let µc = ∂̄hc/∂hc be the Beltrami differential of hc, and let
νc = µc/|µc|. Since the latter differential determines an invariant line
field on J◦, Lemma 5.27 yields:

suppµc = supp νc = supp ν◦.

Since the differential µc is f◦-invariant, the ratio µc/ν◦ (extended by 0
beyond supp ν◦) is an f -invariant function. By ergodicity, it is const



178 5. PARAMETER PLANE (THE MANDELBROT SET)

a.e., so that µc = λνc for some λ ∈ D. It follows that c = σ(λ), and we
are done. �

23.7. Quasi-conformal classification of the quadratic maps.
We can now give a complete classification of the quadratic maps up to
qc conjugacy:

Proposition 5.30. Any qc class in the parameter plane C of the
quadratic family is one on the following list:

• the complement of the Mandelbrot set;
• a hyperbolic component of intM punctured at the center;
• a queer component of intM ;
• the center of a hyperbolic component;
• a single point of the boundary of M .

The first three types of maps are deformable, the last two are qc
rigid.

Proof. By the Structural Stability Theorem (5.12), each of the
above listed sets is contained in some qc class. What we need to show
that they belong to different qc classes.

Assume it is not the case: let c◦ and c be two parameters in different
sets but in the same qc class. Then the quadratic polynomials f◦ and
fc are conjugate by a qc map h. Let µ = ∂̄h/∂h be the Beltrami
differential of h, and let r = 1/‖µ‖∞. Let us consider the Beltrami
disk {λµ : |λ| < r} and the corresponding qc deformation

fσ(λ) : z 7→ z2 + σ(λ)

of f◦ (see Corollary 4.17). Then σ : Dr → C is a hololmorphic map such
that σ(0) = c◦ and σ(1) = c. In particular, it is not identically constant
and hence its image U is a domain in C. But U is not contained in a
single component of intM , so it must intersect ∂M , and hence it must
intersect C rM . Thus, U contains quadratic maps of both dichotomy
types: with connected as well as Cantor Julia sets, which is impossible
as all the maps in U are topologically conjugate. �



CHAPTER 6

Combinatorics of external rays

1. Dynamical ray portraits

1.1. Motivaing problems. Consider a quadratic polynomial f =
fc with connected Julia set. As we know (§??), its basin of infinity is
uniformized by the Böttcher map φ : Df (∞) → C r D, which conju-
gates f to z 7→ z2. If the Julia set was locally connected then by the
Carathéodory theorem the inverse map would φ−1 extend continuously
to the unit circle T. This would give a representation of f | J(f) as a
quotient of the the doubling map θ 7→ 2θ mod 1 of the circle R/Z ≈ T.
This observation immeadiately leads to the followong problems:

1) Describe explicitly equivalence realtions on the circle correspond-
ing to all possible Julia sets;

2) Study the problem of local conectivity of the Julia sets.

It turns out that the first problem can be addressed in a com-
prehensive way. The second problem is very delicate. However, even
non-locally connected examples can be partially treated due to the fact
that many external rays always land at some points of the Julia set.
This is the main theme of the following discussion.

1.2. Landing of rational rays. We say that an external ray Rθ

lands at some point z of the Julia set if Rθ(t) → z as t→ 0. Two rays
Rθ/2 and Rθ/2+1/2 will be called “preimages” of the ray Rθ. Obviously,
if some ray lands, then its image and both its preimages land as well.

An external ray Rθ is called rational if θ ∈ Q, and irrational other-
wise. Dynamically the rational rays are characterized by the property
of being either periodic or preperiodic:

Exercise 6.1. Let R = Rθ.

a) If θ is irraional then the rays fn(R), n = 0, 1, . . . , are all distinct.

Assume θ is rational: θ = q/p, where q and p are mutually prime.
Then

(i) If p is odd then R is periodic: there exists an l such that f l(R) = R.

179
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(ii) If p is even then R is preperiodic: there are l and r > 0 such
that f r(R) is a periodic ray of period l, while the rays fk(R), k =
0, 1, . . . , r − 1, are not periodic.

How to calculate l and r?

Theorem 6.1. Let f be a polynomial with connected Julia set.

Then any periodic ray R = Rp/q
f lands at some repelling or parabolic

point of f .

Proof. Without loss of generality we can assume that the ray R
is periodic and hence invariant under some iterate g = f l. Let d = 2l.
Consider a sequence of points zn = R(1/dn), and let γn be the sequence
of arcs on R bounded by the points zn and zn+1. Then g(γn) = γn−1.

Endow the basin D = Df (∞) with the hyperbolic metric ρ. Since
g : D → D is a covering map, it locally preserves ρ. Hence the hyper-
bolic length of the arcs γn are all equal to some L.

But all the rays accumulate on the Julia set as t → 0. By the
relation between the hyperbolic and Euclidean metrics (Lemma 1.19),
the Euclidean length of these arcs goes to 0 as n → ∞. Hence the
limit set of the sequence {zn} is a connected set consisting of the fixed
points of g. Since g has only finitely many fixed points, this limit set
consists of a single fixed point β. It follows that the ray R lands at
β ∈ J(f) (compare with the proof of Theorem 4.14).

Since β ∈ J(f), it can be either repelling, or parabolic, or Cremer.
But the latter case is excluded by the Necklace Lemma 4.15. �

1.3. Inverse Theorem: periodic points are landing points.
It is much harder to show that, vice versa, any repelling or parabolic
point is a landing point of at least one ray:

1.3.1. Repelling case.

Theorem 6.2. Let f be a polynomial with connected Julia set.
Then any repelling point a is the landing point of at least one peri-
odic ray.

Proof. Replacing f with its iterate, we can assume without loss
of generality that a is a fixed point. We will consider the linearizing
coordinates φ and ψ near a based on the discussion and notation of
§16.2. Let Ũi be the components of ψ−1(D(∞)). These components
are permuted by the map g : z 7→ λz. The main step of the proof is
to show that each component Ũi is periodic under this action. It will
be done by studying the rate of escape of hyperbolic geodesics in Ũ to
infinity.
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Let us consider the Green function G : C → R≥0 of f (see §16.6).
Recall that it is a continuous subharmonic function satisfying the func-
tional equation G(fz) = dG(z). Let us lift it to the dynamical plane of
g. We obtain a continuous subharmonic function G̃ = G◦ψ on C satis-
fying the functional equation G̃(λz) = dG̃(z). LettingMn = max

|z|=|λ|n
G̃(z),

M ≡M1, we see that Mn ≤ dnM .
By Lemma 4.22, the domains Ũi are simply connected and the re-

strictins ψ : Ũi → D(∞) are the universal coverings. Let us fix one
of these domains, Ũ = Ũi and endow it with the hyperbolic metric ρ.
Let γ be the hyperbolic geodesic in Ũ that begins at a point u0 ∈ T1

and goes to ∞ (i.e., γ is the pullback of a straight ray in C r D̄ by the
B ◦ ψ : U → C r D̄). This geodesic must cross all the circles T|λ|n ; let
un stand for the first crossing point, and let ρn = ρ(u0, un).

By Excersice 4.23 and the above estimate on Mn, we have:

ρn = log
G(un)

G(u0)
≤ log

Mn

G(u0)
= n log d+O(1). (1.1)

Thus, the points un escape to infinity no faster than at linear rate.

The above discussion is generally applied, no matter whether the
domain Ũ is periodic under g or not. Assuming now that it is aperiodic,
we will argue that the points un must escape to infinity at a superlinear
rate.

If Ũ is aperiodic then the action of the cyclic group < g > on the
orbit of Ũ is faithful, so that, Ũ is embeded into the quotient torus
T2 = C∗/ < g > under the natural projection C∗ → T2. Let W ⊂ T2

be the image under this embedding.
It is now convenient to make the logarithmic change of variable

on C∗ that turns it to the cylinder C/Z. Then the complex scaling g
becomes the translation z 7→ z + τ , where τ = log iλ/2πmod Z, the
circles T|λ|n become the circles Tn = {v : Im v = n Im τ}, U becomes
a domain U ⊂ C/Z, the geodesic γ in U becomes a geodesic γ in U,
and points un turn into points un ∈ γ ∩ Tn. Let us parametrize γ by
the length parameter t ∈ R≥0 so that γ(0) = u0.

Let us endow the cylinder C/Z and the torus T2 with the flat Eu-
clidean metric so that the natural projection π : C/Z → T2 is locally
isometric. Then

dist(γ(t), ∂U) → 0 as t → ∞. (1.2)

Otherwise there would exist ǫ > 0 and a sequence of points xn ∈ C/Z
such that Imxn+1 > Imxn + 2ǫ and Dn ≡ D(xn, ǫ) ⊂ U. Since π :
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U → T2 is a locally isometric embedding, the images π(Dn) would be
disjoint ǫ-disks in T2, which is impossible by compactness of T2.

Let dρ(γ(t)) = σ(t)|dz|. By Lemma 1.19 and (1.2),

σ(t) ≍ 1

dist(γ(t), ∂U)
→ ∞ as t→ ∞. (1.3)

Let ln stands for Euclidean length of the arc of γ bounded by un+1 and
un, and let σn = inf σ(t) on that arc. Then

ρ(un+1,un) ≥ σnln ≥ σn Im τ.

Hence

ρ(un+1,u0) ≥ Im τ
n−1
∑

k=0

σk,

and by (1.3)
1

n
ρ(un+1,u0) → ∞ as n→ ∞,

contradicting (1.1).

Thus, the domain Ũ is periodic under the action of g with some
period q. Hence the image W of Ũ in T2 is the quotient of Ũ by the
cyclic < gq >. It follows that it is conformally equivalent to either an
annulus A(1, r) or to the punctured disk D∗ depending on whether gq

is hyperbolic or parabolic. In fact, the first option is realized. Indeed,

Ψ ≡ B ◦ ψ : ∪Ũi → C r D̄

is a covering map conjugating g to z 7→ zd. Hence it semi-conjugates
gq : Ũ → Ũ to z 7→ zdq

. Since Ũ is simply-connected, Ψ lifts to a
conformal isomorphism Ψ̂ : Ũ → H conjugating gq to τ : ζ → dqζ. But
the latter is a hyperbolic map of H, so that, W ≈ H/ < τ > is an
annulus (with modulus π/(q log d)).

To complete the proof, let us consider the simple closed hyperbolic
geodesic Γ in W . It lifts to a hyperbolic geodesic Γ̃ in Ũ invariant
under the action of < gq >. Let δ be a fundamental arc on Γ̃ bounded
by some point u and g−qu. Then g−qn(δ) → 0 as n → ∞, so that, Γ̃
lands at 0 (in “negative” time).

Since ψ : Ũ → D(∞) is a covering map semi-conjugating gq to f q,
ψ(Γ̃) is a hyperbolic geodesic in D(∞) invariant under f q and hence
escaping to infinity in positive time. But hyperbolic geodesics in D(∞)
escaping to infinity are exactly the external rays of f .

Finally, ψ(Γ̃) lands at a in negative time since ψ is continuous
at 0. �
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Problem 6.2. a) Modify the above proof to show that there are only
finitely many domains Ũi.
b) Conclude that there are only finitely many rays landing at any re-
pelling point, and all of these rays are periodic.

1.3.2. Parabolic case. A point a ∈ K(f) is called dividing if K(f)r

{a} is disconnected.

Exercise 6.3. Assume K(f) is connected. Show that a repelling
or parabolic periodic point a ∈ K(f) is dividing if and only if there are
more than one ray landing at a.

1.3.3. Cantor case.

Proposition 6.3. Let fc : z 7→ z2 + c be a quadratic polynomial
with Cantor Julia set, i.e., c ∈ C rM . Then any external ray Rθ that
does not crash at a precritical point lands at some point of J(fc).

1.4. Rotation sets on the circle. We will now briefly deviate
from the complex dynamics to study “rotation cycles” on the circle.

The oriented cicle T ≈ R/Z is certainly not ordered, but it rather
cyclically ordered. Namely, any finite subset Θ ⊂ T is ordered, Θ =
(θ1 . . . , θn), up to cyclic permutation of its points and this order is
compatible with the inclusions of the sets. We say that a tuple of
points (θ1, . . . , θn) of T is correctly ordered if their order is compatible
with the cyclic order of T.

Given two points θ1, θ2 ∈ T, we let (θ1, θ2) be the (open) arc of T

that begins at θ1 and ends at θ2 (which makes sense since T is oriented).
A tuple of two points (θ1, θ2) of Θ is called neighbors in Θ if the

corresponding arc (θ1, θ2) does not contain other points of Θ. (Note
that this relation is asymmetric.)

Given a subset Θ and an injection g : Θ → T, we say that g is
monotone if it preserves the cyclic order of finite subsets of Θ (i.e., if
(θ1, . . . , θn) is a correctly ordered tuple of points of Θ, then the tuple
of points (g(θ1), . . . , g(θn)) is also correctly ordered).

Exercise 6.4. Show that g is monotone on a finite set Θ ⊂ T iff
it maps any tuple of neighbors in Θ to a tuple of neighbors in g(Θ).

Monotone bijections g : Θ → Θ are called rotations of Θ, and Θ is
correspondingly called a rotation set for g.

Any finite rotation set Θ ⊂ T has a well defined rational rotation
number p/q ∈ Q/Z. Namely, take a point θ ∈ Θ and let q be the period
of θ, while p be the number of points in the orb(θ) contained in the

semi-open arc [θ, g(θ)).



184 6. COMBINATORICS OF EXTERNAL RAYS

Exercise 6.5. Check that q and p are independent of the choice of
θ.

We will now analyze rotation cycles for the doubling map g : θ 7→
2θ mod 1.

Lemma 6.4. Let Θ be a rotation cycle for g with rotation number
p/q. Then complementary arcs to Θ (counted according to the action of
g starting with the shortest one) have lengths 2k−1/(2q−1), k = 1, . . . q.

Proof. Let ωi = (θi, κi) be the complementary arcs to Θ, where
g(θi) = θi+1, g(κi) = κi+1 (i ∈ Z/qZ). If some ωi is shorter that half-
circle then g maps it homeomorphically onto the arc ωi+1 of length
|ωi+1| = 2|ωi|. So, if all the arcs ωi were shorter than half-circle then
we would arrive at the basic logical contradiction:

1 =
∑

i∈Z/qZ

|ωi+1| = 2
∑

i∈Z/qZ

|ωi| = 2.

Thus, one of the arcs ωi must be longer than half-circle. Let us call
it ω0, and let |ω0| = (1 + ǫ)/2. This arc is the union of the half-circle

ξ = [κ′0, θ0) and the arc η = (θ0, κ′0) of length ǫ/2, where κ′0 = κ0−1/2 is
the point symmetric with κ0. Moreover, under g, the arc ξ is bijectively
mapped onto the whole circle T, while η is homeomorphically mapped
onto (θ1, κ1) = ω1. We see that |ω1| = ǫ.

Since each arc ωi, i = 1, . . . , q − 1, is shorter than half-circle, it is
mapped homeomorphically onto the arc ωi+1, and |ωi+1| = 2|ωi|. Hence
|ωi| = 2i−1ǫ, i = 1, . . . , q. Since q = 0 in Z/qZ, we obtain the equation:

1 + ǫ

2
= |ω0| = |ωq| = 2q−1ǫ,

which gives us the desired value of ǫ. �

The arc ω0 of TrΘ which is longer than half-circle is called critical.
The shortest arc ω1 is called characteristic.

Proposition 6.5. For the doubling map g : θ 7→ 2θ on T and any
rational p/q ∈ Q/Z, there exists a unique rotaion cycle Θp/q ⊂ T with
rotation number p/q.

Proof. Let Θ be a rotation cycle with rotation number p/q. Let

us consider its characteristic arc ξ1 = (θ, κ). Since κ is the neighbor
of θ, we have: κ = 2lθ mod 1, where l = 1/p in Z/qZ. On the other
hand, κ = θ + 1/(2q − 1) by Lemma 6.4. Hence

(2l − 1) θ ≡ 1/(2q − 1) mod 1 (1.4)
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Since θ is g-periodic with period q, 2qθ = θ mod 1, so that, θ =
t/(2q − 1). Plugging it into (1.4), we come up with the equation

(2l − 1) t ≡ 1 mod 2q − 1. (1.5)

Since l and q are mutually prime, so are 2l − 1 and 2q − 1, and hence
(1.5) has a unique solution mod 2q − 1. This prove uniqueness of the
rotation cycle.

Going backwards, we take the solution of (1.4), let κ = glθ and

ξ1 = (θ, κ). Then ξ2 = gl(ξ) is the arc of length 2/(2q − 1) adjacent to
ξ1; ξ3 = g2l(ξ) is the arc of length 2/(2q − 1) adjacent to ξ2, etc., up to
the arc ξq = glq(ξ) of length 2q−1/(2q −1) > 1/2. Since the total length
of these arcs is equal to 1, their closures tile the whole circle T, so that,
Θ = orb(θ) is a rotation cycle of gl with rotation number 1/q. Since
pl = 1 mod q, we have: g|Θ = (gl)p|Θ, and hence g|Θ has rotation
number p/q.

�

Exercise 6.6. Derive the uniqueness part of the last proposition
directly from Lemma 6.4, without finding the rotation cycle explicitly.

Exercise 6.7. Analyse the structure of rotation sets on T with
irrational rotation number. Prove that for any η ∈ R/Z, there exists a
unique closed rotation set Θη on T with rotation number η.

Exercise 6.8. Analyze the structure of rotation cycles for the map
gd : θ 7→ d θ. Prove that there are at most d − 1 cycles with a given
rotation number.

1.5. Fixed points and their combinatorial rotaion number.
1.5.1. Combinatorial rotation number. Let us now consider a poly-

nomial f of degree d with connected Julia set. Let a be its repelling or
parabolic fixed point, and let Ri ≡ Rθi be the rays landing at a. The
set of angles Θ(a) = {θi} ⊂ T is called the ray portrait of a.

Lemma 6.6. The ray portrait Θ(a) is a rotation set for the map
gd : θ 7→ d θ.

Proof. Let Si be the complementary sectors to the rays, i.e., the
connected components of Cr∪Ri. Each sector S is bounded by a pair
of rays (R,R′), which can be ordered so that R is positively oriented
rel S. Thus, we can order the rays, (R0,R1, . . . ,Rn−1), so that, Ri

and Ri+1 are neighbors, and this ordering is well defined up to cyclic
permutation of the rays. So, the rays are cyclically ordered.

The map f preserves this cyclic order. Indeed, it is a local home-
omorphism near a, and hence it permutes the local sectors. It follows
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that neigboring rays are mapped by f to neighboring ones, which is
equivalent to preserving the cyclic order (compare Exercise 6.4).

But the cylic order of the rays Rθi coincides with the cyclic order
of their slopes θi at ∞. Since these slopes are permuted by the map
gd, the conclusion follows. �

For a periodic point a of period p, the combinatorial rotation num-
ber is defined by considering it as a fixed point of fp.

1.5.2. The α− and β− fixed points of a quadratic polynomial. Let
us now assume that f = fc is a quadratic polynomial z 7→ zd + c with
connected Julia set. It turns out that the two fixed points of f (which
ure statically undistinguishable) play very different dynamical role.

The polynomail f has only one invariant ray, R0. By Theorem 6.1,
this ray lands at some fixed point called β; moreover, this point is either
repelling or parabolic with multiplier 1. (In the latter case, c = 1/4
is the cusp of the Mandelbrot set, and the two fixed points coincide.)
The ray R0 is the only ray landing at β (for any other ray would be
also invariant by Lemma 6.6). Thus β is the non-dividing fixed point
(see Exercise 6.3).

Outside the cusp c = 1/4, fc has the second fixed point called α. It
is either attracting (for c in the main hyperbolic component H0 ⊂ M
bounded by the main cardioid C – see §20) or neutral (for c on the
main cardioid C), or repelling. If α is repelling or parabolic then by
Theorem 6.2 it is a landing point of some periodic ray R = Rθ. Since
θ 6= 0 mod 1, the period q of this ray is greater than 1. Of course, all
the rays Ri = f i(R), n = 0, 1, . . . , q − 1, also land at α, so that, α is
the dividing fixed point.

By Lemma 6.6 the ray portrait Θ(α) ⊂ T is a rotation set for
the doubling map θ 7→ 2θ. By Proposition 6.5, it is in fact, a single
rotation cycle. Hence the rays Ri are cyclically permuted by f with
a combinatorial rotaion number p/q. This rotation number, ρ(fc) ≡
ρ(c), is also called the combinatorial rotation number of f (or of the
corresponding parameter c).

The rays Ri divide the plane into q sectors Si, i = 0. . . . , q − 1,
which cut off arcs ωi at the circle at infinity. We studied these arcs
in Lemma 6.4. Recall that the longest of these arcs, labeled ω0 ≡ ωq,
is called critical, while the shortest, ω1 is called characteristic. The
corresponding sectors, S0 ≡ Sq and S1, will be called in the same way.

Lemma 6.7. For i = 1, . . . , q − 1, the map f univalently maps the
sectors Si onto Si+1. The critical sector S0 contains the critical point
0, while the characteristic sector S1 contains the critical value c.
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Proof. Let S̄i be the compactification of the sector Si at infinity
obtained by adding the arc ω1 to Si. This is a topological triangle. For
i = 1, . . . , q− 1, the boundary of Si is homeomorphically mapped onto
the boundary of Si+1. By the Argument Principle, the whole triangle
S̄i is homeomorphically mapped onto S̄i+1. Hence there are no critical
points in these Si, so that, 0 ∈ S0. �

Let α′ = −α; this is the second preimage of the fixed point α. By
symmetry, there are q rays R′

i landing at α′ symmetric to the rays
Ri, so that, f(R′

i) = Ri+1, i ∈ Z/qZ. Altogether, the rays Ri and
R′

i partition the plane into q − 1 pairs of symmetric sectors Si, S
′
i,

i = 1, . . . , q − 1 (bounded by two rays each) and a central domain
Ω0 ∋ 0 bounded by two pairs of symmetric rays.

Lemma 6.8. The central domain Ω0 is mapped onto the character-
istic sector S1 as a double branched covering.

Proof. Each pair of symmetric rays that bound Ω0 is mapped
homeomorphically onto a characteristic ray that bound S1, so we have
a 2-to-1 map ∂Ω0 → ∂S1.

Let Ω̄0 be the compactification of Ω0 by two symmetric arcs η and
η′ at infinity (where the arc η appeared in the proof of Lemma 6.4).
Each of these arcs is mapped homeomorphically onto the characteristic
arc ω1.

We see that the boundary of Ω̄0 is mapped to the boundary of S̄1

as a double covering, and the conclusion follows. �

In the following sections we will describe the set of parameters with
a given combinatorial rotation number.

2. Geodesic laminations

3. Limbs and wakes of the Mandelbrot set

3.1. Stability of landing.
3.1.1. Repelling case. If a is a repelling periodic point of period p

for a polynomial f then by the Implicit Function Theorem, a nearby
polynomial f̃ has a unique repelling periodic point ã near a. We will
refer to this point as the perturbed a.

Lemma 6.9 (Stability Lemma). Assume that a periodic ray R =
Rθ(f) lands at a repelling periodic point a for a polynomial f . Then for

f̃ sufficiently close to f , the corresponding ray R̃θ lands at the perturbed
repelling periodic point ã.
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Remark 6.1. Let us emphasize that this lemma applies to both
connected and disconnected cases.

Proof. Without loss of generality we can assume that the point a
is fixed. and the ray R is invariant.

Let us take a small disk D = D(a, 2ǫ) such that the local inverse
branch g of f−1 is well defined in D and g(D) ⋐ D. Then the same is

true for f̃ sufficiently close to f .
Let us fix some equipotential level t > 0 such that R(τ) ⊂ D(a, ǫ)

for τ ≤ d t. Let γ be the closed arc of R in between the potential levels
t and d t.

Let us consider the inverse Böttcher function

B̃−1 ≡ B−1

f̃
: C r D̄ρ(f) → Ωf

on its maximal domain fo definition. Let

R≥t = B−1{eτe2πiθ : t ≤ τ <∞}.
The notations R>t and similarly notations for R̃ (whenever they are
well defined) are self-explanatory. The Böttcher formula (16.7) implies

that B̃−1 depends continuously on f̃ in the closed-open topology. Hence
if f̃ is sufficiently close to f , then the ray R̃≥t (parametrized by the

potential level) is well defined and ǫ-close to the ray R≥t. Let γ̃ = [ã, b̃]

be the arc of R̃ between the potential levels t and d t. It follows that
γ̃ ⊂ D, so that, the inverse branch g̃ is well defined on γ̃.

But b̃ = f(ã), so that, ã = g(b̃). Thus the arc g̃(γ̃) ⊂ D gives an
extension of the ray R̃≥t to the ray R̃≥t/d. Repeating this argument,

we conclude that the arcs g̃−n(γ̃) give an extension of R̃≥t to the full

ray R̃t>0. �

3.1.2. Parabolic case.

Lemma 6.10. Let f be a polynomial with connected Julia set. For
a parabolic periodic point a with multimplier λ = e2πip/q, the combina-
torial rotaion number coincides with its rotation number p/q.

Proof. Without loss of generality we can assume that a is a fixed
point.

By Lemma ??, the rays landing at a are tangent to the bisectors Li

of the repelling petals, which are permuted by the differential Df(a)
with rotation number p/q. Hence these rays are organized in q groups
Gi = (Rij)j, i = 1, . . . q, so that the rays in Gi are tangent to Li.
The rays within one group are naturally ordered: Rk ≻ Rj if Rj is
positively oriented relatively to the local sector S of zero angle bounded
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by these rays (in other words, Rk is obtained from Rj by the anti-
clockwise “rotation” in S). Since f is a local orientation preserving
diffeomorphism near a, it permutes these groups preserving the order
of the rays. It follows that under f q each ray is mapped back onto
itself, and hence it is permuted by f with rotation number p/q. �

Putting this together with Proposition 6.5, we obtain:

Lemma 6.11. Assume that the α-fixed point of the quadratic poly-
nomial fc : z 7→ z2 + c is parabolic with rotation number p/q. Then it
is a landing point of q rays that are permuted with the same rotation
number.

Recall that rp/q ∈ C is the parabolic parameter with rotation num-
ber p/q. LetHp/q stand for the satellite hyperbolic component attached
to the main cardioid C at rp/q (see Proposition 20.5).

Lemma 6.12. For any rotation number p/q 6= 0, there exists a
curve c(t), t ∈ [0, ǫ) such that c(0) = rp/q, c(t) ∈ Hp/q for t > 0, and
ρ(c(t)) = p/q.

3.2. Limbs and wakes.
3.2.1. Limbs. Let L∗

p/q be the connected component of M r {rp/q}
containing Hp/q, and let Lp/q = L∗

p/q ∪ {rp/q}. This set is called the

p/q-limb of the Mandelbrot set, while L∗
p/q is called the “unrooted p/q-

limb”.

Proposition 6.13. For any c ∈ Lp/q, the combinatorial rotation
number ρ(c) is equal to p/q.

Proof. By Lemma 6.11, it is true at the root rp/q. By Lemma 6.12,
it is also true on some curve γ ∈ Hp/q landing at rp/q. By stability
of ray portraits at repelling points (Lemma 6.9), the combinatorial
rotaion number c 7→ ρ(c) is a continuous function of c ∈ L∗

p/q. Since
the unrooted limb Lp/q is connected, while ρ can assume only rational
values, it is constant on the whole limb Lp/q. �

3.2.2. Characteristic parameter rays. Since the Stability Lemma
6.9 applies to the disconnected case as well, the p/q-ray portrait at
the α-fixed point persists at some open set containing the unrooted
limb L∗

p/q. Below we will give the precese description of this open set.

For a parameter c with a well defined finite ray portrait, let R−
dyn(c)

and R+
dyn(c) be the the characteristic rays landing at the α-fixed point

αc of fc, and let Schar(c) be the characteristic sector bounded by these
rays. For c ∈ Lp/q, let θ−p/q < θ+

p/q be the angles of the charcteristic rays

(which are independent of c by by Proposition 6.13).
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The corresponding objects in the parameter plane are the rays
R−

par(p/q) and R+
par(p/q) with angles θ−p/q and θ+

p/q, and the p/q-wake

Wp/q, the component of C r cl(C ∪R−
par ∪R+

par) containing the satellite

hyperbolic component Hp/q.
1

In what follows we sometimes suppress the label p/q and c, as long
as this cannot lead to a confusion.

Lemma 6.14 (Key Observation). For c ∈ R±
par(p/q), the dynamical

characteristic rays R±
dyn(c) do not land on J(fc).

Proof. Assume for definiteness that c ∈ R−
par(p/q). Then by the

Basic Phase-Parameter relation, c ∈ R−
dyn.

Let Θ = {θi}q−1
i=0 ⊂ T be the cycle of θ− under the doubling map,

where θ1 = θ−. Then 0 ∈ Rθ0
dyn, so, the ray Rθ0

dyn does not land on J(f)
but rather crashes at the critical point 0.

Going backwards along the cycle of rays Rθi
dyn, we see that all the

rays of this cycle crash at some precritical point. In particular, the
characteristic rays do. �

Lemma 6.15. The wake Wp/q contains the unrooted limb L∗
p/q and

some component Ω of (CrM)r(R−
par(p/q)∪R+

par(p/q)). All the points
in the wake have combinatorial rotaion number p/q.

Proof. By the Stablility Lemma 6.9 and the Key Observation,
the parameter rays R±

par(p/q) cannot accumulate on a point c 6∈ C with
rotation number p/q. In particular, they do not accumulate on the
unrooted limb L∗

p/q, which implies the first assertion.
It follows that the wake Wp/q intersects CrM , and hence it contains

the component Ω of C rM r (R−
par(p/q)∪R+

par(p/q)) such that L∗
p/q ⊂

∂Ω. (Notice that (C r M) r (R−
par(p/q) ∪ R+

par(p/q)) consists of two
components.)

Let us prove the last assertion. Assume there is a parameter c1 ∈
Wp/q with ρ(c1) 6= p/q. Let us fix a reference point c0 ∈ Hp/q and
connect it to c1 with a curve ct ⊂ Wp/q, 0 ≤ t ≤ 1.

By the Stablility Lemma 6.9, there is a maximal interval [0, τ) such
that ρ(ct) = p/q for t ∈ [0, τ). By Proposition 6.13, c(τ) 6∈ L∗

p/q, so

c(τ) ∈ Ω. Then by Proposition 6.3 only two events can happen:

(i) The characateristc ray R+
dyn(cτ ) lands at some periodic point

a 6= α of J(fcτ ). But then by the Stability Lemma, this would also be

1This definition is convenient to start with, but eventually it will be simplified
(see Theorem 6.16).
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the case for cτ−ǫ for ǫ > 0 sufficiently small, contradicting definition of
τ .

(ii) The characteristc ray R−
dyn(cτ ) crashes at some precritical point.

But then the critical value cτ would belong to one of the ray Rθi
dyn(cτ ) of

the cycle of R−
dyn(cτ ). Since for cτ−ǫ, the critical value c belongs to the

characteristic sector Schar(c), this can only be one of the characteristic
rays R±

dyn(cτ ). But then by the Basic Phase-Parameter relation, cτ ∈
R±

par contradicting the definition of Ω.
�

Theorem 6.16. Both parameter rays R±
par(p/q) land at the root

rp/q. The wake Wp/q coincides with the domain bounded by the curve
R−

par(p/q) ∪ R+
par(p/q) ∪ rp/q and containing Hp/q. The combinatorial

rotation number is equal to p/q throughout the wake.

Proof. We know from the proof of Lemma 6.15 that the rays
R±

par(p/q) cannot accumulate on a point c ∈ M r C with rotation
number p/q. Let us show that they can neither accumulate on other
points c ∈M r C.

Let ρ(c) = r/s 6= p/q. By the Stability Lemma, ρ(c̃) = r/s for all
c̃ ∈ D(c, ǫ), provided ǫ > 0 is sufficiently small. But if R−

par accumulates

on c then all nearby parameter rays Rθ
par enter the disk D(c, ǫ). Take

such a parameter ray in the domain Ω, and let c̃ ∈ D(c, ǫ) ∩ Rθ
par.

Since c̃ ∈ W , ρ(c̃) = p/q by Lemma 6.15, and we have arrived at a
contradiction.

Hence the rays R±
par can accumulate only the points of main cardioid

C. Let ω± ⊂ C be the limit sets of the rays R±. If one of then, say, ω−,
was not a single point, then we could find a rational point p/q ∈ intω−,
and the ray R−

par would have to cross the satellite component Hp/q.
Since it is certainly impossible, the limit sets ω± are, in fact, single
points, so that both rays land at some points c± of the main cardioid.

If c+ 6= c− then the wake Wp/q would contain, besides Hp/q, some
other satellite hyperbolic domain Hr/s. But the combinatorial rotation
number in Hr/s is equal to r/s 6= p/q contradicting Lemma 6.15. This
shows that the rays R±

par land at the root rp/q, and the rest of the
lemma easily follows. �

The angles θ±p/q of the rays R±
par(p/q) landing at rp/q are also called

the external angels of rp/q.

3.3. Limbs and wakes attached to other hyperbolic com-
ponents. One can generalize the above discussion to limbs attached
to any hyperbolic component H in place of the main one, H0. Let
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ac = aH
c , c ∈ H, be the attracting periodic point of fc, and let λc = λH

c

be its multiplier. On the boundary of H the point ac becomes neutral.
By the Multiplier Theorem 5.9, for c ∈ ∂H, the rotation number ρ(ac)
assumes once every value θ ∈ R/Z. Let rp/q(H) ∈ ∂H stand for the
parabolic parameter with rotatin number p/q, i.e., ρ(ac) = p/q.

Theorem 6.17. Let p/q 6= 0 mod 1. Then there are two parameter
rays R±

par(p/q,H) landing at rp/q(H) such ρ(aH
c ) = p/q in the wake

Wp/q(H) bounded these rays, and moreover, this wake is a maximal
region with this property.

Remark 6.2. Note that at this moment we do not claim that there
are no other rays landing at rp/q(H) since we will use Theorem 6.17 to
show this.

The limb Lp/q(H) of M attached to the parabolic point rp/q(H) is
defined as in the case of the main component H0.

In the case when H is itself a satellite hyperboplic component at-
tached to H0, we call Lp/q(H) and Wp/q(H) secondary limbs and wakes
respectively.

In what follows, we will also need to know that the external angles
θ±p/q(H) of a root point depend continuously on the internal angle p/q.

Lemma 6.18. • Let p/q 6= 0. Then θ±(r/s)(H) → θ−p/q(H)

as r/sր p/q, and θ±(r/s)(H) → θ+
p/q(H) as r/sց p/q.

• Let H = H0. Then θ±p/q(H) → 0 as p/q → 0 mod 1.

• Let H be a satellite hyperbolic component and θ±0 (H) be the
characteristic rays landing at the root of H. Then θ±p/q(H) →
θ−0 (H) a p/q ց 0 and θ±p/q(H) → θ+

0 (H) as p/q ր 1.

Remark 6.3. The only reason why in the last statement we assume
thatH is satellite is that we do not know yet that there are rays landing
at the root of a primitive hyperbolic component H 6= H0.

3.4. No fake limbs. A fake limb of M is a component of M r H̄0

different from any limb L∗
p/q.

Lemma 6.19. There are no fake limbs.

Proof. Let X be such a limb. Notice first that X̄ ∩ C 6= ∅, for
otherwise M would be disconnected. Also, since X is connected, the
combinatorial rotaion number ρ(c) is independent of c ∈ X, so we have
a well defined number ρ(X) = p/q.

Obviously X ∩∂Wp/q = ∅, so that, X is either contained in Wp/q or
lies outside its closures. Let us first assume the latter. Then for r/s 6∈
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{p/q, 0}, any parameter c0 ∈ X can be connected to any parameter
c1 ∈ Hr/s by a path ct ∈ C r H̄0, t ∈ [0, 1], that does not cross
∂Wp/q. But then by the Stability Lemma, ρ(ct) = p/q for all t ∈ [0, 1],
contradicting to ρ(c1) = r/s.

Assume now that X ⊂ Wp/q. Let us then consider the periodic

cycle {fn(ac)}q−1
n=0 of period q obtained by analytic continuation of the

attracting cycle bifurcated from the α-fixed point at rp/q. At this mo-
ment we do not know yet that the multiplier λc of this cycle is different
from 1 throughout the wake Wp/q, so that, the function c 7→ ac can be
multi-valued. Let Z = {c ∈ Wp/q ∪ {rp/q} : |λc| ≤ 1}. Since this is
a finite union of disjoint Jordan disks, Wp/q r Z is connected. Notice
also that X is not contained in Z since there are always satellite com-
ponents attached to each compenent of Z. Let c0 ∈ XrZ, and let k/l
be the combinatorial rotation number of the periodic point as0 .

Let us consider the secondary wakes W2
r/s attached to the satellite

component Hp/q. Again, we have the anlternative: either X ⊂ W2
k/l or

X ∩ W̄2
k/l = ∅. But the former option is actually impossible since W̄2

k/l

does not touch C. The latter option is ruled out in the same way as
above by taking a different rotation number r/s 6= k/l and connecting
c0 to a seconday satellite component H2

r/s attached to Hp/q with a path
ct ∈ Wp/q r Z. �

Corollary 6.20. The Mandelbrot set admits the following parti-
tion:

M = H0 ∪ C ∪
⋃

p/q∈Q/Zr0

L∗
p/q.

Corollary 6.21. The rays R±
par(p/q) are the only parameter rays

landing at rp/q.

Proof. If there was an extra ray R landing at rp/q then by Lemma 1.31
there would be an extra component ofMrH̄0 attached to C at rp/q. �

3.5. The α-rays and their holomorphic motion. Let us fix
some combinatorial rotation number p/q. For c ∈ Wp/q, let Rθi

c be the
dynamical rays landing at the α-fixed point αc, and let

I(0)
c =

⋃

i

Rθi
dyn(c) ∪ {αc}.

This configuration of rays partition the plane into q sectors Si described
in Lemma 6.7.

Let hc : X∗ → Xc be a holomorphic motion of some dynamical
set over a pointed parameter domain (Λ, ∗) of the quadratic family
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z 7→ z2 + c. We say that it respects the Böttcher marking if for any
point z ∈ X∗ r J(f∗) we have:

Bc(hc(z)) = B∗(z), c ∈ Λ

(so that, the Böttcher coordinate Bc is the “first integral” of the mo-
tion).

Proposition 6.22. There is a holomorphic motion of the config-

uration I(0)
c over the parabolic wake Wp/q that respects the Böttcher

marking.

Proof. Let us select an arbitrary base point ∗ ∈ Wp/q.
By definition, Bc(Rθ

c(t)) = et+iθ, where t ∈ R+ and θ ∈ R/Z are
the Böttcher coordinates of the point Rθ

c(t). Hence for B∗(Rθi
∗ (t)) =

Bc(Rθi
c (t)), so that, hc(z) = B−1

c ◦ B∗(z) determines a motion of the
external rays Rθi

c over Wp/q respecting the Böttcher marking. This
motion is holomorphic since the Böttcher function Bc depends holo-
morphically on c.

On the other hand, the point αc obviously moves holomorphically
over Wp/q as well, and we obtain the desired motion of the whole con-

figuration I(0)
c . �

Let

I(n)
c = f−n(I(0)

c ). (3.1)

3.6. MLC on the main cardioid.

Theorem 6.23. The Mandelbrot set is locally connected at any
point of the main cardioid C.

Proposition 6.24. For any irrational θ ∈ R/Z, there is a single
parameter ray Rη landing at the point c(θ) ∈ C with internal angle θ.

4. Misiurewisz wakes and decorations

5. Topological model
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Little Mandelbrot copies





CHAPTER 7

Primitive copies

1. Quadratic-like families

1.1. Definitions. Let Λ ⊂ C be a domain in the complex plane.
A quadratic-like family g over Λ is a family of quadratic-like maps
gλ : Uλ → U ′

λ depending on λ ∈ Λ such that:

• The tube U = {(λ, z) : λ ∈ Λ, z ∈ Uλ} is a domain in C2;
• gλ(z) is holomorphic in two variables on U.

As usual, we assume that the critical value of each fλ is located at the
origin 0.

We will now formulate several additional assumptions which will
make a quadratic-like family nice. First of them is minor. We say that
g extends beyond U if there exists a domain Λ′ ⋑ Λ and a quadratic-like
family Gλ : Vλ → V ′

λ over Λ′ such that for λ ∈ Λ, gλ is an adjustment
(see §17) of Gλ.

We call a quadratic-like family g : Uλ → U ′
λ over Λ proper if

• The domains Λ, Uλ and U ′
λ are bounded by smooth Jordan

curves;
• g admits an extension beyond U;
• For λ ∈ ∂Λ, gλ(0) ∈ ∂U ′

λ.

(The first two assumptions are imposed only for the sake of conve-
nience.) Obviously gλ(0) 6= 0 for λ ∈ ∂Λ, so that we have a well
defined winding number of the curve λ 7→ gλ(0), λ ∈ ∂Λ, around 0.
We call it the winding number of g and denote w(g). A proper fam-
ily g is called unfolded if w(g) = 1. By the Argument Principle, any
proper unfolded quadratic-like family has a unique parameter value ∗
such that f∗ has a superattracting fixed point, i.e., f∗(0) = 0. We will
select ∗ as the base point in Λ.

Finally, we want the fundamental annulus Aλ = U ′
λ r Ūλ of gλ to

move holomorphically with λ. So, assume that there is a holomorphic
motion hλ : Ā∗ → Āλ respecting the boundary dynamical relation, i.e.,
such that

hλ(g∗z) = gλ(hλ(z)) for z ∈ ∂U∗.

199
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For a technical reason, we impose the following boundary assumption
on this motion:

Boundary extension. Let λ ∈ ∂Λ. The homeomorphisms hµ :
Ū ′
∗rŪ∗ → Ū ′

µrŪµ, µ ∈ Λ, uniformly converge as µ→ λ to a continuous

map hλ : Ū ′
∗ r U∗ → Ū ′

λ r Uλ, which is one-to-one everywhere, except
that h−1

λ (0) consists of two points on ∂U∗. (Note that ∂Uλ is a “figure
eight” curve for λ ∈ ∂Λ.)

Denote this holomorphic motion by h. We say that the quadratic-
like family g is equipped with the holomorphic motion h. Sometimes
we will use notation (g,h) for an equipped quadratic-like family.

For equipped families, there is a natural choice of tubing (see §17.4.1)
holomorphically depending on λ. Namely, select any tubing t∗ : Ā∗ →
Ā[r, r2] for the base point, and then let

tλ = t∗ ◦ h−1
λ . (1.1)

These are tubings since the holomorphic motion hλ respects the bound-
ary dynamical relations.

The Mandelbrot set M(g) of the quadratic-like family is defined as
{λ ∈ Λ : J(gλ) is connected}. If g is proper, then M(g) is compactly
contained in Λ.

Let us finish with a few terminological and notational remarks. Let
π : C2 → C stand for the projection onto the first coordinate. We call
a set U ⊂ C2 a tube over Λ = π(U) ⊂ C if it is a fiber bundle over Λ
whose fibers Uλ = U ∩ π−1λ are Jordan disks (either open or closed).
For X ⊂ Λ, we let U|X = U ∩ π−1X.

1.2. Restricted quadratic family. In this section we will show
that the quadratic family {fc}c∈C can be naturally restricted to a proper
unfolded equipped quadratic-like family.

Fix some r > 1. Restrict the parameter domain C to the topological
disk D ≡ Dr2 bounded by the parameter equipotential of radius r2.
According to formula (??), this parameter domain is specified by the
property that fc(0) ∈ Ωc(r

2) ≡ Ω′
c, where Ωc(ρ) is the domain bounded

by the dynamical equipotential of level ρ. Hence for c ∈ D, fc

restricts to a quadratic-like map fc : Ω̃c → Ω̃′
c, where Ω̃c ≡ Ωc(r).

These quadratic-like maps obviously form a quadratic-like family over
D, which we will call a restricted quadratic family.

The restricted quadratic family is proper. The first two properties of
the definition are obvious. The main property, fc(0) ∈ ∂Ω̃′

c for c ∈ ∂D,
follows from formula (??). The winding number of this family is equal
to 1. Indeed, when the parameter c runs once along the boundary ∂D,
the critical value c = fc(0) runs once around 0 ∈ D.
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The restricted quadratic family is equipped with the holomorphic
motion of the fundamental annulus given by the Böttcher maps. Select
0 is the base point in D and let

B−1
c : A[r, r2] → Ω̄′

c r Ωc (1.2)

(note that A[r, r2] = Ω′
0 r Ω0). Since the Böttcher function B−1

c (z) is
holomorphic it two variables (??), {B−1

c }c∈D is a holomorphic motion.
This motion admits the boundary extension (see the previous section),
since for c ∈ ∂D, B−1

c homeomorphically maps C r Dr onto C r Ωc(r)
except that two points on Tr collapse to 0 (see §??).

Thus the restricted quadratic family satisfy all the properties for-
mulated in the previous section.

1.3. Straightening of quadratic-like families. The Mandel-
brot setM(g) of any quadratic-like family g can be canonically mapped
into the genuine Mandelbrot set M . Namely, by the Straightening
Theorem, for any λ ∈ M(g) there is a unique quadratic polynomial
fc(λ) : z 7→ z2 + c(λ), c(λ) ∈ M , which is hybrid equivalent to gλ. The
map χ : λ 7→ c(λ) is called the straightening of M(g).

We know that the straightening is not canonically defined outsed
the Mandelbrot set but rather depends on the choice of the tubing. But
for equipped families there is a natural choice given by (1.1). With this
choice, the straightening χ admits an extension to the whole parameter
domain Λ, which well be still denoted by χ.

Recall that Dr stands for the parameter disk bounded by the pa-
rameter equipotential of radius r (in the quadratic family). We can now
formulate a fundamental result of the theory of quadratic-like families:

Theorem 7.1. Let g be a proper unfolded equipped quadratic-like
family over Λ. Endow it with a holomorphic tubing given by (1.1).
Then the corresponding straightening χ is a homeomorphism from Λ
onto Dr2.

The proof of this theorem will be split into several pieces which are
important on their own right.

1.4. The critical value moves transversally to h. We say that
a holomorphic curve Γ ⊂ C2 is a global transversal to a holomorphic
motion h if it transversally intersects each leaf of h at a single point.

Lemma 7.2. Under the assumptions of Theorem 7.1, the graph of
the function λ 7→ gλ(0), λ ∈ Λ, is a global transversal to the holomor-
phic motion h on U′ r U.
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We will also express it by saying that the critical value moves
transversally to h. The moral of this lemma is that in the complex
setting the transversality can come for purely topological reasons.

Proof. Take a point z ∈ U ′
∗ r U∗ and consider its leaf

Lz = {(λ, ζ) ∈ C2 : λ ∈ Λ, ζ = hλ(z)}.
Since the motion h admits a continuous extension to the boundary
∂Λ, the function ψ : λ 7→ hλ(z) is continuous up to the boundary and
ψ(λ) ∈ U ′

λ r Uλ, λ ∈ ∂Λ. Since the tube V ≡ U|∂Λ is homeomorphic
to the solid torus ∂Λ × D over ∂Λ, the curve λ 7→ ψ(λ), λ ∈ ∂Λ, is
homotopic to the zero curve λ 7→ 0 in V, i.e., these two curves can be
joined by a continuous family of curves ψt : ∂Λ → V, 0 ≤ t ≤ 1.

Consider now the curve φ : λ 7→ fλ(0), λ ∈ ∂Λ. Since f is proper,
φ(λ) ∈ ∂V. Hence φ(λ) − ψt(λ) 6= 0 for λ ∈ ∂Λ. It follows that
the curves λ 7→ φ(λ) − ψ(λ) and λ 7→ φ(λ), λ ∈ ∂Λ, have the same
winding number around 0. But the latter number is equal to 1, since
f is unfolded. Hence the former number is also equal to 1. By the
classical Argument Principle, the graphs of the functions φ and ψ have
a single transverse intersection, and that is what we need. �

1.5. Uniformization of the complement of M(g). In this sec-
tion we will construct a dynamical (non-conformal) uniformization of
Λ rM(g) which generalizes the uniformization of C rM constructed
in §??. This construction will illustrate how to relate the parameter
and dynamical planes by means of holomorphic moions.

Let us consider a set P = {λ ∈ Λ : gλ(0) ∈ U ′
λ r Uλ} (i.e., the

set of parameters for which the critical point escapes under the first
iterate through the fundamental annulus Aλ = U ′

λ r Uλ). Note that
all points in Λ sufficiently close to ∂Λ obviously belong to P . We will
show that P is an annulus naturally homeomorphic to the dynamical
annulus A∗ = U ′

∗ r U∗.
To this end consider the graph of the function φ : λ 7→ gλ(0),

Γ = {(λ, z) ∈ C2 : λ ∈ Λ, z = gλ(0)}.
By Lemma 7.2, this graph is a global transversal to the holomorphic
motion h. Hence there is a well defined holonomy γ : A∗ → Γ along
the leaves of f , and it maps A∗ homeomorphically onto a topological
annulus B ⊂ Γ. Obviously, π(B) = P . Altogether, we have a homeo-
morphism π ◦ γ from A∗ onto P . It follows, in particular that P is a
topological annulus, whose inner boundary is a Jordan curve in Λ and
the outer boundary is ∂Λ.
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Let us consider the domain Λ′ = Λ r P . The restriction of our
quadratic-like family to this parameter domain is not proper any more.
To restore this property, we have to restrict the dynamical domains
as well. Let Vλ = g−1

λ Uλ. For any λ ∈ Λ′, gλ(0) ∈ Uλ; hence Vλ is a
topological disk and gλ : Vλ → Uλ is a quadratic-like map. This gives
us a quadratic-like family over Λ′.

It is proper since by construction gλ(0) ∈ Uλ for λ ∈ ∂Λ′ (other
technical properties required in the definition are even more obvious).
It has winding number one since the function φ : λ 7→ gλ(0) does
not have zeros in the annulus R̄. It follows that the boundary curves
φ : ∂Λ → C∗ and φ : ∂Λ′ → C∗ are homotopic and hence they have the
same winding number around 0.

Let us now equip this family with a holomorphic motion h′λ : A′
∗ →

A′
λ of the fundamental annulus A′

λ = Uλ rVλ. This motion is obtained
by lifting the motion hλ by means of the double coverings gλ : A′

λ → Aλ,

A′
∗ −→

h′

λ

A′
λ

g∗ ↓ ↓ gλ

A∗ −→
hλ

Aλ

We need to check that this lift can be chosen holomorphic in λ. To this
end take a point z ∈ A∗ and consider its orbit ψ : λ 7→ hλ(z), λ ∈ Λ′.
Take some ζ ∈ A′

∗ such that g∗(ζ) = z. We want to find a holomorphic
function ψ′ : λ→ h′λ(ζ) which makes the above diagram commutative,
i.e., it should satisfy the equation:

gλ(ψ
′(λ)) = ψ(λ).

By the Implicit Function Theorem, this equation has a local holomor-
phic solution if g′λ(ζ) 6= 0, i.e., if ζ is not a critical point of gλ. This
condition is certainly satisfied in our situation.

By the λ-lemma, the original holomorphic motion h mathches with
h′ on the common boundary ∂iAλ = ∂oA′

λ, so that together they
provide a single holomorphic motion of the union Aλ ∪ A′

λ over Λ′.
Let P ′ = {λ ∈ Λ′ : gλ(0) ∈ A′

λ}. Applying the above result to the
restricted quadratic-like family, we obtain a homeomorphism π ◦ γ′ :
A′

∗ → P ′, where γ′ is the holonomy along h′. Since γ′ matches with γ on
the common boundary of the annuli, they give us a homeomorphism of
the union of the dynamical annuli onto the union of parameter annuli,
A ∪ A′ → P ∪ P ′.

Proceeding in the same way, we will construct:



204 7. PRIMITIVE COPIES

• A nest of parameter annuli P n attached one to the next and the
corresponding parameter domains Λn = Λn−1 r P n−1 (where
Λ0 ≡ Λ, P 0 ≡ P , Λ1 ≡ Λ′). Moreover, ∪P n = Λ rM(g).

• A sequence of proper unfolded quadratic-like families

gn,λ ≡ gλ : V n+1
λ → V n

λ over Λn,

where V n
λ = g−n

λ U ′
λ (thus V 0

λ ≡ U ′
λ, V

1
λ ≡ Uλ and V 2

λ ≡ Vλ).
• A sequence of holomorphic motions hn,λ of the fundamental

annulus An
λ ≡ V̄ n

λ r V n+1
λ over Λn which equip gn,λ; moreover

hn+1,λ is obtained by lifting hn,λ by means of the coverings
gλ : An

λ → An−1
λ . These holomorphic motions match on the

common boundaries of the fundamental annuli.

Let γn : An
∗ → Γ be the holonomy along hn (recall that Γ is the

graph of the function φ : λ 7→ fλ(0). Since the holomorphic motions
match on the common boundaries, these holonomies also match, and
determine a continuous injection γ : U∗ r K(f∗) → Γ. Composing it
with the projection π, we obtain a homeomorphism

π ◦ γ : U∗ rK(f∗) → Λ rM(g)

between the dynamical and parameter annuli. Note that the inverse
map is equal to γ−1 ◦ φ.

Composing the above homeomorphism with the tubing (1.1), we
obtain a “uniformization” of Λ rM(g) by a round annulus:

S : t∗ ◦ (π ◦ γ)−1 = tλ ◦ φ : Λ rM(g) → A(1, r2), S(λ) = tλ(gλ(0)).
(1.3)

We call S(λ) “the tubing position of the critical value of gλ”.

Remark. The above uniformization of Λ rM is generally not con-
formal. However, in the case of a restricted quadratic family, it is the
restriction of the conformal uniformization of C r M . Indeed, in this
case, the tubing tλ turns into the Böttcher maps Bc (see (1.2) ), the
critical value gλ(0) turns into c, and formula (1.3) turns into formula
(??) for the Riemann map R : C rM → C r D, R(c) = Bc(c).

Corollary 7.3. The Mandelbrot set M(g) is connected and full.

1.6. Adjustments of quadratic-like families. Include the “max-
imal” extension of the leaves up to the critical value

1.7. Quasi-conformality of the uniformization. Given a holo-
morphic motion h over Λ, let

Dil(h) = sup
λ∈Λ

Dil(hλ)
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(which can be infinite). We say that the holomorphic motion h is K-qc
if Dil(h) ≤ K. In the following statement we will use the notations of
§1.5.

Lemma 7.4. Under the assumptions of Theorem 7.1, assume that
the tubing t∗ : A∗ → A(r, r2) and the holomorphic motion h are K-qc.
Then the uniformization S : Λ rM(g) → A(1, r2) is K-qc as well.

In fact, we can make the dilatation depend only on mod(A∗) and
mod(Λ r Λ′), after an appropriate adjustment of the family g.

Lemma 7.5. Let us consider a quadratic-like family g over Λ satis-
fying the assumptions of Theorem 7.1. This family can be adjusted to
a family g̃ over Λ̃ in such a way that the dilatation of the straightening
χ̃ : Λ̃rM(g̃) → DrM will depend only on mod(A∗) and mod(ΛrΛ′).

1.8. Looking from the outside. We are now ready to prove that
the straightening is a homeomorphism outside the Mandelbrot sets.

Lemma 7.6. Under the assumptions of Theorem 7.1, the straight-
ening χ : Λ rM(g) → Dr2 rM is a homeomorphism.

Proof. Let us consider the uniformizations S : Λ r M(g) →
A(1, r2) and R : D rM → A(1, r2) constructed above. Then

χ = R−1 ◦ S. (1.4)

Indeed, let λ ∈ Λ r M(g) and c = χ(λ) ∈ D r M . Putting together
(??) and (1.3), we obtain:

S(λ) = tλ(gλ(0)) = Bc(c) = R(c),

which is exactly (1.4). Since S and R are both homeomorphisms, χ is
a homeomorphism as well. �

1.9. Miracle of continuity. We will now show that the straight-
ening is continuous on the boundary of M(g):

Lemma 7.7. Under the assumptions of Theorem 7.1, the straighten-
ing χ is continuous at any point λ ∈ ∂M(g) and moreover χ(λ) ∈ ∂M .

Proof. First we will show that χ| ∂M(g) is a continuous extension
of χ|Λ rM(g). Let λn ∈ Λ rM(g) be a sequence of parameter values
converging to some λ ∈ ∂M . Let cn = χ(λn) and c = χ(λ) ∈ M . We
shoud show that cn → c. Let gλ : U → U ′, fc : Ω → Ω′.

By Lemma 7.6, the map χ : Λ r intM(g) → D r intM is proper,
and hence any limit point d of {cn} ⊂ D r M belongs to ∂M . We
assert that gλ : U → U ′ is qc conjugate to fd : V → V ′. Indeed, the
gλn : Un → U ′

n are hybrid equivalent to the fcn : Ωn → Ω′
n by means
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of some qc maps ψn : U ′
n → Ω′

n. By the straightening construction
(see the proof of Lemma 4.33), the dilatation of ψn is equal to the
dilatation of the tubing tλn = t∗ ◦ h−1

λ , which is locally bounded by
the λ-lemma. By ??, the sequence ψn is pre-compact in the topology
of uniform convergence on compact subsets of U ′. Take a limit map
ψ : U ′ → Ω′. Since gλn → gλ uniformly on compact subsets of U and
fcn → fd (along a subsequence) uniformly on compact subsets of Ω,
the map ψ conjugates gλ to fd, as was asserted.

But gλ is also hybrid equivalent to fc. Thus fc and fd are qc conju-
gate in some neighborhoods of their filled Julia sets. By ??, they are
qc conjugate on the whole complex plane. Since d ∈ ∂M , the Rigid-
ity Theorem ??(...) implies the desired: c = d (and, in particular,
c ∈ ∂M).

The above argument implies that χ continuously maps ΛrintM(g)
into Dr intM . We still need to show that χ is continuous at any point
λ ∈ ∂M even if it is approached from the interior of M(g). The
argument is similar to the above except one detail. So, let now {λn}
be any sequence in Λ converging to λ. Let cn, c and d be as above.
Then the above argument shows that fc is qc equivalent to fd. But
now we already know that c ∈ ∂M (though this time we do not know
it for d). Hence by the Rigidity Theorem ??(...), c = d. �

“Only by miracle can one ensure the continuity of straightening
in degree 2” said Adrien Douady [D1]. As we have seen, a reason
behind this miracle is quasi-conformal rigidity of the quadratic maps
fc with c ∈ ∂M (??). Another reason is the λ-lemma (see §??). All
these reasons are valid only for one-parameter families. There are no
miracles in the polynomial families with more parameters, see [DH2,
§...].

1.10. Analyticity of χ : intM(g) → intM . The assumptions of
Theorem 7.1 will be standing until the end of this section

1.10.1. Hyperbolic components. As in the case of the genuine Man-
delbrote set, a component H of intM(g) is called hyperbolic if it con-
tains a hyperbolic parameter value.

Exercise 7.1. Show that:

(i) All parameter values in a hyperbolic component of M(g) are
hyperbolic;

(ii) Neutral parameter values belong to ∂M(g) (compare Lemma
??);



1. QUADRATIC-LIKE FAMILIES 207

Lemma 7.8. If P is a hyperbolic component of intM(g) then there
exists a hyperbolic component Q of intM such that χ : P → Q is a
proper holomorphic map.

Proof. Obviously the straightening of a hyperbolic map is hyper-
bolic. Hence χ(P ) belongs to some hyperbolic component Q of intM .
Moreover, since the hybrid conjugacy is conformal on the interior of the
filled Julia set, it preserves the multiplies of attracting cycles. Hence

µP (λ) = µQ(c) for c = χ(λ),

where µP and µQ are the multiplier functions on the domains P and
Q respectively. By the Implicit Function Theorem, both these func-
tions are holomorphic. Moreover, by Theorem ??, µQ is a conformal
isomorphism onto D. Hence χ = µ−1

Q ◦ µP is holomorphic as well.
By Lemma 7.7, the map χ : P → Q is continuous up to the bound-

ary and χ(∂P ) ⊂ ∂Q. Hence it is proper. �

1.10.2. Queer components. As in the quadratic case, a non-hyperbolic
component of intM(g) is called queer. Let us first extend Lemma ??
to quadratic-like families:

Lemma 7.9. Let P be a queer component of M(g). Take a base
point ∗ ∈ P . Then there is a holomorphic motion Hλ : U ′

∗ → U ′
λ

conjugating g∗ to gλ.

Proof. Since M(g) is equipped, there is a holomorphic motion
hλ : A∗ → Aλ. Let An

λ = g−n
λ Aλ. Since the critical point is non-

escaping under the iterates of gλ, A
n
λ is an annulus and gn

λ : An
λ → Aλ

is a covering map. By ??, h can be consequtively lifted to holomorphic
motions hn,λ : An

∗ → An
λ. By the λ-lemma (??), they automatically

match on the common boundaries of the annuli, so that we have a
single holomorphic motion Hλ : U ′

∗ rK(g∗) → U ′
λ rK(gλ) conjugating

g∗ to gλ. Since the sets K(gλ) are nowhere dense (see Corollary 4.32),
the λ-lemma extension of Hλ to the whole domain U ′

∗ still conjugates
g∗ to gλ. �

Lemma 7.10. Let Hλ be the holomorphic motion constructed in the
previous lemma. Then the Beltrami differential

µλ(z) =

{

∂̄Hλ(z)
∂Hλ(z)

, z ∈ K(g∗),

0, z ∈ C rK(g∗),

holomorphically depends on λ ∈ P .

We can now prove an analogue of Lemma 7.8 for queer components.
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Lemma 7.11. The straightening χ is holomorphic on the queer com-
ponents of intM(g).

Proof. Consider a queer component P ⊂ intM(g) with a base
point ∗. For λ ∈ P , let hλ : U ′

λ → Ω′
λ denote the hybrid conjugacy

between gλ : Uλ → U ′
λ and its straightening fλ ≡ fχ(λ) : Ωλ → Ω′

λ, and
let h ≡ h∗. Then f∗ : Ω∗ → Ω′

∗ is qc equivalent to fλ : Ωλ → Ω′
λ by

means of the map ψλ : hλ ◦Hλ ◦ h−1, where {Hλ} is the holomorphic
motion from the previous lemma. Let φλ : C rK(f∗) → C rK(fλ) be
the conformal conjugacy between the quadratic polynomials f∗ and fλ

on the complements of their Julia sets. By ??, the map

Ψλ(z) =

{

ψλ(z), z ∈ K(f∗),
φλ(z), z ∈ C rK(f∗),

is a global qc conjugacy between f∗ and fλ conformal outside the Julia
set.

Let νλ = (hλ)∗µλ, where µλ is the conformal structure on K(g∗)
considered in the previous lemma. Since hλ is confomal a.e. on the
Julia set, we have:

Ψ∗
λ(σ|K(fλ)) = h∗◦(Hλ)

∗◦h∗λ (σ|K(fλ)) = h∗◦(Hλ)
∗(σ|K(gλ)) = h∗µλ = νλ.

Since the push forward-map

h∗ : µ 7→ ν, ν =

(

h′

h̄′
µ

)

◦ h−1

is a complex isomorphism between the spaces of Beltrami differentials.
the previous lemma implies that νλ holomorphically depends on λ ∈
P . By the holomorphic dependence of the solution of the Beltrami
equation on parameters (ref) and ??, fλ(0) = χ(λ) holomorphically
depends on λ as well. �

1.11. Discreteness of the fibers.

Lemma 7.12. For any c ∈M , the fiber χ−1(c) is finite.

Proof. Since M(g) is compact, it is enough to show that the fibers
are discrete. Assume that there exists some c ∈ M with an infinite
fiber χ−1(c). Since M(g) is compact, this fiber contains a sequence
of distinct parameter values λn ∈ χ−1(c) converging to some point
λ⋆ ∈ χ−1(c) We will skip the subscript in all notations affiliated with
the map gλ⋆ , i.e., gλ⋆ ≡ g, Uλ⋆ ≡ U etc.

Since χ is holomorphic on intM , λ⋆ cannot belong to intM unless
it belongs to a queer component U such that χ|U ≡ const. But in the
latter case, we can replace λ⋆ by any boundary point of U . Thus we
can always assume that λ⋆ ∈ ∂M .
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Since the quadratic-like family gλ : Uλ → U ′
λ is equipped, there

exists an equivariant holomorphic motion hλ : A → Aλ of the closed
fundamental annulus Aλ = Ū ′

λ rUλ, i.e., hλ(gz) = gλ(hλz) for z ∈ ∂A.
Extend it by the λ-lemma ?? to a holomorphic motion hλ : C r U →
CrUλ (keeping the same notation for the extension). We will construct
a holomorphic family of hybrid deformations Gλ of g, λ ∈ Λ, naturally
generated by this holomorphic motion.

To this end let us first pull back the standard conformal structure to
CrU , µλ = h∗λ(σ). Then extend µλ to a g-invariant conformal structure
on C r K(g) by pulling it back by iterates of g. Finaly extend it to
K(g) as a strandard structure. This gives us a holomorphic family of
g-invariant conformal structures on C. We will keep the same notation
µλ for these structures. Solving the Beltrami equations, we obtain a
holomorphic family of qc maps Hλ : C → C such that µλ = (Hλ)

∗(σ)
and ∂̄H(z) = 0 a.e. on K(g). Conjugating g by these maps, we obtain
a desired hybrid deformation Gλ = Hλ ◦ g ◦H−1

λ , λ ∈ Λ.

On the other hand, for maps gλn ≡ gn, we can construct the Bel-
trami differentials µλn ≡ µn in a different way. Indeed, since the map
gn is hybrid equivalent to g, the equivariant map hλn ≡ hn uniquely
extends to a hybrid conjugacy (Theorem ??). Let us keep the same
notation hn for this conjugacy.

The above two constructions naturally agree: (hn)∗σ = µn. Indeed,
it is true on C r U by definition. It is then true on U r K(f), since
the Beltrami differentials are pulled-back under conformal liftings (see
Lemma 4.36). Finally, it is true on the filled Julia set K(g) since hn is
conformal a.e. on it.

Thus the qc maps Hn : C → C and hn : C → C satisfy the same
Beltrami equation. They also coincide at two points, e.g., at the critical
point and at the β-fixed point of g (in fact, by Corollary 4.42 they
coincide on the whole Julia set of g). By uniqueness of the solution of
the Beltrami equation, Hn = hn. Hence Gn = gn. Returning to the
original notations, we have

Gλn(z) = gλn(z). (1.5)

Take an ǫ > 0 such that both functions Gλ(z) and gλ(z) are well-
defined in the bidisk {(λ, z) ∈ C2 : |λ− λ⋆| < ǫ, z ∈ V ≡ g−1U}. For
any z ∈ V , consider two holomorphic functions of λ:

Φz : (λ) = Gλ(z) and φz(λ) = gλ(z), |λ− λ⋆| < ǫ.

By (1.5), they are equal at points λn converging to λ∗. Hence they are
identically equal.
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Thus for |λ| < ǫ, two quadratic-like maps, Gλ and gλ, coincide on
V . But it is impossible since the Julia set of Gλ is always connected,
while the Julia set of gλ is disconnected for some λ arbitrary close to
λ⋆ (recall that we assume that λ⋆ ∈ ∂M(g)). �

Corollary 7.13. χ(intM(g)) ⊂ intM.

Remark. Of course, it is not obvious only for queer components.

Proof. Take a component P of intM . We have proven that χ|P
is a non-constant holomorphic function. Hence the image χ(P ) is open.
Since it is obviously contained in M , it must be contained in intM . �

1.12. Bijectivity. What is left is to show that the map χ : M(g) →
M is bijective. By §1.5, the winding number of the curve χ : ∂Λ → C

around any point c ∈ Dr2 is equial to 1. By the Topological Argument
Principle (§6.1),

∑

a∈χ−1c

inda(χ) = wc(χ, ∂Λ) = 1, c ∈ Dr2 . (1.6)

It immediately follows that the map χ : Λ → Dr2 is surjective (for
otherwise the sum in the left-hand side would vanish fo some c ∈ Dr2).

Let us show that χ is injective on the interior of M(g). Indeed, if
a0 ∈ intM , then by Corollary 7.13 c = χ(a0) ∈ intM , and by Lemma
7.7 χ−1(c) ⊂ intM . But by §1.10, χ| intM is holomorphic and hence
inda(χ) > 0 for any a ∈ intM . It follows that the sum in the left-hand
side of (1.6) actually contains only one term, so that c has only one
preimage, a0.

Finaly, assume that there is a point c ∈ ∂M with more than one
preimage. By the Topological Argument Principle, χ has a non-zero
index at one of those preimages, say, a1. Take another preimage a2.
Both a1 and a2 belong to ∂M .

Take a point a′2 6∈ ∂M(g) near a2, and let c′ = χ(a′2). By Exercise
1.35, χ is locally surjective near a1, so that c′ has a preimage a′1 over
there. This contradicts injectivity of χ on Λ r ∂M(g).

This completes the proof of Theorem 7.1.
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Part 5

Hints and comments to the
exersices



Chapter 1

1.3. The space of ǫ-separated triples of points is compact. The
Möbius transformation φ depends continuously on the triple (α, β, γ) =
φ−1(0, 1,∞) as obvious from the explicit formula

φ(z) =
z − α

z − γ
· β − γ

β − α
.

(This can also be used to verify equivalence of the two topologies.)

1.5. The curvature of a metric ρ(z)|dz| can be calculated by the
formula:

κ(z) = −∆ log ρ(z)

ρ(z)2
.

PSL(2,R)-invariance of the hyperbolic metric in the H-model amounts
to the identity:

Imφ(z) =
Im z

|cz + d|2 , φ(z) =
az + b

cz + d
.

Smooth isometries preserve angles between tangent vectors, and so
conformal. In fact, one does not need to impose smoothness a priori.
Any isometry is quasi-conformal (e.g., by the Pesin criterion, Theorem
??), and hence conformal by Weyl’s Lemma (2.9).

1.6. (It is a generality about discrete groups of isometries of lo-
cally compact spaces.) If proper discontinuity (see the definition in
§1) was violated, then there would exist as sequence of distinct mo-
tions γn : D → D, and sequence of points xn → x ∈ D such that
γ(xn) → y ∈ D. Then, since the γn are isometries, for any neighbor-
hood U ⋐ D, the family of maps γn : U → D would be uniformly
bounded and equicontinuous. Hence it would be pre-compact, contra-
dicting discreteness.

1.22. Let Un ⋐ U be an increasing sequence of domains exhausting
U , and let

dist(φ, ψ) =
∑ 1

2n
sup
z∈Un

ds(φ(z), ψ(z)).

1.23. Consider a sequence of holomorphic functions 1/φn(z) (which
are the original functions written in terms of the local chart 1/z near
∞ in the target Riemann sphere). Apply the Hurwitz Theorem on the
stability of roots of holomorphic functions.

1.20. Push the hyperbolic metric on H forward to D∗ by the uni-
versal covering map H → D∗, z 7→ eiz.
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1.19. (iii) An ideal quadrilateral consisting of two adjacent trian-
gles of the tiling gives us a fundamental domain of λ. In the H-model,
we can normalize it so that it is bounded by two vertical lines x = ±1
and two half-circles |z ± 1/2| = 1/2. Then the boundary identifica-
tions are given by two parabolic deck transformations z 7→ z + 2 and
z 7→ z/(2z + 1). They generate the group of deck transformations, on
the one hand, and the group Γ2, on the other.

1.27. Without loss of generality, we can assume that U = D, the
functions ψ do not collide in D∗, ψ1 ≡ ∞ and ψ ≡ ψ2 has a pole at
0. Then the functions φn are holomorphic on D and form a normal
family on D∗. By Exercise 1.26, we can assume that the φn are either
uniformly bounded on each Tr, r ∈ (0, 1), or

φn → ∞ uniformly on Tr. (0.7)

In the first case, the Maximal Principle completes the proof, so assume
(0.7) occurs. If φn(k)(0) 6= 0 for a subsequence n(k), then by the Min-
imum Principle ψn(k) → ∞ uniformly on Dr, and we are done. So,
we can assume that φn(0) = 0 for all n. Then the winding number of
the curve φn : Tr → C∗ around 0 is positive. But by (0.7), the curve
φn − ψ : Tr → C∗ eventually has the same winding number around 0
(r should be selected so that ψ does have poles on Tr) and hence the
equation φn(z) = ψ(z) has a solution in Dr.

Chapter 3

3.1. A quadratic differential φ ∈ Q can be represented as φ(z)dz2

where φ(z) is a holomorphic function on C̄ r P . Since
∫

|φ| < ∞,
this function can have at most simple poles at finite points zi, i =
1, . . . , n− 1, and φ(z) = O(|z|−3) near ∞ (which is equivalent to sayng
that the differential φ(z)dz2 has a simple pole at ∞). Hence

φ(z) =
n−1
∑

i=1

λi

z − zi

with
∑

λi = 0 and
∑

λi

∑

k 6=i

zk = 0. These two linear conditions are

independent, and in fact, (λ1, . . . , λn−3) can be selected as global coor-
dinates on the correspondent subspace (as the the right-most minor of
the corresponding 2 × (n− 1) matrix is equal to zn−1 − zn−2 6= 1).

3.2. Let [Sn, φn] converge to [S, φ] in T (S0). Then one can select
representatives φn and qc maps hn : Sn → S with Dil(hn) → 0 such
that hn ◦ φn = φ. Lift these maps to H normalizing the Φn at three
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points. Then use Theorem 2.12 to show that the Φn converge to Φ
uniformly on H.

3.4. Let {gα} be the projective atlas on V . Let us write f in the
local parameter z = gα(x) (i.e., consider the function fα = f ◦ g−1

α ),
and let us take its Schwarzian Sfα(z) dz2. Let ζ = gβ(x) be another
local chart (with an overlapping domain), and let ζ = Aβα(z) be the
transit Möbius map. Then fβ ◦ Aβα = fα, and the Chain Rule (3.4)
translates into the property that the quadratic differential Sfα(z) dz2

is the pullback of Sfβ(ζ) dζ2 under Aβα. This means by definition that
these local expressions determine a global quadratic differential on V .

Chapter 4

4.2. (i) Consider fixed points of f and their preimages.
(ii) It is a generality about full sets: a non-trivial loop γ in intK

would separate C rK.

4.3. (i) A full compact set K ⊂ C is connected if and only if its
boundary ∂K is connected. A less obvious part: if J = J1 ⊔ J2 with
both Ji compact, then K = K1 ⊔ K2, where Ki is a hull of Ji (i.e.,
the smallest full set containing Ji; it is obtained by adding all bounded
compenents of C r Ji to Ji).

(ii) It is so in both cases of the dichotomy: for any connected set
containing more than one point, or for a Cantor set.

4.12. For z ∈ Df (α), fn → α uniformly on a neighborhood of z.
Let D be the component of intK(f) containing z. Then by normality
of the family {fn|D}, the fn → α uniformly on compact subsets of D.

4.13 (i) D0(α) is the component of {z : fpn(z) → α as n → ∞}
containing α.

(ii) Let P∞ = ∪Pn. Then fp(∂P∞) = ∂P∞ since fp(∂Pn) = ∂Pn−1.

4.19. Note that the foliation by round circles is defined dynamically
as the closures of the equivalence classes

z ∼ ζ : ∃n : gnz = gnζ,

sometimes called “small orbits”. Hence a germ φ commuting with g
must respect this foliation. It follows that φ is linear (even if it mapped
just one round circle onto a round circle).

Chapter 5

5.1. (iii) Recall the proof of Proposition 4.2.
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(iv) It follows from the dichotomy: φn → ∞ locally uniformly on
C rM , and |φn(z)| < 2 on M (as in Proposition 4.5).

5.3. (Compare with Theorem ?? (i) Since the family of functions
φn is not normal near c∗ ∈ ∂M , one of the equations φn(c) = 0 or
φn(c) = ±√

c should have roots arbitrary close to c∗ ∈ ∂M .

(ii) Consider, for instance, the β-fixed point as a function of c (it
branches only at the main cusp 1/4). Then one of the equations φn(c) =

β(c) or φn(c) =
√

β(c) − c should have roots arbitrary close to c∗ ∈
∂M .

5.8. For a point ζ = z2 ∈ A′ = A[R2, R4], let Hc(ζ) = (Hc(z))
2.

This map is correctly defined (does not depend on the choice of z =√
ζ), and is a self-homeomorphism of the annulus A′ identical on ∂A′

and commuting with the group of rotations. Moreover, it commutes
with z 7→ z2 (by definition) and depends holomorphically on c. Now
extend it further to A[R4, R8], and so on.
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